1
|
Yang R, Gu C, Xie F, Hong S, Herth FJF, Sun J. Potential of Thermal Ablation Combined with Immunotherapy in Peripheral Lung Tumors: A Review and Prospect. Respiration 2024; 103:295-316. [PMID: 38498991 DOI: 10.1159/000538383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Lung tumors are prevalent malignancies associated with a high mortality rate, imposing significant medical and societal burdens. Although immunotherapy shows promise in improving survival, response rates are relatively modest. Thermal ablation can not only eliminate tumor cells directly but also enhance antitumor immunity response, thus manifesting a remarkable propensity to synergize with immunotherapy. SUMMARY In this review, we provided a brief overview of the application of thermal ablation in peripheral lung tumors. We summarized the patient selection of thermal ablation. We highlighted the potential of thermal ablation to augment the antitumor immune response, offering a promising avenue for combined therapies. We summarized studies assessing the synergistic effects of thermal ablation and immunotherapy in preclinical and clinical settings. Lastly, we underscored the urgent issues that warrant in-depth exploration when applying thermal ablation and immunotherapy to lung tumor patients. KEY MESSAGES This review emphasized the prospects of using thermal ablation combined with immunotherapy in patients with peripheral lung tumors. However, further research is needed to enhance and optimize this treatment strategy.
Collapse
Affiliation(s)
- Rui Yang
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Chuanjia Gu
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Siyuan Hong
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Felix J F Herth
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| |
Collapse
|
2
|
Mustafa AR, Miyasato D, Wehrenberg-Klee E. Synergizing Thermal Ablation Modalities with Immunotherapy: Enough to Induce Systemic Antitumoral Immunity? J Vasc Interv Radiol 2024; 35:185-197. [PMID: 38272639 DOI: 10.1016/j.jvir.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024] Open
Abstract
Thermal ablation modalities (cryoablation, radiofrequency ablation, and microwave ablation) have long been noted to occasionally induce a systemic antitumoral response. With the widespread use of checkpoint inhibitors, there is a significant interest in whether thermal ablation can promote immune system tumor recognition and increase checkpoint inhibitor response rates. In this review, we examine the current state of preclinical and clinical evidence examining the combination of checkpoint inhibitor therapies and thermal ablation modalities as well as discuss remaining the unanswered questions and directions for future research.
Collapse
Affiliation(s)
- Abdul Rehman Mustafa
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | | | - Eric Wehrenberg-Klee
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Posa A, Contegiacomo A, Ponziani FR, Punzi E, Mazza G, Scrofani A, Pompili M, Goldberg SN, Natale L, Gasbarrini A, Sala E, Iezzi R. Interventional Oncology and Immuno-Oncology: Current Challenges and Future Trends. Int J Mol Sci 2023; 24:ijms24087344. [PMID: 37108507 PMCID: PMC10138371 DOI: 10.3390/ijms24087344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Personalized cancer treatments help to deliver tailored and biologically driven therapies for cancer patients. Interventional oncology techniques are able to treat malignancies in a locoregional fashion, with a variety of mechanisms of action leading to tumor necrosis. Tumor destruction determines a great availability of tumor antigens that can be recognized by the immune system, potentially triggering an immune response. The advent of immunotherapy in cancer care, with the introduction of specific immune checkpoint inhibitors, has led to the investigation of the synergy of these drugs when used in combination with interventional oncology treatments. The aim of this paper is to review the most recent advances in the field of interventional oncology locoregional treatments and their interactions with immunotherapy.
Collapse
Affiliation(s)
- Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Andrea Contegiacomo
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Ernesto Punzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Mazza
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Annarita Scrofani
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Shraga Nahum Goldberg
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
4
|
Vrabel MR, Schulman JA, Gillam FB, Mantooth SM, Nguyen KG, Zaharoff DA. Focal Cryo-Immunotherapy with Intratumoral IL-12 Prevents Recurrence of Large Murine Tumors. Cancers (Basel) 2023; 15:2210. [PMID: 37190138 PMCID: PMC10137033 DOI: 10.3390/cancers15082210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Focal ablation technologies are routinely used in the clinical management of inoperable solid tumors but they often result in incomplete ablations leading to high recurrence rates. Adjuvant therapies, capable of safely eliminating residual tumor cells, are therefore of great clinical interest. Interleukin-12 (IL-12) is a potent antitumor cytokine that can be localized intratumorally through coformulation with viscous biopolymers, including chitosan (CS) solutions. The objective of this research was to determine if localized immunotherapy with a CS/IL-12 formulation could prevent tumor recurrence after cryoablation (CA). Tumor recurrence and overall survival rates were assessed. Systemic immunity was evaluated in spontaneously metastatic and bilateral tumor models. Temporal bulk RNA sequencing was performed on tumor and draining lymph node (dLN) samples. In multiple murine tumor models, the addition of CS/IL-12 to CA reduced recurrence rates by 30-55%. Altogether, this cryo-immunotherapy induced complete durable regression of large tumors in 80-100% of treated animals. Additionally, CS/IL-12 prevented lung metastases when delivered as a neoadjuvant to CA. However, CA plus CS/IL-12 had minimal antitumor activity against established, untreated abscopal tumors. Adjuvant anti-PD-1 therapy delayed the growth of abscopal tumors. Transcriptome analyses revealed early immunological changes in the dLN, followed by a significant increase in gene expression associated with immune suppression and regulation. Cryo-immunotherapy with localized CS/IL-12 reduces recurrences and enhances the elimination of large primary tumors. This focal combination therapy also induces significant but limited systemic antitumor immunity.
Collapse
Affiliation(s)
- Maura R. Vrabel
- ImmunoEngineering Laboratory, Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Jacob A. Schulman
- ImmunoEngineering Laboratory, Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, NC 27695, USA
| | - Francis B. Gillam
- ImmunoEngineering Laboratory, Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, NC 27695, USA
| | - Siena M. Mantooth
- ImmunoEngineering Laboratory, Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Khue G. Nguyen
- ImmunoEngineering Laboratory, Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, NC 27695, USA
| | - David A. Zaharoff
- ImmunoEngineering Laboratory, Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
van den Bijgaart RJE, Mekers VE, Schuurmans F, Raaijmakers TK, Wassink M, Veltien A, Dumont E, Heerschap A, Fütterer JJ, Adema GJ. Mechanical high-intensity focused ultrasound creates unique tumor debris enhancing dendritic cell-induced T cell activation. Front Immunol 2022; 13:1038347. [PMID: 36569907 PMCID: PMC9768443 DOI: 10.3389/fimmu.2022.1038347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction In situ tumor ablation releases a unique repertoire of antigens from a heterogeneous population of tumor cells. High-intensity focused ultrasound (HIFU) is a completely noninvasive ablation therapy that can be used to ablate tumors either by heating (thermal (T)-HIFU) or by mechanical disruption (mechanical (M)-HIFU). How different HIFU ablation techniques compare with respect to their antigen release profile, their activation of responder T cells, and their ability to synergize with immune stimuli remains to be elucidated. Methods and results Here, we compare the immunomodulatory effects of T-HIFU and M-HIFU ablation with or without the TLR9 agonist CpG in the ovalbumin-expressing lymphoma model EG7. M-HIFU ablation alone, but much less so T-HIFU, significantly increased dendritic cell (DC) activation in draining lymph nodes (LNs). Administration of CpG following T- or M-HIFU ablation increased DC activation in draining LNs to a similar extend. Interestingly, ex vivo co-cultures of draining LN suspensions from HIFU plus CpG treated mice with CD8+ OT-I T cells demonstrate that LN cells from M-HIFU treated mice most potently induced OT-I proliferation. To delineate the mechanism for the enhanced anti-tumor immune response induced by M-HIFU, we characterized the RNA, DNA and protein content of tumor debris generated by both HIFU methods. M-HIFU induced a uniquely altered RNA, DNA and protein profile, all showing clear signs of fragmentation, whereas T-HIFU did not. Moreover, western blot analysis showed decreased levels of the immunosuppressive cytokines IL-10 and TGF-β in M-HIFU generated tumor debris compared to untreated tumor tissue or T-HIFU. Conclusion Collectively, these results imply that M-HIFU induces a unique context of the ablated tumor material, enhancing DC-mediated T cell responses when combined with CpG.
Collapse
Affiliation(s)
- Renske J. E. van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vera E. Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tonke K. Raaijmakers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Melissa Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J. Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: Gosse J. Adema,
| |
Collapse
|
6
|
Shang Y, Li G, Zhang B, Wu Y, Chen Y, Li C, Zhao W, Liu J. Image-guided percutaneous ablation for lung malignancies. Front Oncol 2022; 12:1020296. [PMID: 36439490 PMCID: PMC9685331 DOI: 10.3389/fonc.2022.1020296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 10/21/2023] Open
Abstract
Image-guided percutaneous lung ablation has proven to be an alternative and effective strategy in the treatment of lung cancer and other lung malignancies. Radiofrequency ablation, microwave ablation, and cryoablation are widely used ablation modalities in clinical practice that can be performed along or combined with other treatment modalities. In this context, this article will review the application of different ablation strategies in lung malignancies.
Collapse
Affiliation(s)
- Youlan Shang
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Ge Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zhang
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhi Wu
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjing Chen
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang Li
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Tian Y, Qi X, Jiang X, Shang L, Xu K, Shao H. Cryoablation and immune synergistic effect for lung cancer: A review. Front Immunol 2022; 13:950921. [PMID: 36389781 PMCID: PMC9647087 DOI: 10.3389/fimmu.2022.950921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/13/2022] [Indexed: 07/29/2023] Open
Abstract
The preferred treatment for lung cancer is surgical resection, but a large number of patients are not suitable for surgical resection in clinic. CT-guided cryoablation and immunotherapy can play an important role in patients with advanced lung cancer who are ineligible for surgery. CT-guided cryoablation has been widely used in the clinical treatment of lung tumors due to its advantages of less trauma, fewer complications, significant efficacy and rapid recovery. Cryoablation can not only cause tumor necrosis and apoptosis, but also promote the release of tumor-derived autoantigens into the blood circulation, and stimulate the host immune system to produce a good anti-tumor immune effect against primary and metastatic tumors. Since the study of immune checkpoint inhibitors has proved that lung cancer can be an immunotherapeutic response disease, the relationship between cryoablation and immunotherapy of lung cancer has been paid more attention. Therefore, we reviewed the literature on cryoablation for lung cancer, as well as the research progress of cryoablation combined with immunotherapy.
Collapse
Affiliation(s)
- Yulong Tian
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xingshun Qi
- Department of Gastroenterology, Northern Theater General Hospital, Shenyang, Liaoning, China
| | - Xin Jiang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liqi Shang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haibo Shao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
[Current Status and Progress of Thermal Ablation Combined with Immunotherapy for Lung Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:266-271. [PMID: 35477191 PMCID: PMC9051299 DOI: 10.3779/j.issn.1009-3419.2022.102.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that tumor immune microenvironment is closely related to tumor progression, metastasis, recurrence and response to treatment. Some immunotherapies also offer hope for cancer patients. However, the efficacy of tumor immunotherapy is uncertain and has some side effects. In order to enhance its efficacy, tumor immunotherapy combined with tumor thermal ablation has been studied. Thermal ablation has the advantages of minimally invasive, rapid recovery, safety, fewer complications, conformation, reliable effect, repeatable, low cost, and has become the fourth tumor treatment measure after surgery, radiotherapy, and drug therapy. It can directly kill tumor cells and modulate the immune system through a variety of mechanisms, although the corresponding mechanisms are not well understood, but combined tumor immunotherapy has been proposed to treat several solid malignancies. In this review, the current status and progress of thermal ablation combined with immunotherapy for lung tumor were reviewed, and further studies on the efficacy and safety of thermal ablation combined with immunotherapy were expected.
.
Collapse
|
9
|
Tonguc T, Strunk H, Gonzalez-Carmona MA, Recker F, Lütjohann D, Thudium M, Conrad R, Becher MU, Savchenko O, Davidova D, Luechters G, Mustea A, Strassburg CP, Attenberger U, Pieper CC, Jenne J, Marinova M. US-guided high-intensity focused ultrasound (HIFU) of abdominal tumors: outcome, early ablation-related laboratory changes and inflammatory reaction. A single-center experience from Germany. Int J Hyperthermia 2021; 38:65-74. [PMID: 34420445 DOI: 10.1080/02656736.2021.1900926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION High-intensity focused ultrasound (HIFU) is an innovative noninvasive procedure for local ablation of different benign and malignant tumors. Preliminary data of animal studies suggest an ablation-associated immune response after HIFU that is induced by cell necrosis and release of intracellular components. The aim of this study is to evaluate if a HIFU-induced early sterile inflammatory reaction is initiated after ablation of uterine fibroids (UF) and pancreatic carcinoma (PaC) which might contribute to the therapeutic effect. MATERIAL AND METHODS A hundred patients with PaC and 30 patients with UF underwent US-guided HIFU treatment. Serum markers of inflammation (leukocytes, CRP, IL-6) and LDH in both collectives as well as tumor markers CA 19-9, CEA and CYFRA in PaC patients were determined in sub-cohorts before and directly after HIFU (0, 2, 5 and 20 h post-ablation) as well as at 3, 6, 9 and 12 months follow-up. Peri-/post interventional imaging included contrast-enhanced MRI of both cohorts and an additional CT scan of PaC patients. RESULTS An early post-ablation inflammatory response was observed in both groups with a significant increase of leukocytes, CRP and LDH within the first 20 h after HIFU. Interestingly, IL-6 was increased at 20 h after HIFU in PaC patients. A significant reduction of tumor volumes was observed during one year follow-up (p < .001) for both tumor entities demonstrating effective treatment outcome. CONCLUSION Tumor ablation with HIFU induces an early sterile inflammation that might serve as a precondition for long-term tumor immunity and a sustainable therapeutic effect.
Collapse
Affiliation(s)
- Tolga Tonguc
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Holger Strunk
- Department of Radiology, Städtisches Klinikum Solingen, Solingen, Germany
| | | | - Florian Recker
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Department of Clinical Pharmacology and Laboratory Medicine, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Marcus Thudium
- Department of Anesthesiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Rupert Conrad
- Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Marc U Becher
- Department of Internal Medicine I, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Oleksandr Savchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Darya Davidova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Guido Luechters
- Center for Development Research (ZEF), University Bonn, Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Jürgen Jenne
- Fraunhofer Institute for Digital Medicine, MEVIS, Bremen, Germany
| | - Milka Marinova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| |
Collapse
|
10
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
Qian L, Shen Y, Xie J, Meng Z. Immunomodulatory effects of ablation therapy on tumors: Potentials for combination with immunotherapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188385. [DOI: 10.1016/j.bbcan.2020.188385] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
13
|
Shatz-Azoulay H, Vinik Y, Isaac R, Kohler U, Lev S, Zick Y. The Animal Lectin Galectin-8 Promotes Cytokine Expression and Metastatic Tumor Growth in Mice. Sci Rep 2020; 10:7375. [PMID: 32355198 PMCID: PMC7193594 DOI: 10.1038/s41598-020-64371-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/10/2020] [Indexed: 01/15/2023] Open
Abstract
Secreted animal lectins of the galectin family are key players in cancer growth and metastasis. Here we show that galectin-8 (gal-8) induces the expression and secretion of cytokines and chemokines such as SDF-1 and MCP-1 in a number of cell types. This involves gal-8 binding to a uPAR/LRP1/integrin complex that activates JNK and the NFkB pathway. Cytokine and chemokine secretion, induced by gal-8, promotes migration of cancer cells toward cells treated with this lectin. Indeed, immune-competent gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for gal-8 transgenic animals. Accordingly, gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These results suggest the existence of a 'vicious cycle' whereby gal-8 secreted by the tumor microenvironment, promotes secretion of chemoattractants at the metastatic niche that promote further recruitment of tumor cells to that site. This study further implicate gal-8 in control of cancer progression and metastasis through its effects on the production of immunoregulatory cytokines.
Collapse
Affiliation(s)
- Hadas Shatz-Azoulay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulrike Kohler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
14
|
The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel) 2020; 12:cancers12020350. [PMID: 32033171 PMCID: PMC7072338 DOI: 10.3390/cancers12020350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Image-guided focused ultrasound (FUS) has been successfully employed as an ablative treatment for solid malignancies by exposing immune cells to tumor debris/antigens, consequently inducing an immune response within the tumor microenvironment (TME). To date, immunomodulation effects of non-ablative pulsed-FUS (pFUS) on the TME are poorly understood. In this study, the temporal differences of cytokines, chemokines, and trophic factors (CCTFs) and immune cell populations induced by pFUS were interrogated in murine B16 melanoma or 4T1 breast cancer cells subcutaneously inoculated into C57BL/6 or BALB/c mice. Natural history growth characteristics during the course of 11 days showed a progressive increase in size for both tumors, and proteomic analysis revealed a shift toward an immunosuppressive TME. With respect to tumor natural growth, pFUS applied to tumors on days 1, 5, or 9 demonstrated a decrease in the growth rate 24 h post-sonication. Flow cytometry analysis of tumors, LNs, and Sp, as well as CCTF profiles, relative DNA damage, and adaptive T-cell localization within tumors, demonstrated dynamic innate and adaptive immune-modulation following pFUS in early time points of B16 tumors and in advanced 4T1 tumors. These results provide insight into the temporal dynamics in the treatment-associated TME, which could be used to evaluate an immunomodulatory approach in different tumor types.
Collapse
|
15
|
Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol 2019; 17:49-64. [DOI: 10.1038/s41571-019-0272-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
16
|
Aarts BM, Klompenhouwer EG, Rice SL, Imani F, Baetens T, Bex A, Horenblas S, Kok M, Haanen JBAG, Beets-Tan RGH, Gómez FM. Cryoablation and immunotherapy: an overview of evidence on its synergy. Insights Imaging 2019; 10:53. [PMID: 31111237 PMCID: PMC6527672 DOI: 10.1186/s13244-019-0727-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer cells can escape the immune system by different mechanisms. The evasion of cancer cells from immune surveillance is prevented by immune checkpoint inhibitors, allowing the patient’s own immune system to attack their cancer. Immune checkpoint inhibitors have shown improvement in overall survival for melanoma, lung cancer and renal cell carcinoma in clinical trials. Unfortunately, not all patients respond to this therapy. In cancer management, percutaneous ablation techniques are well established for both cure and local control of many tumour types. Cryoablation of the tumour tissue results in cell destruction by freezing. Contrary to heat-based ablative modalities, cryoablation induces tumour cell death by osmosis and necrosis. It is hypothesised that with necrosis, the intracellular contents of the cancer cells stay intact allowing the immune system to induce an immune-specific reaction. This immune-specific reaction can, in theory, also affect cancer cells outside the ablated tissue, known as the abscopal effect. Unfortunately, this effect is rarely observed, but when cryoablation is combined with immunotherapy, the effect of both therapies may be enhanced. Although several preclinical studies demonstrated a synergistic effect between cryoablation and immunotherapy, prospective clinical trials are needed to prove this clinical benefit for patients. In this review, we will outline the current evidence for the combination of cryoablation with immunotherapy to treat cancer.
Collapse
Affiliation(s)
- B M Aarts
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - E G Klompenhouwer
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - S L Rice
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, USA
| | - F Imani
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - T Baetens
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - A Bex
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - S Horenblas
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - M Kok
- Department of Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - J B A G Haanen
- Department of Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - R G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - F M Gómez
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Interventional Radiology, Hospital Clinic Universitari, Carrer de Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
17
|
Katzman D, Wu S, Sterman DH. Immunological Aspects of Cryoablation of Non-Small Cell Lung Cancer: A Comprehensive Review. J Thorac Oncol 2018; 13:624-635. [PMID: 29391289 DOI: 10.1016/j.jtho.2018.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/18/2023]
Abstract
In cryoimmunotherapy, target tumors are treated with cryoablation to generate antitumor immune responses. Because immune checkpoint inhibitors have demonstrated that lung cancer can be an immunotherapy-responsive disease, there has been renewed interest in the immunological aspects of cryoablation of lung cancer. Herein, we review preclinical and clinical trials of cryoablation of primary lung tumors. We examine the magnitude of cryoablation-induced antitumor immune responses and the synergy between cryoablation and either other immunotherapies or molecular targeted therapies to improve treatment responses in advanced lung cancer. We further discuss a rationale for the addition of cryoablation to immune checkpoint inhibitors for the treatment of advanced lung cancer, which is currently under clinical investigation.
Collapse
Affiliation(s)
- Daniel Katzman
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University Langone Health, New York, New York.
| | - Shirley Wu
- New York University School of Medicine, New York, New York
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University Langone Health, New York, New York
| |
Collapse
|
18
|
Takahashi Y, Matsutani N, Nakayama T, Dejima H, Uehara H, Kawamura M. Immunological effect of local ablation combined with immunotherapy on solid malignancies. CHINESE JOURNAL OF CANCER 2017; 36:49. [PMID: 28592286 PMCID: PMC5463413 DOI: 10.1186/s40880-017-0216-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Recent comprehensive investigations clarified that immune microenvironment surrounding tumor cells are deeply involved in tumor progression, metastasis, and response to treatment. Furthermore, several immunotherapeutic trials have achieved successful results, and the immunotherapeutic agents are available in clinical practice. To enhance their demonstrated efficacy, combination of immunotherapy and ablation has begun to emerge. Local ablations have considerable advantages as an alternative therapeutic option, especially its minimal invasiveness. In addition, local ablations have shown immune-regulatory effect in preclinical and clinical studies. Although the corresponding mechanisms are still unclear, the local ablations combined with immunotherapy have been suggested in the treatment of several solid malignancies. This article aims to review the published data on the immune-regulatory effects of local ablations including stereotactic body radiotherapy, cryoablation, radiofrequency ablation, and high-intensity-focused ultrasound. We also discuss the value of local ablations combined with immunotherapy. Local ablations have the potential to improve future patient outcomes; however, the effectiveness and safety of local ablations combined with immunotherapy should be further investigated.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
19
|
de Baere T, Tselikas L, Yevich S, Boige V, Deschamps F, Ducreux M, Goere D, Nguyen F, Malka D. The role of image-guided therapy in the management of colorectal cancer metastatic disease. Eur J Cancer 2017; 75:231-242. [DOI: 10.1016/j.ejca.2017.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/29/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
|
20
|
Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother 2016; 66:247-258. [PMID: 27585790 PMCID: PMC5281669 DOI: 10.1007/s00262-016-1891-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4+ and CD8+ T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.
Collapse
|
21
|
Takahashi Y, Izumi Y, Matsutani N, Dejima H, Nakayama T, Okamura R, Uehara H, Kawamura M. Optimized magnitude of cryosurgery facilitating anti-tumor immunoreaction in a mouse model of Lewis lung cancer. Cancer Immunol Immunother 2016; 65:973-82. [PMID: 27312061 PMCID: PMC11029219 DOI: 10.1007/s00262-016-1858-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cryosurgery has reemerged as a less invasive local treatment with possible immune-regulatory effects. However, the optimal magnitude of cryosurgery for achieving immune-regulatory responses at abscopal tumor sites remains unclear. We aimed to investigate appropriate magnitude of cryosurgery for this goal using a mouse model. METHODS C57BL/6J mice were inoculated with Lewis lung carcinoma cells or B16 melanoma cells in bilateral flanks. The left-sided tumor was cryoablated with repeated freeze/thaw cycles either once, twice, or thrice. The peritumoral injections of LPS were performed. Abscopal tumor volumes were measured, immunohistochemistry was performed for CD4, CD8, Foxp3, and Ki-67, and proinflammatory cytokines were measured in lavage fluid of cryoablated tumor. RESULTS The growth rate of the abscopal tumor was slowest in the Cryosurgery ×2 group among the five experimental groups. The proportions of CD4(+) T cells and CD8(+) T cells in the abscopal tumor were also significantly higher in the Cryosurgery ×2 group. The levels of IL-1β, IL-2, IL-6, IL-12β, IFN-γ, and TNF-α in the peritumoral lavage fluid in Cryosurgery ×2 + LPS group were significantly increased compared with the other groups. CONCLUSIONS This study suggested that achievement of approximately 73 % damaged area in the cryoablated tumor by two cycles of cryosurgery generates the most favorable immune-regulatory response for abscopal tumors via activation of anti-tumor immune cells as well as increased secretion of proinflammatory cytokines.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan.
| | - Yotaro Izumi
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Ryo Okamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| |
Collapse
|
22
|
Zhang M, Yin T, Lu Y, Feng H. The Application of Cytidyl Guanosyl Oligodeoxynucleotide Can Affect the Antitumor Immune Response Induced by a Combined Protocol of Cryoablation and Dendritic Cells in Lewis Lung Cancer Model. Med Sci Monit 2016; 22:1309-17. [PMID: 27092689 PMCID: PMC4839271 DOI: 10.12659/msm.898194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Recently, several combined therapeutic strategies and targeted agents have been under investigation for their potential role in lung cancer. The combined administration of dendritic cells (DCs) and immune-adjuvant cytidyl guanosyl oligodeoxynucleotide (CpG-ODN) after cryosurgery has proven to be an effective strategy for treating lung cancer. However, whether the application of CpG-ODN could affect the therapeutic results remained to be further explored. MATERIAL AND METHODS The Lewis lung cancer (LLC)-bearing mice received cryoablation and injection of ex vivo-cultured DCs into the peritumoral zone. Subsequently, CpG-ODN was administered to experimental animals 6 hours, 12 hours, and 24 hours after DC injection. The mice in the control group received coadministration of DCs and CpG-ODN simultaneously. Therapeutic effects were evaluated by survival rates. The resistance to rechallenge of LLC cell was assessed by lung metastasis and in vitro cytotoxicity of splenocytes. Furthermore, T-cell subsets and multiple cytokines (interleukin [IL]-4, -10, and-12; interferon [IFN]-γ; tumor necrosis factor [TNF]-α) in the blood were assessed to elucidate the underlying mechanisms. RESULTS Higher ratios of CD4+ and CD8+ T cells and higher levels of IL-12, IFN-γ, and TNF-α were found in the blood of the mice that received CpG-ODN therapy 12 h after DC injection. The cytotoxicity potency of the splenocytes of these mice was significantly higher compared with the mice in other groups. Moreover, the mice receiving CpG-ODN therapy 12 h after DC injection showed significantly better resistance to rechallenge. Compared with the mice in other groups, the mice receiving CpG-ODN therapy 12 h after DC injection were superior in survival rates and antimetastatic effects. CONCLUSIONS Our study suggested that the therapeutic efficacy was closely associated with CpG-ODN administration in the combined therapeutic protocol of cryoablation, DCs, and immune adjuvant. In situ administration of CpG-ODN 12 h after DC injection might be considered the optimum application.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Respiration, General Hospital of Chinese PLA, Beijing, China (mainland)
| | - Tianquan Yin
- Department of Emergency, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Yuan Lu
- Department of Respiration, General Hospital of Chinese PLA, Beijing, China (mainland)
| | - Huasong Feng
- Department of Respiration, General Hospital of Chinese PLA, Beijing, China (mainland)
| |
Collapse
|