1
|
Kellermann G, Leulliot N, Cherfils-Vicini J, Blaud M, Brest P. Activated B-Cells enhance epitope spreading to support successful cancer immunotherapy. Front Immunol 2024; 15:1382236. [PMID: 38571942 PMCID: PMC10989059 DOI: 10.3389/fimmu.2024.1382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Immune checkpoint therapies (ICT) have transformed the treatment of cancer over the past decade. However, many patients do not respond or suffer relapses. Successful immunotherapy requires epitope spreading, but the slow or inefficient induction of functional antitumoral immunity delays the benefit to patients or causes resistances. Therefore, understanding the key mechanisms that support epitope spreading is essential to improve immunotherapy. In this review, we highlight the major role played by B-cells in breaking immune tolerance by epitope spreading. Activated B-cells are key Antigen-Presenting Cells (APC) that diversify the T-cell response against self-antigens, such as ribonucleoproteins, in autoimmunity but also during successful cancer immunotherapy. This has important implications for the design of future cancer vaccines.
Collapse
Affiliation(s)
| | - Nicolas Leulliot
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Julien Cherfils-Vicini
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| | - Magali Blaud
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| |
Collapse
|
2
|
Luo W, Zeng Y, Song Q, Wang Y, Yuan F, Li Q, Liu Y, Li S, Jannatun N, Zhang G, Li Y. Strengthening the Combinational Immunotherapy from Modulating the Tumor Inflammatory Environment via Hypoxia-Responsive Nanogels. Adv Healthc Mater 2024; 13:e2302865. [PMID: 38062634 DOI: 10.1002/adhm.202302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Despite the success of immuno-oncology in clinical settings, the therapeutic efficacy is lower than the expectation due to the immunosuppressive inflammatory tumor microenvironment (TME) and the lack of functional lymphocytes caused by exhaustion. To enhance the efficacy of immuno-oncotherapy, a synergistic strategy should be used that can effectively improve the inflammatory TME and increase the tumor infiltration of cytotoxic T lymphocytes (CTLs). Herein, a TME hypoxia-responsive nanogel (NG) is developed to enhance the delivery and penetration of diacerein and (-)-epigallocatechin gallate (EGCG) in tumors. After systemic administration, diacerein effectively improves the tumor immunosuppressive condition through a reduction of MDSCs and Tregs in TME, and induces tumor cell apoptosis via the inhibition of IL-6/STAT3 signal pathway, realizing a strong antitumor effect. Additionally, EGCG can effectively inhibit the expression of PD-L1, restoring the tumor-killing function of CTLs. The infiltration of CTLs increases at the tumor site with activation of systemic immunity after the combination of TIM3 blockade therapy, ultimately resulting in a strong antitumor immune response. This study provides valuable insights for future research on eliciting effective antitumor immunity by suppressing adverse tumor inflammation. The feasible strategy proposed in this work may solve the urgent clinical concerns of the dissatisfactory checkpoint-based immuno-oncotherapy.
Collapse
Affiliation(s)
- Wenhe Luo
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yanqiao Zeng
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qingle Song
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yu Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng Yuan
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qi Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yingnan Liu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Su Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Nahar Jannatun
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Guofang Zhang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Zhang SW, Wang H, Ding XH, Xiao YL, Shao ZM, You C, Gu YJ, Jiang YZ. Bidirectional crosstalk between therapeutic cancer vaccines and the tumor microenvironment: Beyond tumor antigens. FUNDAMENTAL RESEARCH 2023; 3:1005-1024. [PMID: 38933006 PMCID: PMC11197801 DOI: 10.1016/j.fmre.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has rejuvenated cancer therapy, especially after anti-PD-(L)1 came onto the scene. Among the many therapeutic options, therapeutic cancer vaccines are one of the most essential players. Although great progress has been made in research on tumor antigen vaccines, few phase III trials have shown clinical benefits. One of the reasons lies in obstruction from the tumor microenvironment (TME). Meanwhile, the therapeutic cancer vaccine reshapes the TME in an ambivalent way, leading to immune stimulation or immune escape. In this review, we summarize recent progress on the interaction between therapeutic cancer vaccines and the TME. With respect to vaccine resistance, innate immunosuppressive TME components and acquired resistance caused by vaccination are both involved. Understanding the underlying mechanism of this crosstalk provides insight into the treatment of cancer by directly targeting the TME or synergizing with other therapeutics.
Collapse
Affiliation(s)
- Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Han Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Castillo-Peña A, Molina-Pinelo S. Landscape of tumor and immune system cells-derived exosomes in lung cancer: mediators of antitumor immunity regulation. Front Immunol 2023; 14:1279495. [PMID: 37915578 PMCID: PMC10616833 DOI: 10.3389/fimmu.2023.1279495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
The immune system plays a critical role in cancer, including lung cancer, which is the leading cause of cancer-related deaths worldwide. Immunotherapy, particularly immune checkpoint blockade, has revolutionized the treatment of lung cancer, but a large subset of patients either do not respond or develop resistance. Exosomes, essential mediators of cell-to-cell communication, exert a profound influence on the tumor microenvironment and the interplay between cancer and the immune system. This review focuses on the role of tumor-derived exosomes and immune cells-derived exosomes in the crosstalk between these cell types, influencing the initiation and progression of lung cancer. Depending on their cell of origin and microenvironment, exosomes can contain immunosuppressive or immunostimulatory molecules that can either promote or inhibit tumor growth, thus playing a dual role in the disease. Furthermore, the use of exosomes in lung cancer immunotherapy is discussed. Their potential applications as cell-free vaccines and drug delivery systems make them an attractive option for lung cancer treatment. Additionally, exosomal proteins and RNAs emerge as promising biomarkers that could be employed for the prediction, diagnosis, prognosis and monitoring of the disease. In summary, this review assesses the relationship between exosomes, lung cancer, and the immune system, shedding light on their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Alejandro Castillo-Peña
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| |
Collapse
|
5
|
Zahedipour F, Jamialahmadi K, Zamani P, Reza Jaafari M. Improving the efficacy of peptide vaccines in cancer immunotherapy. Int Immunopharmacol 2023; 123:110721. [PMID: 37543011 DOI: 10.1016/j.intimp.2023.110721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Peptide vaccines have shown great potential in cancer immunotherapy by targeting tumor antigens and activating the patient's immune system to mount a specific response against cancer cells. However, the efficacy of peptide vaccines in inducing a sustained immune response and achieving clinical benefit remains a major challenge. In this review, we discuss the current status of peptide vaccines in cancer immunotherapy and strategies to improve their efficacy. We summarize the recent advancements in the development of peptide vaccines in pre-clinical and clinical settings, including the use of novel adjuvants, neoantigens, nano-delivery systems, and combination therapies. We also highlight the importance of personalized cancer vaccines, which consider the unique genetic and immunological profiles of individual patients. We also discuss the strategies to enhance the immunogenicity of peptide vaccines such as multivalent peptides, conjugated peptides, fusion proteins, and self-assembled peptides. Although, peptide vaccines alone are weak immunogens, combining peptide vaccines with other immunotherapeutic approaches and developing novel approaches such as personalized vaccines can be promising methods to significantly enhance their efficacy and improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Bronte G, Calabrò L, Olivieri F, Procopio AD, Crinò L. The prognostic effects of circulating myeloid-derived suppressor cells in non-small cell lung cancer: systematic review and meta-analysis. Clin Exp Med 2023; 23:1551-1561. [PMID: 36401744 PMCID: PMC10460713 DOI: 10.1007/s10238-022-00946-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Immunotherapy is the main standard treatment for non-small cell lung cancer (NSCLC) patients. Immune suppressive cells in tumor microenvironment can counteract its efficacy. Myeloid-derived suppressor cells (MDSCs) include two major subsets: polymorphonuclear (PMN-MDSCs) and monocytic (M-MDSCs). Many studies explored the prognostic impact of these cell populations in NSCLC patients. The aim of this systematic review is to select studies for a meta-analysis, which compares prognosis between patients with high vs low circulating MDSC levels. We collected hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of progression-free survival (PFS) or recurrence-free survival (RFS), and overall survival (OS). Among 139 studies retrieved from literature search, 14 eligible studies (905 NSCLC patients) met inclusion criteria. Low circulating MDSC levels favor a better PFS/RFS (HR = 1.84; 95% CI = 1.28-2.65) and OS (HR = 1.78; 95% CI = 1.29-2.46). The subgroup analysis based on MDSC subtypes (total-, PMN-, and M-MDSCs) obtained a statistical significance only for M-MDSCs, both in terms of PFS/RFS (HR = 2.67; 95% CI = 2.04-3.50) and OS (HR = 2.10; 95% CI = 1.61-2.75). NSCLC patients bearing high M-MDSC levels in peripheral blood experience a worse prognosis than those with low levels, both in terms of PFS/RFS and OS. This finding suggests that detecting and targeting this MDSC subset could help to improve NSCLC treatment efficacy.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy.
| | - Luana Calabrò
- Medical Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
7
|
Piper M, Kluger H, Ruppin E, Hu-Lieskovan S. Immune Resistance Mechanisms and the Road to Personalized Immunotherapy. Am Soc Clin Oncol Educ Book 2023; 43:e390290. [PMID: 37459578 DOI: 10.1200/edbk_390290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.
Collapse
Affiliation(s)
- Miles Piper
- School of Medicine, University of Utah, Salt Lake City, UT
| | | | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Siwen Hu-Lieskovan
- School of Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
8
|
Kim JH, Cho YR, Ahn EK, Kim S, Han S, Kim SJ, Bae GU, Oh JS, Seo DW. A novel telomerase-derived peptide GV1001-mediated inhibition of angiogenesis: Regulation of VEGF/VEGFR-2 signaling pathways. Transl Oncol 2022; 26:101546. [PMID: 36183673 PMCID: PMC9526227 DOI: 10.1016/j.tranon.2022.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
GV1001, a human telomerase reverse transcriptase catalytic subunit-derived 16-mer peptide, has been developed as a novel anticancer vaccine against various cancers including pancreatic cancer. In the current study, we demonstrate the regulatory roles and mechanisms of GV1001 in endothelial cell responses in vitro and microvessel sprouting ex vivo. GV1001 markedly inhibits vascular endothelial growth factor-A (VEGF-A)-stimulated endothelial cell permeability, proliferation, migration, invasion, tube formation as well as microvessel outgrowth from rat aortic rings. These anti-angiogenic effects of GV1001 were associated with the inhibition of VEGF-A/VEGFR-2 signaling pathways, redistribution of vascular endothelial-cadherin to cell-cell contacts, and down-regulation of VEGFR-2 and matrix metalloproteinase-2. Furthermore, GV1001 suppresses the proliferation and invasion of non-small cell lung cancer cells, and the release of VEGF from the cells, suggesting the regulatory role of GV1001 in tumor-derived angiogenesis as well as cancer cell growth and progression. Collectively, our study reports the pharmacological potential of GV1001 in the regulation of angiogenesis, and warrants further evaluation and development of GV1001 as a promising therapeutic agent for a variety of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Rak Cho
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Eun-Kyung Ahn
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Sunho Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Surim Han
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Joon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Gyu-Un Bae
- Department of Pharmacy, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
9
|
Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines (Basel) 2022; 10:vaccines10040560. [PMID: 35455309 PMCID: PMC9032646 DOI: 10.3390/vaccines10040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) enhances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). Induction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting antibodies, which target and eliminate MDSC.
Collapse
|
10
|
Singh AK, Malviya R. Coagulation and inflammation in cancer: Limitations and prospects for treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188727. [PMID: 35378243 DOI: 10.1016/j.bbcan.2022.188727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
The development of so-called immune checkpoint inhibitors (ICIs), which target specific molecular processes of tumour growth, has had a transformative effect on cancer treatment. Widespread use of antibody-based medicines to inhibit tumour cell immune evasion by modulating T cell responses is becoming more common. Despite this, response rates are still low, and secondary resistance is an issue that arises often. In addition, a wide range of serious adverse effects is triggered by enhancing the immunological response. As a result of an increased mortality rate, a higher prevalence of thrombotic complications is connected with an increased incidence of immunological reactions, complement activation, and skin toxicity. This suggests that the tumour microenvironment's interaction between coagulation and inflammation is important at every stage of the tumour's life cycle. The coagulation system's function in tumour formation is the topic of this review. By better understanding the molecular mechanisms in which tumour cells circulate, plasmatic coagulation and immune system cells are engaged, new therapy options for cancer sufferers may be discovered.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
11
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Zahran AM, Shibl A, Rayan A, Mohamed MAEH, Osman AMM, Saad K, Mahmoud KH, Ghandour AMA, Elsayh KI, El-Badawy O. Increase in polymorphonuclear myeloid-derived suppressor cells and regulatory T-cells in children with B-cell acute lymphoblastic leukemia. Sci Rep 2021; 11:15039. [PMID: 34294814 PMCID: PMC8298505 DOI: 10.1038/s41598-021-94469-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
Our study aimed to evaluate the levels of MDSCs and Tregs in pediatric B-cell acute lymphoblastic leukemia (B-ALL), their relation to patients' clinical and laboratory features, and the impact of these cells on the induction response. This study included 31 pediatric B-ALL patients and 27 healthy controls. All patients were treated according to the protocols of the modified St. Jude Children's Research Hospital total therapy study XIIIB for ALL. Levels of MDSCs and Tregs were analyzed using flow cytometry. We observed a reduction in the levels of CD4 + T-cells and an increase in both the polymorphonuclear MDSCs (PMN-MDSCs) and Tregs. The frequencies of PMN-MDSCs and Tregs were directly related to the levels of peripheral and bone marrow blast cells and CD34 + cells. Complete postinduction remission was associated with reduced percentages of PMN-MDSCs and Tregs, with the level of PMN-MDCs in this subpopulation approaching that of healthy controls. PMN-MDSCs and Tregs jointly play a critical role in maintaining an immune-suppressive state suitable for B-ALL tumor progression. Thereby, they could be independent predictors of B-ALL progress, and finely targeting both PMN-MDSCs and Tregs may be a promising approach for the treatment of B-ALL.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Azza Shibl
- Pediatric Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | | | - Amira M M Osman
- Pediatric Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Aliaa M A Ghandour
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid I Elsayh
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Yang L, Li N, Wang M, Zhang YH, Yan LD, Zhou W, Yu ZQ, Peng XC, Cai J. Tumorigenic effect of TERT and its potential therapeutic target in NSCLC (Review). Oncol Rep 2021; 46:182. [PMID: 34278503 DOI: 10.3892/or.2021.8133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC), which accounts for ~85% of all lung cancer cases, is commonly diagnosed at an advanced stage and has a high patient mortality rate. Despite the increasing availability of treatment strategies, the prognosis of patients with NSCLC remains poor, with a low 5‑year survival rate. This poor prognosis may be associated with the tumor heterogeneity of NSCLC, as well as its acquisition and intrinsic resistance to therapeutic drugs. It has been suggested that combination therapy with telomerase inhibition may be an effective strategy for the treatment of drug‑sensitive and drug‑resistant types of cancer. Telomerase is the key enzyme for cell survival, and ~90% of human cancers maintain telomeres by activating telomerase, which is driven by the upregulation of telomerase reverse transcriptase (TERT). Several mechanisms of telomerase reactivation have been described in a variety of cancer types, including TERT promoter mutation, epigenetic modifications via a TERT promoter, TERT amplification, and TERT rearrangement. The aim of the present study was to comprehensively review telomerase activity and its association with the clinical characteristics and prognosis of NSCLC, as well as analyze the potential mechanism via which TERT activates telomerase and determine its potential clinical application in NSCLC. More importantly, current treatment strategies targeting TERT in NSCLC have been summarized with the aim to promote discovery of novel strategies for the future treatment of NSCLC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yan-Hua Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
14
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 868] [Impact Index Per Article: 289.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
15
|
Ellingsen EB, Mangsbo SM, Hovig E, Gaudernack G. Telomerase as a Target for Therapeutic Cancer Vaccines and Considerations for Optimizing Their Clinical Potential. Front Immunol 2021; 12:682492. [PMID: 34290704 PMCID: PMC8288190 DOI: 10.3389/fimmu.2021.682492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth. Herein, we review tumor telomerase biology that may affect the efficacy of therapeutic vaccination and provide insights on optimal vaccine design and treatment combinations. Tumor types possessing mechanisms of increased telomerase expression combined with an immune permissive tumor microenvironment are expected to increase the therapeutic potential of telomerase-targeting cancer vaccines. Regardless, rational treatment combinations, such as checkpoint inhibitors, are likely necessary to bring out the true clinical potential of TCVs.
Collapse
Affiliation(s)
- Espen Basmo Ellingsen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Research and Development, Ultimovacs ASA, Oslo, Norway
| | - Sara M Mangsbo
- Research and Development, Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | |
Collapse
|
16
|
Abstract
Therapeutic cancer vaccines have undergone a resurgence in the past decade. A better understanding of the breadth of tumour-associated antigens, the native immune response and development of novel technologies for antigen delivery has facilitated improved vaccine design. The goal of therapeutic cancer vaccines is to induce tumour regression, eradicate minimal residual disease, establish lasting antitumour memory and avoid non-specific or adverse reactions. However, tumour-induced immunosuppression and immunoresistance pose significant challenges to achieving this goal. In this Review, we deliberate on how to improve and expand the antigen repertoire for vaccines, consider developments in vaccine platforms and explore antigen-agnostic in situ vaccines. Furthermore, we summarize the reasons for failure of cancer vaccines in the past and provide an overview of various mechanisms of resistance posed by the tumour. Finally, we propose strategies for combining suitable vaccine platforms with novel immunomodulatory approaches and standard-of-care treatments for overcoming tumour resistance and enhancing clinical efficacy.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
17
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
18
|
Furukawa N, Popel AS. Peptides that immunoactivate the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1875:188486. [PMID: 33276025 PMCID: PMC8369429 DOI: 10.1016/j.bbcan.2020.188486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy has achieved positive clinical outcomes and is revolutionizing cancer treatment. However, cancer immunotherapy has thus far failed to improve outcomes for most "cold tumors", which are characterized by low infiltration of immune cells and immunosuppressive tumor microenvironment. Enhancing the responsiveness of cold tumors to cancer immunotherapy by stimulating the components of the tumor microenvironment is a strategy pursued in the last decade. Currently, most of the agents used to modify the tumor microenvironment are small molecules or antibodies. Small molecules exhibit low affinity and specificity towards the target and antibodies have shortcomings such as poor tissue penetration and high production cost. Peptides may overcome these drawbacks and therefore are promising materials for immunomodulating agents. Here we systematically summarize the currently developed immunoactivating peptides and discuss the potential of peptide therapeutics in cancer immunology.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
19
|
Colton M, Cheadle EJ, Honeychurch J, Illidge TM. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiat Oncol 2020; 15:254. [PMID: 33148287 PMCID: PMC7640712 DOI: 10.1186/s13014-020-01678-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a highly effective anti-cancer therapy delivered to around 50-60% of patients. It is part of therapy for around 40% of cancer patients who are cured of their disease. Until recently, the focus of this anti-tumour efficacy has been on the direct tumour cytotoxicity and RT-induced DNA damage. Recently, the immunomodulatory effects of RT on the tumour microenvironment have increasingly been recognized. There is now intense interest in potentially using RT to induce an anti-tumour immune response, which has led to rethinking into how the efficacy of RT could be further enhanced. Following the breakthrough of immune check point inhibitors (ICIs), a new era of immuno-oncology (IO) agents has emerged and established immunotherapy as a routine part of cancer treatment. Despite ICI improving outcomes in many cancer types, overall durable responses occur in only a minority of patients. The immunostimulatory effects of RT make combinations with ICI attractive to potentially amplify anti-tumour immunity resulting in increased tumour responses and improved outcomes. In contrast, tumours with profoundly immunosuppressive tumour microenvironments, dominated by myeloid-derived cell populations, remain a greater clinical challenge and RT may potentially further enhance the immunosuppression. To harness the full potential of RT and IO agent combinations, further insights are required to enhance our understanding of the role these immunosuppressive myeloid populations play, how RT influences these populations and how they may be therapeutically manipulated in combination with RT to improve outcomes further. These are exciting times with increasing numbers of IO targets being discovered and IO agents undergoing clinical evaluation. Multidisciplinary research collaborations will be required to establish the optimal parameters for delivering RT (target volume, dose and fractionation) in combination with IO agents, including scheduling to achieve maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Madyson Colton
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Eleanor J Cheadle
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Tim M Illidge
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK.
- The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
20
|
Salewski I, Gladbach YS, Kuntoff S, Irmscher N, Hahn O, Junghanss C, Maletzki C. In vivo vaccination with cell line-derived whole tumor lysates: neoantigen quality, not quantity matters. J Transl Med 2020; 18:402. [PMID: 33087163 PMCID: PMC7579816 DOI: 10.1186/s12967-020-02570-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer vaccines provide a complex source of neoantigens. Still, increasing evidence reveals that the neoantigen quality rather than the quantity is predictive for treatment outcome. METHODS Using the preclinical Mlh1-/- tumor model, we performed a side-by side comparison of two autologous cell-line derived tumor lysates (namely 328 and A7450 T1 M1) harboring different tumor mutational burden (TMB; i.e. ultra-high: 328; moderate-high: A7450 T1 M1). Mice received repetitive prophylactic or therapeutic applications of the vaccine. Tumor incidence, immune responses and tumor microenvironment was examined. RESULTS Both tumor cell lysates delayed tumor formation in the prophylactic setting, with the A7450 T1 M1 lysate being more effective in decelerating tumor growth than the 328 lysate (median overall survival: 37 vs. 25 weeks). Comparable results were achieved in therapeutic setting and could be traced back to antigen-driven immune stimulation. Reactive T cells isolated from A7450 T1 M1-treated mice recognized autologous Mlh1-/- tumor cells in IFNγ ELISpot, but likewise YAC-1 cells, indicative for stimulation of both arms of the immune system. By deciphering local effects, vaccines shaped the tumor microenvironment differently. While A7450 T1 M1 prophylactically vaccinated tumors harbored low numbers of myeloid-derived suppressor cells (MDSC) and elevated CD8-T cell infiltrates, vaccination with the 328 lysate evoked MDSC infiltration. Similar effects were seen in the therapeutic setting with stable disease induction only upon A7450 T1 M1 vaccination. Untangling individual response profiles revealed strong infiltration with LAG3+ and PD-L1+ immune cells when treatments failed, but almost complete exclusion of checkpoint-expressing lymphocytes in long-term survivors. CONCLUSIONS By applying two tumor cell lysates we demonstrate that neoantigen quality outranks quantity. This should be considered prior to designing cancer vaccine-based combination approaches.
Collapse
Affiliation(s)
- Inken Salewski
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Care, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057, Rostock, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany.,Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Steffen Kuntoff
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Care, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Nina Irmscher
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Care, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Olga Hahn
- Department of Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Care, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Care, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
21
|
Dieterich LC, Bikfalvi A. The tumor organismal environment: Role in tumor development and cancer immunotherapy. Semin Cancer Biol 2020; 65:197-206. [DOI: 10.1016/j.semcancer.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
22
|
Watson GA, Doi J, Hansen AR, Spreafico A. Novel strategies in immune checkpoint inhibitor drug development: How far are we from the paradigm shift? Br J Clin Pharmacol 2020; 86:1753-1768. [PMID: 32394468 PMCID: PMC7444803 DOI: 10.1111/bcp.14355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICI) represents a major milestone in immune-oncology. Over the years these agents have demonstrated efficacy in an increasing array of malignancies. Despite this success however, significant challenges remain. Novel approaches to both drug development and trial design are required to incorporate the unique pharmacokinetic and pharmacodynamic properties of ICIs. Further, it has also been established that the benefit of ICIs is limited to only a subset of patients. The molecular interactions between native immune cells and tumorigenesis and progression represent an active area of biomarker research, and elucidating the mechanisms of response and resistance is crucial to develop rational trial designs for the next wave of immune-oncology (IO) clinical trials, particularly in patients with primary and/or acquired resistance. Efforts are now being made to integrate both biological and clinical information using novel multi-omic approaches which are now being developed to further elucidate the molecular signatures associated with IO treatment response and resistance and enable rational drug development and trial design processes. As such, precision IO and the ability to deliver patient-specific choices for ICI monotherapies or combination therapies has become an increasingly tangible goal. We herein describe the current landscape in ICI drug development and discuss the challenges and future directions in this exciting and evolving era in immune-oncology.
Collapse
Affiliation(s)
- Geoffrey Alan Watson
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Jeffrey Doi
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Aaron Richard Hansen
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Anna Spreafico
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| |
Collapse
|
23
|
Popa X, García B, Fuentes KP, Huerta V, Alvarez K, Viada CE, Neninger E, Rodríguez PC, González Z, González A, Crombet T, Mazorra Z. Anti-EGF antibodies as surrogate biomarkers of clinical efficacy in stage IIIB/IV non-small-cell lung cancer patients treated with an optimized CIMAvax-EGF vaccination schedule. Oncoimmunology 2020; 9:1762465. [PMID: 32923124 PMCID: PMC7458606 DOI: 10.1080/2162402x.2020.1762465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that CIMAvax-EGF vaccine is safe, immunogenic and efficacious to treat advanced non-small-cell lung cancer (NSCLC) patients. A phase III trial was designed using an optimized immunization schedule. It included higher antigen dose and injections at multiple sites. Immune response and circulating biomarkers were studied in a subset of patients. EGF-specific antibody titers, IgG subclasses, peptide immunodominance and circulating biomarkers were assessed by ELISA. In vitro EGF-neutralization capacity of immune sera and EGF-IgG binding kinetics was evaluated by Western Blot and Surface Plasmon Resonance (SPR) technology, respectively. We show that CIMAvax-EGF elicited mainly IgG3/IgG4 antibodies at titers exceeding 1:4000 in 80% of vaccinated patients after 3 months of treatment. The EGF-specific humoral response was directed against the central region of the EGF molecule. For the first time, the kinetic constants of EGF-specific antibodies were measured evidencing affinity maturation of antibody repertoire up to month 12 of vaccination. Notably, the capacity of post-immune sera to inhibit EGFR phosphorylation significantly increased during the course of the immunization scheme and was related to clinical outcome (P = .013, log-rank test). Basal concentrations of EGF and TGFα in the serum were affected by EGF-based immunization. In conclusion, the CIMAvax-EGF vaccine induces an EGF-specific protective humoral response in a high percent of NSCLC vaccinated patients, the quantity and quality of which were associated with clinical benefit (clinical trial registration number: RPCEC00000161, http://registroclinico.sld.cu/). Abbreviations EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; Ab: antibody; AR: amphiregulin; NSCLC: non-small-cell lung cancer; rhEGF: recombinant human epidermal growth factor; BSC: best supportive care; TGFα: tumor growth factor alpha; IL-8: interleukin 8; MAb: monoclonal antibody; SPR: surface plasmon resonance
Collapse
Affiliation(s)
- Xitlally Popa
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Beatriz García
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Karla P Fuentes
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Vivian Huerta
- Systems Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Karen Alvarez
- Systems Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen E Viada
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Elia Neninger
- Oncology Department, Hermanos Ameijeiras University Hospital, Havana, Cuba
| | - Pedro C Rodríguez
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zuyen González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Amnely González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Tania Crombet
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zaima Mazorra
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
24
|
Battaglia A, Buzzonetti A, Fossati M, Scambia G, Fattorossi A, Madiyalakan MR, Mahnke YD, Nicodemus C. Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients. Cancer Immunol Immunother 2020; 69:383-397. [PMID: 31897661 DOI: 10.1007/s00262-019-02456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
The standard-of-care (SOC) first-line therapy for ovarian cancer (OC) patients is plagued with high relapse rates. Several studies indicated the immune system's prominent role changing the disease course in OC patients. Chemo-immunotherapy regimens, currently being explored, include oregovomab, which is a monoclonal antibody specific for the OC associated antigen carbohydrate/cancer antigen 125 (CA125) that yielded promising results when administered together with SOC in a previous study. The QPT-ORE-002 multi-site phase II randomized study demonstrated that in patients with advanced OC, oregovomab combined with first-line SOC improved overall and progression-free survival, compared to SOC alone. The study included an Italian cohort in which we demonstrated that adding oregovomab to SOC resulted in increased patient numbers with amplified CA125-specific CD8+T lymphocytes/ml peripheral blood counts, which might explain the improved therapeutic effect of SOC + oregovomab over SOC alone. Predictive for oregovomab efficacy was a less suppressive immune environment at baseline as indicated by low numbers of circulating myeloid-derived suppressor cells, subset type 4, and a low neutrophil-and-monocyte to lymphocyte ratio.
Collapse
Affiliation(s)
- Alessandra Battaglia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go F.Vito 1, 00168, Rome, Italy.
| | - Alexia Buzzonetti
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Fossati
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go F.Vito 1, 00168, Rome, Italy.,Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Fattorossi
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
25
|
Mengos AE, Gastineau DA, Gustafson MP. The CD14 +HLA-DR lo/neg Monocyte: An Immunosuppressive Phenotype That Restrains Responses to Cancer Immunotherapy. Front Immunol 2019; 10:1147. [PMID: 31191529 PMCID: PMC6540944 DOI: 10.3389/fimmu.2019.01147] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recent successes in cancer immunotherapy have been tempered by sub-optimal clinical responses in the majority of patients. The impaired anti-tumor immune responses observed in these patients are likely a consequence of immune system dysfunction contributed to by a variety of factors that include, but are not limited to, diminished antigen presentation/detection, leukopenia, a coordinated network of immunosuppressive cell surface proteins, cytokines and cellular mediators. Monocytes that have diminished or no HLA-DR expression, called CD14+HLA-DRlo/neg monocytes, have emerged as important mediators of tumor-induced immunosuppression. These cells have been grouped into a larger class of suppressive cells called myeloid derived suppressor cells (MDSCs) and are commonly referred to as monocytic myeloid derived suppressor cells. CD14+HLA-DRlo/neg monocytes were first characterized in patients with sepsis and were shown to regulate the transition from the inflammatory state to immune suppression, ultimately leading to immune paralysis. These immunosuppressive monocytes have also recently been shown to negatively affect responses to PD-1 and CTLA-4 checkpoint inhibition, CAR-T cell therapy, cancer vaccines, and hematopoietic stem cell transplantation. Ultimately, the goal is to understand the role of these cells in the context of immunosuppression not only to facilitate the development of targeted therapies to circumvent their effects, but also to potentially use them as a biomarker for understanding disparate responses to immunotherapeutic regimens. Practical aspects to be explored for development of CD14+HLA-DRlo/neg monocyte detection in patients are the standardization of flow cytometric gating methods to assess HLA-DR expression, an appropriate quantitation method, test sample type, and processing guidances. Once detection methods are established that yield consistently reproducible results, then further progress can be made toward understanding the role of CD14+HLA-DRlo/neg monocytes in the immunosuppressive state.
Collapse
Affiliation(s)
- April E Mengos
- Nyberg Human Cellular Therapy Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| | - Dennis A Gastineau
- Nyberg Human Cellular Therapy Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| | - Michael P Gustafson
- Nyberg Human Cellular Therapy Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
26
|
Badiyan SN, Roach MC, Chuong MD, Rice SR, Onyeuku NE, Remick J, Chilukuri S, Glass E, Mohindra P, Simone CB. Combining immunotherapy with radiation therapy in thoracic oncology. J Thorac Dis 2018; 10:S2492-S2507. [PMID: 30206494 PMCID: PMC6123189 DOI: 10.21037/jtd.2018.05.73] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
Thoracic malignancies comprise some of the most common and deadly cancers. Immunotherapies have been proven to improve survival outcomes for patients with advanced non-small cell lung cancer (NSCLC) and show great potential for patients with other thoracic malignancies. Radiation therapy (RT), an established and effective treatment for thoracic cancers, has acted synergistically with immunotherapies in preclinical studies. Ongoing clinical trials are exploring the clinical benefits of combining RT with immunotherapies and the optimal manner in which to deliver these complementary treatments.
Collapse
Affiliation(s)
| | | | - Michael D. Chuong
- Miami Cancer Institute at Baptist Health South Florida, Miami, FL, USA
| | | | | | - Jill Remick
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Erica Glass
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
27
|
Wang PF, Song SY, Wang TJ, Ji WJ, Li SW, Liu N, Yan CX. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: A meta-analysis of 40 studies. Oncoimmunology 2018; 7:e1494113. [PMID: 30288362 PMCID: PMC6169582 DOI: 10.1080/2162402x.2018.1494113] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been shown to contribute to tumor progression, mainly through immune suppression. Inverse correlations have been observed between MDSC levels and patient survival for various malignancies. The purpose of this meta-analysis was to evaluate the prognostic value of pretreatment circulating MDSCs. We searched MEDLINE and EMBASE from their inceptions to September 2017 to identify relevant articles. Using a fixed or random effects model, pooled hazard ratios (HRs) were estimated for overall survival (OS) and combined disease-free survival, progression-free survival, and recurrence-free survival (DFS/PFS/RFS). A total of 40 studies comprising 2721 were included. For solid tumors, high levels of pretreatment circulating MDSCs were significantly associated with worse OS (HR = 1.796, 95% CI = 1.587-2.032) and DFS/PFS/RFS (HR = 2.459, 95% CI = 2.018-2.997). Breast cancer showed the largest association between high MDSC levels and worse OS (pooled HR = 3.053). Elevated MDSCs were also associated with worse OS for mixed-stage tumors (pooled HR = 1.659) and advanced-stage tumors (pooled HR = 2.337). Furthermore, both monocytic-MDSCs (M-MDSCs) and granulocytic or polymorphonuclear (PMN-MDSCs) showed negative associations with survival outcomes. Overall, high levels of pretreatment circulating MDSCs negatively influenced survival in most cancers. Pretreatment circulating MDSCs should be taken into account to further improve prognostic evaluation and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Si-Ying Song
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Jian Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Ji
- Department of Neurosurgery, Key Laboratory, The Second Hospital of Yulin, Xi’an Jiao tong University, Xi’an, China
| | - Shou-Wei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chang-Xiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Front Immunol 2018; 9:1310. [PMID: 29942309 PMCID: PMC6004385 DOI: 10.3389/fimmu.2018.01310] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) used for cancer immunotherapy were shown to boost the existing anti-tumor immune response by preventing the inhibition of T cells by tumor cells. Antibodies targeting two negative immune checkpoint pathways, namely cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed cell death-ligand 1 (PD-L1), have been approved first for patients with melanoma, squamous non-small cell lung cancer (NSCLC), and renal cell carcinoma. Clinical trials are ongoing to verify the efficiency of these antibodies for other cancer types and to evaluate strategies to block other checkpoint molecules. However, a number of patients do not respond to this treatment possibly due to profound immunosuppression, which is mediated partly by myeloid-derived suppressor cells (MDSC). This heterogeneous population of immature myeloid cells can strongly inhibit anti-tumor activities of T and NK cells and stimulate regulatory T cells (Treg), leading to tumor progression. Moreover, MDSC can contribute to patient resistance to immune checkpoint inhibition. Accumulating evidence demonstrates that the frequency and immunosuppressive function of MDSC in cancer patients can be used as a predictive marker for therapy response. This review focuses on the role of MDSC in immune checkpoint inhibition and provides an analysis of combination strategies for MDSC targeting together with ICI to improve their therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Viktor Fleming
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Vasyl Nagibin
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
29
|
Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018; 39:119-136. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.
Collapse
|
30
|
Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Front Immunol 2018; 9:398. [PMID: 29552012 PMCID: PMC5840207 DOI: 10.3389/fimmu.2018.00398] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/13/2018] [Indexed: 01/03/2023] Open
Abstract
The immune system has many sophisticated mechanisms to balance an extensive immune response. Distinct immunosuppressive cells could protect from excessive tissue damage and autoimmune disorders. Tumor cells take an advantage of those immunosuppressive mechanisms and establish a strongly immunosuppressive tumor microenvironment (TME), which inhibits antitumor immune responses, supporting the disease progression. Myeloid-derived suppressor cells (MDSC) play a crucial role in this immunosuppressive TME. Those cells represent a heterogeneous population of immature myeloid cells with a strong immunosuppressive potential. They inhibit an antitumor reactivity of T cells and NK cells. Furthermore, they promote angiogenesis, establish pre-metastatic niches, and recruit other immunosuppressive cells such as regulatory T cells. Accumulating evidences demonstrated that the enrichment and activation of MDSC correlated with tumor progression, recurrence, and negative clinical outcome. In the last few years, various preclinical studies and clinical trials targeting MDSC showed promising results. In this review, we discuss different therapeutic approaches on MDSC targeting to overcome immunosuppressive TME and enhance the efficiency of current tumor immunotherapies.
Collapse
Affiliation(s)
- Viktor Fleming
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Vasyl Nagibin
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
31
|
Melssen M, Slingluff CL. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 2017; 47:85-92. [PMID: 28755541 PMCID: PMC5757837 DOI: 10.1016/j.coi.2017.07.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
There are compelling arguments for designing cancer vaccines specifically to induce CD4+ helper T cell responses. Recent studies highlight the crucial role of proliferating, activated effector memory Th1 CD4+ T cells in effective antitumor immunity and reveal that CD4+ T cells induce more durable immune-mediated tumor control than CD8+ T cells. CD4+ T cells promote antitumor immunity by numerous mechanisms including enhancing antigen presentation, co-stimulation, T cell homing, T cell activation, and effector function. These effects are mediated at sites of T cell priming and at the tumor microenvironment. Several cancer vaccine approaches induce durable CD4+ T cell responses and have promising clinical activity. Future work should further optimize vaccine adjuvants and combination therapies incorporating helper peptide vaccines.
Collapse
Affiliation(s)
- Marit Melssen
- University of Virginia, Department of Surgery and University of Virginia Cancer Center, PO Box 800709, Charlottesville, VA, USA
| | - Craig L Slingluff
- University of Virginia, Department of Surgery and University of Virginia Cancer Center, PO Box 800709, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Rico MJ, Perroud HA, Herrera C, Alasino CM, Roggero EA, Pezzotto SM, Nocito AL, Rozados VR, Scharovsky OG. Putative Biomarkers of Response to Treatment in Breast Cancer Patients: A Pilot Assay. Cancer Invest 2017; 35:377-385. [DOI: 10.1080/07357907.2017.1309545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María J. Rico
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
- National Scientific and Technological Research Council (CONICET), Rosario, Argentina
| | - Herman A. Perroud
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
- National Scientific and Technological Research Council (CONICET), Rosario, Argentina
| | - Cintia Herrera
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
| | | | - Eduardo A. Roggero
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
| | - Stella M. Pezzotto
- Institute of Immunology, School of Medical Sciences, National University of Rosario, Rosario, Argentina
- National University of Rosario Research Council (CIUNR), Rosario, Argentina
| | - Ana Lía Nocito
- Department of Pathological Anatomy and Physiology, School of Medical Sciences, National University of Rosario, Rosario, Argentina
| | - Viviana R. Rozados
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
| | - O. Graciela Scharovsky
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
- National Scientific and Technological Research Council (CONICET), Rosario, Argentina
- National University of Rosario Research Council (CIUNR), Rosario, Argentina
| |
Collapse
|
33
|
Shipp C, Speigl L, Janssen N, Martens A, Pawelec G. A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell Mol Life Sci 2016; 73:4043-61. [PMID: 27236468 PMCID: PMC11108339 DOI: 10.1007/s00018-016-2278-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
Considering the large number of studies focused on myeloid-derived suppressor cells (MDSCs) to date, only a handful of well-defined relationships in human cancer have been established. The difficulty of assessing the impact of MDSCs in human cancer is partly due to the relatively small number of studies performed in humans. This is compounded in the literature by a common lack of clear indication of which species is being referred to for each characteristic described. These aspects may result in inappropriate extrapolation of animal studies to those in the human setting. This is especially the case for studies focused on investigating therapies which can be used to target MDSCs or those aimed at understanding their mechanism. Here, we attempt to rectify this by reviewing only studies on MDSC performed in humans. We survey studies which explore (1) whether MDSC levels are altered in cancer patients and if this is correlated with patient survival, (2) the so far identified mechanisms employed by MDSC to exert immune suppression, and (3) whether therapeutic agents can be used to target MDSCs by either altering their level, influencing their differentiation or inhibiting their suppressive function. Despite the fact that these studies clearly show that MDSCs are important in human cancer, the clinical employment of agents intended to target them has not yet been accomplished. We identify factors which have contributed to this and propose steps which may facilitate the translation of these therapies to the clinic in future.
Collapse
Affiliation(s)
- Christopher Shipp
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany.
| | - Lisa Speigl
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | - Nicole Janssen
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | - Alexander Martens
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 24, 72076, Tübingen, Germany
| | - Graham Pawelec
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany.
- School of Science and Technology, College of Arts and Science, Nottingham Trent University, Burton St, Nottingham, NG1 4BU, UK.
| |
Collapse
|
34
|
Kyte JA, Gaudernack G, Faane A, Lislerud K, Inderberg EM, Brunsvig P, Aamdal S, Kvalheim G, Wälchli S, Pule M. T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncoimmunology 2016; 5:e1249090. [PMID: 28123886 DOI: 10.1080/2162402x.2016.1249090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/28/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4+ Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4+ and CD8+ T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department for Cell Therapy, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway; Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Gustav Gaudernack
- Department for Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Faane
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | - Kari Lislerud
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | | | - Paal Brunsvig
- Clinical Trial Unit, Department of Oncology, Oslo University Hospital , Oslo, Norway
| | - Steinar Aamdal
- Faculty of Medicine, University of Oslo, Oslo, Norway; Clinical Trial Unit, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | - Sébastien Wälchli
- Department for Cell Therapy, Oslo University Hospital, Oslo, Norway; Department for Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| | - Martin Pule
- Department of Haematology, UCL Cancer Institute, University College London , London, UK
| |
Collapse
|
35
|
Kyte JA, Aamdal S, Dueland S, Sæbøe-Larsen S, Inderberg EM, Madsbu UE, Skovlund E, Gaudernack G, Kvalheim G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 2016; 5:e1232237. [PMID: 27999747 DOI: 10.1080/2162402x.2016.1232237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients. The first cohort (n = 22) received the vaccine without any adjuvant; the next cohort (n = 9) received adjuvant IL2. Each subject received four weekly intranodal or intradermal injections, followed by optional monthly vaccines. Immune response was evaluated by delayed-type hypersensitivity (DTH), T cell proliferation and cytokine assays. Data were collected for 10 y after inclusion of the last patient. No serious adverse events were detected. In the intention-to-treat-cohort, we demonstrated significantly superior survival compared to matched controls from a benchmark meta-analysis (1 y survival 43% vs. 24%, 2 y 23% vs. 6.6%). A tumor-specific immune response was demonstrated in 16/31 patients. The response rate was higher after intradermal than intranodal vaccination (80% vs. 38%). Immune responders had improved survival compared to non-responders (median 14 mo vs. 6 mo; p = 0.030), and all eight patients surviving >20 mo were immune responders. In addition to the tumor-specific response, most patients developed a response against autologous DC antigens. The cytokine profile was polyfunctional and did not follow a Th1/Th2 dichotomy. We conclude that the favorable safety profile and evidence of a possible survival benefit warrant further studies of the RNA/DC vaccine. The vaccine appears insufficient as monotherapy, but there is a strong rationale for combination with checkpoint modulators.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway; The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital, Oslo, Norway; Department of Immunology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Steinar Aamdal
- The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Svein Dueland
- The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Stein Sæbøe-Larsen
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Else Marit Inderberg
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Ulf Erik Madsbu
- Department for Radiology, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and General Practice, NTNU , Trondheim, Norway
| | - Gustav Gaudernack
- Department of Immunology, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Gunnar Kvalheim
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| |
Collapse
|
36
|
Teng F, Meng X, Wang X, Yuan J, Liu S, Mu D, Zhu H, Kong L, Yu J. Expressions of CD8+TILs, PD-L1 and Foxp3+TILs in stage I NSCLC guiding adjuvant chemotherapy decisions. Oncotarget 2016; 7:64318-64329. [PMID: 27602763 PMCID: PMC5325445 DOI: 10.18632/oncotarget.11793] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Currently, adjuvant chemotherapy is recommended for patients with high risk stage I non-small cell lung cancer (NSCLC). However, identifying high risk patients remains a challenge. This study aims to identify the patient cohorts more likely to benefit from adjuvant chemotherapy based on the tumor micro-immune environment. RESULTS CD8+TILs significantly associated with disease-free survival (DFS) and overall survial (OS) (p=0.002; 0.040). Patients with high risk factors may also predict shorter DFS (P=0.056). When compared together, patients with high-CD8+TILs showed better DFS than patients with low-CD8+TILs, no matter their risk factors status. There's no correlation between PD-L1 expressions and survival. PD-L1 was highly expressed in men, squamous and well differentiated carcinoma. In addition, Foxp3+TILs alone didn't show any prognostic effects, but low-Foxp3/high-CD8+TILs were associated with prolonged DFS (p=0.031). METHODS A total of 126 patients with surgically resected stage I NSCLC were included to perform immunohistochemistry of CD8+ tumor infiltrating lymphocytes (TILs), programmed death ligand-1(PD-L1) and forkhead box P3 (Foxp3)+TILs. CONCLUSION CD8+TILs are effective prognostic predictors. Patients with surgically resected stage I NSCLC showing low CD8+TILs could be considered for adjuvant chemotherapy, even if they have no high risk features.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Sujing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| |
Collapse
|
37
|
Santegoets SJAM, Welters MJP, van der Burg SH. Monitoring of the Immune Dysfunction in Cancer Patients. Vaccines (Basel) 2016; 4:vaccines4030029. [PMID: 27598210 PMCID: PMC5041023 DOI: 10.3390/vaccines4030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy shows promising clinical results in patients with different types of cancer, but its full potential is not reached due to immune dysfunction as a result of several suppressive mechanisms that play a role in cancer development and progression. Monitoring of immune dysfunction is a prerequisite for the development of strategies aiming to alleviate cancer-induced immune suppression. At this point, the level at which immune dysfunction occurs has to be established, the underlying mechanism(s) need to be known, as well as the techniques to assess this. While it is relatively easy to measure general signs of immune suppression, it turns out that accurate monitoring of the frequency and function of immune-suppressive cells is still difficult. A lack of truly specific markers, the phenotypic complexity among suppressive cells of the same lineage, but potentially with different functions and functional assays that may not cover every mechanistic aspect of immune suppression are among the reasons complicating proper assessments. Technical innovations in flow and mass cytometry will allow for more complete sets of markers to precisely determine phenotype and associated function. There is, however, a clear need for functional assays that recapitulate more of the mechanisms employed to suppress the immune system.
Collapse
Affiliation(s)
- Saskia J A M Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
38
|
Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics. Pharmacol Res 2016; 110:25-34. [DOI: 10.1016/j.phrs.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022]
|
39
|
Li L, Mao X, Qin X, Zhou M, Xing H, Dong F, Jiang X, Zhuang W. Aspirin inhibits growth of ovarian cancer by upregulating caspase-3 and downregulating bcl-2. Oncol Lett 2016; 12:93-96. [PMID: 27347106 PMCID: PMC4906651 DOI: 10.3892/ol.2016.4607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/18/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the effect and mechanism of different concentrations of aspirin in inhibiting the ovarian cancer of p53N236S gene knock-in mice. In total, 28 male p53S mice, with an age range of 4–6 weeks and weight of 20–25 g were selected. The animals were transplanted with SKOV3 cells to establish subdermal human ovarian cancer. The mice were randomly divided into different groups according to the aspirin concentrations (mmol/l) used, i.e., 0, 1, 2 and 3. Subsequently, intraperitoneal injection was performed once every two days for 3 weeks. The tumor volume, lifetime, tumor cell proliferation inhibition rates, caspase-3 protein and bcl-2 protein expression of the four groups were analyzed and compared. Following aspirin treatment for 1, 2 and 3 weeks, the tumor volume of the 3 mmol/l aspirin group was significantly smaller than the other groups (P<0.05). The higher concentration of aspirin led to a smaller tumor size (P<0.05). The cell proliferation inhibition rate of the 3 mmol/l aspirin group was significantly larger than that of other groups (P<0.05). The relative expression level of caspase-3, bcl-2 protein of the 3 mmol/l aspirin group was significantly improved and reduced, respectively. In conclusion, aspirin can inhibit the growth of ovarian cancer of p53S rats due to its upregulation of the expression of caspase-3 protein and downregulation of the expression of bcl-2 protein.
Collapse
Affiliation(s)
- Lin Li
- Department of Gynaecology and Obstetrics, Xiangyan Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Xiaogang Mao
- Department of Gynaecology and Obstetrics, Xiangyan Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Xiaomin Qin
- Department of Gynaecology and Obstetrics, Xiangyan Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Min Zhou
- Department of Gynaecology and Obstetrics, Xiangyan Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hui Xing
- Department of Gynaecology and Obstetrics, Xiangyan Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Fan Dong
- Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoyuan Jiang
- Dongfang Hospital, The Second Clinical Medical College of Beijing University of Chinese Medicine (BUCM), Beijing 100078, P.R. China
| | - Wenhui Zhuang
- School of Life Sciences, Fudan Univesity, Shanghai 200433, P.R. China
| |
Collapse
|
40
|
Jabbour SK, Berman AT, Simone CB. Integrating immunotherapy into chemoradiation regimens for medically inoperable locally advanced non-small cell lung cancer. Transl Lung Cancer Res 2007; 6:113-118. [PMID: 28529894 DOI: 10.21037/tlcr.2017.04.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For patients with inoperable stage II-III non-small cell lung cancer (NSCLC), the backbone of curative intent therapy is concurrent chemoradiotherapy (CRT). As checkpoint inhibitors have shown clinical benefit in the setting of metastatic NSCLC, additional study is necessary to understand their role in patients receiving CRT. When integrating immunotherapy with radiotherapy (RT) for cure, clinicians will need to consider synergy, timing, doses, and safety among the combination of therapies. This article seeks to review data evaluating interactions, temporal sequencing, fractionation, and overlapping toxicity profiles of thoracic chemoradiation and immunotherapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Abigail T Berman
- Department of Radiation Oncology, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|