1
|
Urazova OI, Reyngardt GV, Kolobovnikova YV, Kurnosenko AV, Poletika VS, Vasil'yeva OA, Avgustinovich AV. The <i>LGALS1</i> gene polymorphism is not associated with galectin-1 levels in tumor tissue and blood of colon cancer patients. ALMANAC OF CLINICAL MEDICINE 2024; 52:170-177. [DOI: 10.18786/2072-0505-2024-52-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Galectin-1 plays an important role in the pathogenesis of colorectal cancer (CRC). The blood and tumoral levels of galectin-1 could be dependent on the polymorphism of the promotor region of LGALS1 gene.
Aim: To analyze an association between galectin-1 levels in tumor tissue and plasma and the genotype of the rs4820293 and rs4820294 polymorphisms of the LGALS1 gene in CRC patients.
Materials and methods: The study included a total of 70 inpatients with pathologically verified CRC (International Classification of Diseases 10th Revision codes C18-C20, 39 men and 31 women, mean age 65.4 ± 5.7 years), who were receiving treatment in the Tomsk Regional Oncology Center and Cancer Research Institute of the Tomsk National Research Medical Center from 2020 to 2022. The control group consisted of 70 healthy volunteers (34 men and 36 women, mean age 62.3 ± 7.2 years). Venous blood samples were taken from all study participants and tumor tissue samples were obtained from the CRC patients. Galectin-1 expression in the tumor tissue was assessed by immunohistochemistry and plasma galectin-1 levels by enzyme-linked immunosorbent assay. The LGALS1 gene polymorphisms rs4820293 and rs4820294 were identified by restriction fragment length polymorphism analysis.
Results: The distributions of genotype and allele frequencies of polymorphic variants rs4820293 and rs4820294 of the LGALS1 gene in the CRC patients and in the healthy donors were comparable (p 0.05). Calculation of odds ratios did not confirm any association between LGALS1 gene polymorphisms and CRC. However, the rs4820294 polymorphism had a strong association with regional metastasis and tumor differentiation grade (Cramer's V above 0.4, p 0.001). The plasma galectin-1 levels in the CRC patients with the AA genotype of the rs4820294 polymorphism were higher than in the healthy carriers (17.42 versus 12.92 ng/ml, p = 0.040). However, there were no significant differences in the content of galectin-1+ cells in the tumor and galectin-1 in plasma of the CRC patients depending on the genotype of the LGALS1 gene polymorphisms (p 0.05).
Conclusion: The LGALS1 gene polymorphism is not associated with CRC, but in the carriers of the rs4820294 variant is related to clinical and morphological parameters of the tumor process. The intratumoral expression and blood levels of galectin-1 in CRC patients are not dependent on the genotype of rs4820293 and rs4820294 polymorphisms of the LGALS1 gene.
Collapse
|
2
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Wang HC, Xia R, Chang WH, Hsu SW, Wu CT, Chen CH, Shih TC. Improving cancer immunotherapy in prostate cancer by modulating T cell function through targeting the galectin-1. Front Immunol 2024; 15:1372956. [PMID: 38953033 PMCID: PMC11215701 DOI: 10.3389/fimmu.2024.1372956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.
Collapse
Affiliation(s)
- Hsiao-Chi Wang
- Department of Research and Development, Kibio Inc., Houston, TX, United States
| | - Roger Xia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Wen-Hsin Chang
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Ssu-Wei Hsu
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Ching-Hsien Chen
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tsung-Chieh Shih
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
5
|
Zou DD, Sun YZ, Li XJ, Wu WJ, Xu D, He YT, Qi J, Tu Y, Tang Y, Tu YH, Wang XL, Li X, Lu FY, Huang L, Long H, He L, Li X. Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. eLife 2023; 12:e85270. [PMID: 38099574 PMCID: PMC10783873 DOI: 10.7554/elife.85270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, KunmingYunnanChina
| | - Ya-Zhou Sun
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, GuangdongChina
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Xin-Jie Li
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yu-Tong He
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yang Tang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yun-Hua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Xiao-Li Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical UniversityShanghaiChina
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, ChuxiongYunnanChina
| | - Feng-Yan Lu
- Department of Dermatology, Qujing Affiliated Hospital of Kunming Medical University, The First People’s Hospital of QujingYunnanChina
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, DaliYunnanChina
| | - Heng Long
- Wenshan Zhuang and Miao Autonomous Prefecture Dermatology Clinic, Wenshan Zhuang and Miao Autonomous Prefecture Specialist Hospital of Dermatology, WenshanYunnanChina
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Xin Li
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen UniversityGuangdongChina
| |
Collapse
|
6
|
Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, Li J. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother 2022; 155:113691. [PMID: 36095958 DOI: 10.1016/j.biopha.2022.113691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Perineural invasion (PNI) is the process of neoplastic invasion of peripheral nerves and is considered to be the fifth mode of cancer metastasis. PNI has been detected in head and neck tumors and pancreatic, prostate, bile duct, gastric, and colorectal cancers. It leads to poor prognostic outcomes and high local recurrence rates. Despite the increasing number of studies on PNI, targeted therapeutic modalities have not been proposed. The identification of PNI-related biomarkers would facilitate the non-invasive and early diagnosis of cancers, the establishment of prognostic panels, and the development of targeted therapeutic approaches. In this review, we compile information on the molecular mediators involved in PNI-associated cancers. The expression and prognostic significance of molecular mediators and their receptors in PNI-associated cancers are analyzed, and the possible mechanisms of action of these mediators in PNI are explored, as well as the association of cells in the microenvironment where PNI occurs.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
7
|
Assessment of galectins -1, -3, -4, -8, and -9 expression in ovarian carcinoma patients with clinical implications. World J Surg Oncol 2022; 20:276. [PMID: 36050693 PMCID: PMC9434928 DOI: 10.1186/s12957-022-02738-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background and aim Galectins have been recently tackled by many researchers in the field of cancer due to their role in tumorigenesis, disease progression, and metastasis. Thus, they are currently involved in biomarkers research on several types of cancer. In ovarian cancers, few studies were carried out to evaluate galectins expression profiling. Hence, our present study was executed to evaluate the mRNA expression of galectins -1, -3, -4, -8, and -9 in epithelial ovarian cancers. Methods Fifty-six tumor samples of ovarian carcinomas were analyzed for mRNA expression using qRT-PCR, and fold-changes were calculated in comparison to tissue samples of 26 women with normal ovaries. Results The results of the present paper emphasize the importance of galectins as predictors for targeted therapy. LGALS1, LGALS3, LGALS4, LGALS8, and LGALS9 were found to be mostly overexpressed in ovarian carcinoma patients with the following percentage: 78.6%, 92.9%, 66.1%, 87.5%, and 85.7% respectively. Moreover, galectins -3 and -9 were found to be significantly elevated with lymph node metastasis (p = 0.044 and p = 0.011). Also, upregulation of galectin-1 and -9 were statistically significant in stages IIB, IIC, and IIIB (p = 0.002) in FIGO staging. CA19.9 is positively correlated to galectin-4 expression (p = 0.039). Conclusion Our findings strengthen the role of galectins in carcinogenesis, disease progression, and lymphnode metastasis in ovarian carcinomas. And since these galectins are mostly overexpressed, they could be promising markers for targeted therapy to reduce disease progression and metastasis process. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02738-4.
Collapse
|
8
|
Immunosuppressive Roles of Galectin-1 in the Tumor Microenvironment. Biomolecules 2021; 11:biom11101398. [PMID: 34680031 PMCID: PMC8533562 DOI: 10.3390/biom11101398] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Evasion of immune surveillance is an accepted hallmark of tumor progression. The production of immune suppressive mediators by tumor cells is one of the major mechanisms of tumor immune escape. Galectin-1 (Gal-1), a pivotal immunosuppressive molecule, is expressed by many types of cancer. Tumor-secreted Gal-1 can bind to glycosylated receptors on immune cells and trigger the suppression of immune cell function in the tumor microenvironment, contributing to the immune evasion of tumors. The aim of this review is to summarize the current literature on the expression and function of Gal-1 in the human tumor microenvironment, as well as therapeutics targeting Gal-1.
Collapse
|
9
|
Chetry M, Thapa S, Hu X, Song Y, Zhang J, Zhu H, Zhu X. The Role of Galectins in Tumor Progression, Treatment and Prognosis of Gynecological Cancers. J Cancer 2018; 9:4742-4755. [PMID: 30588260 PMCID: PMC6299382 DOI: 10.7150/jca.23628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are the member of soluble proteins that bind with β-galactoside containing glycans. These proteins have been considered to be associated in various important events such as different types of cancers. It has been found that galectins could contribute to neoplastic transformation or regulate cell growth, cell apoptosis, and immune cells, causing tumor invasion, progression, metastasis and angiogenesis. Somehow, galectins are also found to exert a protective effect on cancer in a tissue-dependent way. These glycans binding proteins have been shown to be involved in the regulation of different tumor suppressor genes and oncogenes with their possible roles in human cancers. Objective of the current review is to summarize the role of galectin-1, -3 -7, and -9 in tumorigenesis of gynecological cancers. Galectin protein may be a potential therapeutic target in gynecological malignancies due to reported radio- and chemo- sensitivities, immunotherapeutic, anti-angiogenic and anti-proliferative activities. This review considers the evidence for the future research that how galectins may be important in the progression and treatment of gynecological cancers along with its potent use as a novel prognostic marker.
Collapse
Affiliation(s)
- Mandika Chetry
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Saroj Thapa
- MD, Department of Internal Medicine, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xiaoli Hu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Yizuo Song
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Jianan Zhang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Haiyan Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| |
Collapse
|
10
|
Abstract
Perineural invasion (PNI) is a mechanism of tumor dissemination that can provide a challenge to tumor eradication and that is correlated with poor survival. Squamous cell carcinoma, the most common type of head and neck cancer, has a high prevalence of PNI. This review provides an overview of clinical studies on the outcomes and factors associated with PNI in head and neck cancer and on findings on cancer-nerve crosstalk.
Collapse
Affiliation(s)
- L B Schmitd
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - C S Scanlon
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - N J D'Silva
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,2 Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
12
|
Linedale R, Schmidt C, King BT, Ganko AG, Simpson F, Panizza BJ, Leggatt GR. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients. PLoS One 2017; 12:e0175755. [PMID: 28423034 PMCID: PMC5396892 DOI: 10.1371/journal.pone.0175755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.
Collapse
Affiliation(s)
- Richard Linedale
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Campbell Schmidt
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Otolaryngology-Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Brigid T King
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Annabelle G Ganko
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Benedict J Panizza
- Department of Otolaryngology-Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
13
|
Aurello P, Berardi G, Tierno SM, Rampioni Vinciguerra GL, Socciarelli F, Laracca GG, Giulitti D, Pilozzi E, Ramacciato G. Influence of perineural invasion in predicting overall survival and disease-free survival in patients With locally advanced gastric cancer. Am J Surg 2016; 213:748-753. [PMID: 27613269 DOI: 10.1016/j.amjsurg.2016.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate the prognostic significance of perineural invasion (PNI) in locally advanced gastric cancer patients who underwent D2 gastrectomy and adjuvant chemotherapy. METHODS The records of a series of 103 patients undergoing D2 gastrectomy with curative intent combined with adjuvant chemotherapy from January 2004 to December 2014 were retrospectively reviewed. RESULTS PNI was positive in 47 (45.6%) specimens. The 1-, 3-, and 5-year overall survival rates were 81%, 55%, and 42%, respectively. The 1-, 3-, and 5-year disease-free survival (DFS) rates were 76%, 57%, and 49%, respectively. A multivariate analysis showed that age number of positive lymph nodes, T stage, and PNI were independently associated with overall survival. Regarding DFS, the multivariate analysis showed that only PNI was independently associated with DFS. CONCLUSIONS PNI and T stage and positive lymph nodes are independent markers of poor prognosis in patients with gastric cancer. PNI should be incorporated in the postoperative staging system for planning follow-up after surgery and in our opinion to propose more aggressive postoperative therapies in PNI-positive patients.
Collapse
Affiliation(s)
- Paolo Aurello
- Department of General Surgery, University of Rome, "La Sapienza", Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Giammauro Berardi
- Department of General Surgery, University of Rome, "La Sapienza", Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Simone Maria Tierno
- Department of General Surgery, University of Rome, "La Sapienza", Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | | | - Fabio Socciarelli
- Department of Pathology, University of Rome, "La Sapienza", Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Guglielmo Laracca
- Department of General Surgery, University of Rome, "La Sapienza", Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Diego Giulitti
- Department of General Surgery, University of Rome, "La Sapienza", Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Emanuela Pilozzi
- Department of Pathology, University of Rome, "La Sapienza", Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Ramacciato
- Department of General Surgery, University of Rome, "La Sapienza", Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| |
Collapse
|
14
|
Abstract
This article provides an overview of perineural spread of head and neck malignancy. It defines the problem and explores some of the unique features, which occur with this pathology. The expectation is for a better understanding of this extraordinary disease, hopefully leading to earlier diagnosis and for a more consistent reporting of results. It summarizes the topics to be covered in this special edition, which should leave the reader with a fairly complete understanding of the contemporary issues of perineural spread.
Collapse
Affiliation(s)
- Benedict J. Panizza
- Queensland Skull Base Unit and Department of Otolaryngology, Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|