1
|
Schlaak L, Weise C, Kuropka B, Weng A. Mutational Analysis of RIP Type I Dianthin-30 Suggests a Role for Arg24 in Endocytosis. Toxins (Basel) 2024; 16:219. [PMID: 38787071 PMCID: PMC11125672 DOI: 10.3390/toxins16050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects. Certain triterpene saponins are able to induce the endosomal escape of these type I RIPs, thus increasing their cytotoxicity. However, the molecular mechanism underlying the endosomal escape enhancement of type I RIPs by triterpene saponins has not been fully elucidated. In this report, we investigate the involvement of the basic amino acid residues of dianthin-30, a type I RIP isolated from the plant Dianthus caryophyllus L., in endosomal escape enhancement using alanine scanning. Therefore, we designed 19 alanine mutants of dianthin-30. Each mutant was combined with SO1861, a triterpene saponin isolated from the roots of Saponaria officinalis L., and subjected to a cytotoxicity screening in Neuro-2A cells. Cytotoxic screening revealed that dianthin-30 mutants with lysine substitutions did not impair the endosomal escape enhancement. There was one particular mutant dianthin, Arg24Ala, that exhibited significantly reduced synergistic cytotoxicity in three mammalian cell lines. However, this reduction was not based on an altered interaction with SO1861. It was, rather, due to the impaired endocytosis of dianthin Arg24Ala into the cells.
Collapse
Affiliation(s)
- Louisa Schlaak
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| |
Collapse
|
2
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
3
|
Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib Ther 2022; 5:164-176. [PMID: 35928456 PMCID: PMC9344849 DOI: 10.1093/abt/tbac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Targeted cancer therapies using immunotoxins has achieved remarkable efficacies in hematological malignancies. However, the clinical development of immunotoxins is also faced with many challenges like anti-drug antibodies and dose-limiting toxicity issues. Such a poor efficacy/safety ratio is also the major hurdle in the research and development of antibody-drug conjugates. From an antibody engineering perspective, various strategies were summarized/proposed to tackle the notorious on target off tumor toxicity issues, including passive strategy (XTENylation of immunotoxins) and active strategies (modulating the affinity and valency of the targeting moiety of immunotoxins, conditionally activating immunotoxins in the tumor microenvironments and reconstituting split toxin to reduce systemic toxicity etc.). By modulating the functional characteristics of the targeting moiety and the toxic moiety of immunotoxins, selective tumor targeting can be augmented while sparing the healthy cells in normal tissues expressing the same target of interest. If successful, the improved therapeutic index will likely help to address the dose-limiting toxicities commonly observed in the clinical trials of various immunotoxins.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Postgraduate , Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
| | - Sen Mei
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
| | - Yi Yang
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Yuelei Shen
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Lei Chen
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| |
Collapse
|
4
|
Rees TA, Russo AF, O’Carroll SJ, Hay DL, Walker CS. CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons. Front Physiol 2022; 13:860037. [PMID: 35620595 PMCID: PMC9128745 DOI: 10.3389/fphys.2022.860037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30–40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78–80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- *Correspondence: Debbie L. Hay, ; Christopher S. Walker,
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Debbie L. Hay, ; Christopher S. Walker,
| |
Collapse
|
5
|
Vázquez Cervantes GI, González Esquivel DF, Gómez-Manzo S, Pineda B, Pérez de la Cruz V. New Immunotherapeutic Approaches for Glioblastoma. J Immunol Res 2021; 2021:3412906. [PMID: 34557553 PMCID: PMC8455182 DOI: 10.1155/2021/3412906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510 Distrito Federal, Mexico
| | - Dinora F. González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
6
|
Gupta P, Hare DL, Wookey PJ. Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells 2021; 10:cells10092347. [PMID: 34571996 PMCID: PMC8466289 DOI: 10.3390/cells10092347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
New strategies aimed at treatment of glioblastoma are frequently proposed to overcome poor prognosis. Recently, research has focused on glioma stem cells (GSCs), some quiescent, which drive expansion of glioblastoma and provide the complexity and heterogeneity of the tumour hierarchy. Targeting quiescent GSCs is beyond the capability of conventional drugs such as temozolomide. Here, we discuss the proposal that the calcitonin receptor (CT Receptor), expressed in 76–86% of patient biopsies, is expressed by both malignant glioma cells and GSCs. Forty-two percent (42%) of high-grade glioma (HGG; representative of GSCs) cell lines available from one source express CT Receptor protein in cell culture. The pharmacological calcitonin (CT)-response profiles of four of the HGG cell lines were reported, suggesting mutational/splicing inactivation. Alternative splicing, commonly associated with cancer cells, could result in the predominant expression of the insert-positive isoform and explain the atypical pharmacology exhibited by CT non-responders. A role for the CT Receptor as a putative tumour suppressor and/or oncoprotein is discussed. Both CT responders and non-responders were sensitive to immunotoxins based on an anti-CT Receptor antibody conjugated to ribosomal-inactivating proteins. Sensitivity was increased by several logs with the triterpene glycoside SO1861, an endosomal escape enhancer. Under these conditions, the immunotoxins were 250–300 times more potent than an equivalent antibody conjugated with monomethyl auristatin E. Further refinements for improving the penetration of solid tumours are discussed. With this knowledge, a potential strategy for effective targeting of CSCs expressing this receptor is proposed for the treatment of GBM.
Collapse
|
7
|
Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel) 2021; 12:genes12071085. [PMID: 34356101 PMCID: PMC8306420 DOI: 10.3390/genes12071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Almost all transcribed human genes undergo alternative RNA splicing, which increases the diversity of the coding and non-coding cellular landscape. The resultant gene products might have distinctly different and, in some cases, even opposite functions. Therefore, the abnormal regulation of alternative splicing plays a crucial role in malignant transformation, development, and progression, a fact supported by the distinct splicing profiles identified in both healthy and tumor cells. Drug resistance, resulting in treatment failure, still remains a major challenge for current cancer therapy. Furthermore, tumor cells often take advantage of aberrant RNA splicing to overcome the toxicity of the administered chemotherapeutic agents. Thus, deciphering the alternative RNA splicing variants in tumor cells would provide opportunities for designing novel therapeutics combating cancer more efficiently. In the present review, we provide a comprehensive outline of the recent findings in alternative splicing in the most common neoplasms, including lung, breast, prostate, head and neck, glioma, colon, and blood malignancies. Molecular mechanisms developed by cancer cells to promote oncogenesis as well as to evade anticancer drug treatment and the subsequent chemotherapy failure are also discussed. Taken together, these findings offer novel opportunities for future studies and the development of targeted therapy for cancer-specific splicing variants.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Nikolay Belev
- Medical Simulation and Training Center, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Galina Yaneva
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Krassimira Todorova
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Soren Hayrabedyan
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-882-512-952
| |
Collapse
|
8
|
Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv 2021; 47:107683. [PMID: 33373687 DOI: 10.1016/j.biotechadv.2020.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Molecular farming in plants is an emerging platform for the production of pharmaceutical proteins, and host species such as tobacco are now becoming competitive with commercially established production hosts based on bacteria and mammalian cell lines. The range of recombinant therapeutic proteins produced in plants includes replacement enzymes, vaccines and monoclonal antibodies (mAbs). But plants can also be used to manufacture toxins, such as the mistletoe lectin viscumin, providing an opportunity to express active antibody-toxin fusion proteins, so-called recombinant immunotoxins (RITs). Mammalian production systems are currently used to produce antibody-drug conjugates (ADCs), which require the separate expression and purification of each component followed by a complex and hazardous coupling procedure. In contrast, RITs made in plants are expressed in a single step and could therefore reduce production and purification costs. The costs can be reduced further if subcellular compartments that accumulate large quantities of the stable protein are identified and optimal plant growth conditions are selected. In this review, we first provide an overview of the current state of RIT production in plants before discussing the three key components of RITs in detail. The specificity-defining domain (often an antibody) binds cancer cells, including solid tumors and hematological malignancies. The toxin provides the means to kill target cells. Toxins from different species with different modes of action can be used for this purpose. Finally, the linker spaces the two other components to ensure they adopt a stable, functional conformation, and may also promote toxin release inside the cell. Given the diversity of these components, we extract broad principles that can be used as recommendations for the development of effective RITs. Future research should focus on such proteins to exploit the advantages of plants as efficient production platforms for targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- M Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| |
Collapse
|
9
|
Gupta P, Furness SGB, Bittencourt L, Hare DL, Wookey PJ. Building the case for the calcitonin receptor as a viable target for the treatment of glioblastoma. Ther Adv Med Oncol 2020; 12:1758835920978110. [PMID: 33425026 PMCID: PMC7758865 DOI: 10.1177/1758835920978110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Researchers are actively seeking novel targeted therapies for the brain tumour glioblastoma (GBM) as the mean survival is less than 15 months. Here we discuss the proposal that the calcitonin receptor (CT Receptor), expressed in 76-86% of patient biopsies, is expressed by both malignant glioma cells and putative glioma stem cells (GSCs), and therefore represents a potential therapeutic target. Forty-two per cent (42%) of high-grade glioma (HGG; representative of GSCs) cell lines express CT Receptor protein. CT Receptors are widely expressed throughout the life cycle of organisms and in some instances promote apoptosis. Which of the common isoforms of the CT Receptor are predominantly expressed is currently unknown, but a functional response to cell stress of the insert-positive isoform is hypothesised. A model for resistant malignancies is one in which chemotherapy plays a direct role in activating quiescent stem cells for replacement of the tumour tissue hierarchy. The putative role that the CT Receptor plays in maintenance of quiescent cancer stem cells is discussed in view of the activation of the Notch-CT Receptor-collagen V axis in quiescent muscle (satellite) stem cells. The pharmacological CT response profiles of four of the HGG cell lines were reported. Both CT responders and non-responders were sensitive to an immunotoxin based on an anti-CT Receptor antibody. The CALCR mRNA exhibits alternative splicing commonly associated with cancer cells, which could result in the atypical pharmacology exhibited by CT non-responders and an explanation of tumour suppression. Due to the inherent instability of CALCR mRNA, analysis of CT Receptor protein in patient samples will lead to improved data for the expression of CT Receptor in GBM and other cancers, and an understanding of the role and activity of the splice variants. This knowledge will aid the effective targeting of this receptor for treatment of GBM.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Medicine (Austin Health, Heidelberg), University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian G B Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University (Parkville), Victoria, Australia
| | - Lucas Bittencourt
- Department of Medicine (Austin Health, Heidelberg), University of Melbourne, Melbourne, Victoria, Australia
| | - David L Hare
- Department of Medicine (Austin Health, Heidelberg), University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Wookey
- Department of Medicine, University of Melbourne, Level 10, Lance Townsend Building, Austin Health, Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
10
|
Cao XW, Wang FJ, Liew OW, Lu YZ, Zhao J. Analysis of Triterpenoid Saponins Reveals Insights into Structural Features Associated with Potent Protein Drug Enhancement Effects. Mol Pharm 2020; 17:683-694. [PMID: 31913047 DOI: 10.1021/acs.molpharmaceut.9b01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant-based saponins are amphipathic glycosides composed of a hydrophobic aglycone backbone covalently bound to one or more hydrophilic sugar moieties. Recently, the endosomal escape activity of triterpenoid saponins has been investigated as a potentially powerful tool for improved cytosolic penetration of protein drugs internalized by endocytic uptake, thereby greatly enhancing their pharmacological effects. However, only a few saponins have been studied, and the paucity in understanding the structure-activity relationship of saponins imposes significant limitations on their applications. To address this knowledge gap, 12 triterpenoid saponins with diverse structural side chains were screened for their utility as endosomolytic agents. These compounds were used in combination with a toxin (MAP30-HBP) comprising a type I ribosome-inactivating protein fused to a cell-penetrating peptide. Suitability of saponins as endosomolytic agents was assessed on the basis of cytotoxicity, endosomal escape promotion, and synergistic effects on toxins. Five saponins showed strong endosomal escape activity, enhancing MAP30-HBP cytotoxicity by more than 106 to 109 folds. These saponins also enhanced the apoptotic effect of MAP30-HBP in a pH-dependent manner. Additionally, growth inhibition of MAP30-HBP-treated SMMC-7721 cells was greater than that of similarly treated HeLa cells, suggesting that saponin-mediated endosomolytic effect is likely to be cell-specific. Furthermore, the structural features and hydrophobicity of the sugar side chains were analyzed to draw correlations with endosomal escape activity and derive predictive rules, thus providing new insights into structure-activity relationships of saponins. This study revealed new saponins that can potentially be exploited as efficient cytosolic delivery reagents for improved therapeutic drug effects.
Collapse
Affiliation(s)
- Xue-Wei Cao
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Fu-Jun Wang
- New Drug R&D Center , Zhejiang Fonow Medicine Company, Ltd. , 209 West Hulian Road , Dongyang 322100 , Zhejiang , China.,Shanghai R&D Center for Standardization of Chinese Medicines , 1200 Cailun Road , Shanghai 201203 , China.,Institute of Chinese Materia , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Oi-Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System , Centre for Translational Medicine , MD6#08-01, 14 Medical Drive , 117599 , Singapore
| | - Ye-Zhou Lu
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jian Zhao
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
11
|
Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel) 2019; 11:toxins11100592. [PMID: 31614697 PMCID: PMC6832487 DOI: 10.3390/toxins11100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers.
Collapse
|
12
|
Stringer BW, Day BW, D'Souza RCJ, Jamieson PR, Ensbey KS, Bruce ZC, Lim YC, Goasdoué K, Offenhäuser C, Akgül S, Allan S, Robertson T, Lucas P, Tollesson G, Campbell S, Winter C, Do H, Dobrovic A, Inglis PL, Jeffree RL, Johns TG, Boyd AW. A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Sci Rep 2019; 9:4902. [PMID: 30894629 PMCID: PMC6427001 DOI: 10.1038/s41598-019-41277-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.
Collapse
Affiliation(s)
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Paul R Jamieson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate Goasdoué
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Seçkin Akgül
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Suzanne Allan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Peter Lucas
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Gert Tollesson
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Scott Campbell
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Craig Winter
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Hongdo Do
- Olivia Newton-John Cancer and Wellness Centre, Melbourne, Australia
| | | | - Po-Ling Inglis
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Rosalind L Jeffree
- Royal Brisbane and Women's Hospital, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Terrance G Johns
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Andrew W Boyd
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Ostrovskaya A, Hick C, Hutchinson DS, Stringer BW, Wookey PJ, Wootten D, Sexton PM, Furness SGB. Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas. BMC Cancer 2019; 19:157. [PMID: 30777055 PMCID: PMC6379965 DOI: 10.1186/s12885-019-5369-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and aggressive type of primary brain cancer. With median survival of less than 15 months, identification and validation of new GBM therapeutic targets is of critical importance. Results In this study we tested expression and performed pharmacological characterization of the calcitonin receptor (CTR) as well as other members of the calcitonin family of receptors in high-grade glioma (HGG) cell lines derived from individual patient tumours, cultured in defined conditions. Previous immunohistochemical data demonstrated CTR expression in GBM biopsies and we were able to confirm CALCR (gene encoding CTR) expression. However, as assessed by cAMP accumulation assay, only one of the studied cell lines expressed functional CTR, while the other cell lines have functional CGRP (CLR/RAMP1) receptors. The only CTR-expressing cell line (SB2b) showed modest coupling to the cAMP pathway and no activation of other known CTR signaling pathways, including ERK1/2 and p38 MAP kinases, and Ca2+ mobilization, supportive of low cell surface receptor expression. Exome sequencing data failed to account for the discrepancy between functional data and expression on the cell lines that do not respond to calcitonin(s) with no deleterious non-synonymous polymorphisms detected, suggesting that other factors may be at play, such as alternative splicing or rapid constitutive receptor internalisation. Conclusions This study shows that GPCR signaling can display significant variation depending on cellular system used, and effects seen in model recombinant cell lines or tumour cell lines are not always reproduced in a more physiologically relevant system and vice versa. Electronic supplementary material The online version of this article (10.1186/s12885-019-5369-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Ostrovskaya
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Caroline Hick
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Brett W Stringer
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter J Wookey
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Sebastian G B Furness
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
14
|
Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigin ME, French RP, Lowy AM, Murray F. GPCRomics: GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front Pharmacol 2018; 9:431. [PMID: 29872392 PMCID: PMC5972277 DOI: 10.3389/fphar.2018.00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells. Using TaqMan qPCR arrays to quantify the mRNA expression of ∼340 such GPCRs, we found that human chronic lymphocytic leukemia (CLL) cells/stromal cells associated with CLL, breast cancer cell lines, colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer associated fibroblasts (CAFs), and PDAC tumors express 50 to >100 GPCRs, including many orphan GPCRs (which lack known physiologic agonists). Limited prior data exist regarding the expression or function of most of the highly expressed GPCRs in these cancer cells and tumors. Independent results from public cancer gene expression databases confirm the expression of such GPCRs. We propose that highly expressed GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in PDAC CAFs) may contribute to the malignant phenotype, serve as biomarkers and/or may be novel therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Paul A. Insel
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Shu Z. Wiley
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Andrea Wilderman
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Trishna Katakia
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Thalia McCann
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Yokouchi
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Lingzhi Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Ross Corriden
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Dongling Liu
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall P. French
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Andrew M. Lowy
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Fiona Murray
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM. Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol 2017; 14:695-707. [PMID: 28675164 DOI: 10.1038/nrclinonc.2017.95] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastomas are high-grade brain tumours with a poor prognosis and, currently, few available therapeutic options. This lack of effective treatments has been linked to diverse factors, including target selection, tumour heterogeneity and poor penetrance of therapeutic agents through the blood-brain barrier and into tumours. Therapies using monoclonal antibodies, alone or linked to cytotoxic payloads, have proved beneficial for patients with different solid tumours; these approaches are currently being explored in patients with glioblastoma. In this Review, we summarise clinical data regarding antibody-drug conjugates (ADCs) against a variety of targets in glioblastoma, and compare the efficacy and toxicity of targeting EGFR with ADCs versus naked antibodies in order to illustrate key aspects of the use of ADCs in this malignancy. Finally, we discuss the complex challenges related to the biology and mutational changes of glioblastoma that can affect the use of ADC-based therapies in patients with this disease, and highlight potential strategies to improve efficacy.
Collapse
Affiliation(s)
- Hui K Gan
- Austin Health and Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, Netherlands
| | - Andrew B Lassman
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 161 Fort Washington Avenue, New York, New York 10032, USA
| | - David A Reardon
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2134, Boston, Massachusetts 02215, USA
| | - Andrew M Scott
- Austin Health and Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|