1
|
McKeague ML, Lohmueller J, Dracz MT, Saadallah N, Ricci ED, Beckwith DM, Ayyalasomayajula R, Cudic M, Finn OJ. Preventative Cancer Vaccine-Elicited Human Anti-MUC1 Antibodies Have Multiple Effector Functions. Antibodies (Basel) 2024; 13:85. [PMID: 39449327 PMCID: PMC11503386 DOI: 10.3390/antib13040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mucin-1 (MUC1) is a transmembrane glycoprotein that is overexpressed and hypoglycosylated in premalignant and malignant epithelial cells compared to normal cells, creating a target antigen for humoral and cellular immunity. Healthy individuals with a history of advanced colonic adenomas and at high risk for colon cancer were enrolled in a clinical trial to evaluate the feasibility of using a MUC1 peptide vaccine to prevent colon cancer. Anti-MUC1 antibodies elicited by this vaccine were cloned using peripheral blood B cells and sera collected two weeks after a one-year booster. Twelve of these fully human monoclonal antibodies (mAb) were tested for binding to MUC1+ target cells, and three with the highest binding were further evaluated for various effector functions important for tumor rejection. METHODS Immune cells were incubated together with target cells expressing variations in the number, distance, and membrane anchoring properties of the MUC1 epitope in the presence of each mAb. RESULTS All three mAbs mediated antibody-dependent cytokine release (ADCR), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). Two also mediated antibody-dependent trogocytosis/trogoptosis (ADCT). None were capable of complement-dependent cytotoxicity (CDC). CONCLUSIONS ADCP and ADCT functions were more efficient when antibodies bound epitopes proximal to and anchored to the membrane, providing insight for future therapeutic antibody validation strategies.
Collapse
Affiliation(s)
- Michelle L. McKeague
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| | - Jason Lohmueller
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew T. Dracz
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| | - Najla Saadallah
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| | - Eric D. Ricci
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
- Department of Psychology, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Donella M. Beckwith
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| |
Collapse
|
2
|
Wang Y, Li C, He J, Zhao Q, Zhou Y, Sun H, Zhu H, Ding B, Ren M. Multi-omics analysis and experimental validation of the value of monocyte-associated features in prostate cancer prognosis and immunotherapy. Front Immunol 2024; 15:1426474. [PMID: 38947325 PMCID: PMC11211272 DOI: 10.3389/fimmu.2024.1426474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background Monocytes play a critical role in tumor initiation and progression, with their impact on prostate adenocarcinoma (PRAD) not yet fully understood. This study aimed to identify key monocyte-related genes and elucidate their mechanisms in PRAD. Method Utilizing the TCGA-PRAD dataset, immune cell infiltration levels were assessed using CIBERSORT, and their correlation with patient prognosis was analyzed. The WGCNA method pinpointed 14 crucial monocyte-related genes. A diagnostic model focused on monocytes was developed using a combination of machine learning algorithms, while a prognostic model was created using the LASSO algorithm, both of which were validated. Random forest and gradient boosting machine singled out CCNA2 as the most significant gene related to prognosis in monocytes, with its function further investigated through gene enrichment analysis. Mendelian randomization analysis of the association of HLA-DR high-expressing monocytes with PRAD. Molecular docking was employed to assess the binding affinity of CCNA2 with targeted drugs for PRAD, and experimental validation confirmed the expression and prognostic value of CCNA2 in PRAD. Result Based on the identification of 14 monocyte-related genes by WGCNA, we developed a diagnostic model for PRAD using a combination of multiple machine learning algorithms. Additionally, we constructed a prognostic model using the LASSO algorithm, both of which demonstrated excellent predictive capabilities. Analysis with random forest and gradient boosting machine algorithms further supported the potential prognostic value of CCNA2 in PRAD. Gene enrichment analysis revealed the association of CCNA2 with the regulation of cell cycle and cellular senescence in PRAD. Mendelian randomization analysis confirmed that monocytes expressing high levels of HLA-DR may promote PRAD. Molecular docking results suggested a strong affinity of CCNA2 for drugs targeting PRAD. Furthermore, immunohistochemistry experiments validated the upregulation of CCNA2 expression in PRAD and its correlation with patient prognosis. Conclusion Our findings offer new insights into monocyte heterogeneity and its role in PRAD. Furthermore, CCNA2 holds potential as a novel targeted drug for PRAD.
Collapse
Affiliation(s)
- YaXuan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - JiaXing He
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QingYun Zhao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Zhou
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HaoDong Sun
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HaiXia Zhu
- Clinical Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - BeiChen Ding
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - MingHua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Xu Y, Tan S, Huang W, Wang YX. Construction of monocyte-related prognosis model based on comprehensive analysis of bulk RNA-seq and single-cell RNA-seq in high-grade serous ovarian cancer. Medicine (Baltimore) 2023; 102:e36548. [PMID: 38115318 PMCID: PMC10727554 DOI: 10.1097/md.0000000000036548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a common subtype of ovarian cancer with high mortality. Finding a new biomarker is useful for the diagnosis and treatment of HGSOC. The scRNA and bulk RNA data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The monocyte-related clusters were identified and annotated by Seruat and SingleR package. The Kaplan-Meier and receiver operating characteristic curve was used to determine the prognosis. The differentially expressed genes were determined by limma. The single sample Gene Set Enrichment Analysis, Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes were used for the enrichment function. The correlation between drug activity and gene expression was assessed by rcellminer and rcellminer Data package. We identified 9 cell types and obtained 37 differentially expressed marker genes of monocyte. A2M, CD163, and FPR1 were screened out as hub genes and used to construct risk model in HGSOC through univariate and multivariate cox analysis. Single sample Gene Set Enrichment Analysis showed risk score was related to B cell and T cell signal pathways, and further analysis showed most immune checkpoint genes expressions were upregulated in high-risk score group. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis exhibited that hub gene related genes were involved in signal receptor binding and cytokine-cytokine interaction. Low A2M expression and high expression of CD163 and FPR1 were associated with poor prognosis. Gene Set Enrichment Analysis revealed that A2M promoted tumor development through enhancing immune cell related signal pathways, while CD163 and FPR1 inhibited tumor development through activated carcinogenic signal pathways. Drug sensitivity analysis revealed that these hub genes could be potential therapeutic targets for the treatment of HGSOC. We constructed a risk model for the overall survival and explored the potential mechanism of monocyte in HGSOC.
Collapse
Affiliation(s)
- Ye Xu
- Gynecological Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shu Tan
- Gynecological Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Huang
- Gynecological Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yao-Xian Wang
- Gynecological Ward, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Mata-Molanes JJ, Rebollo-Liceaga J, Martínez-Navarro EM, Manzano RG, Brugarolas A, Juan M, Sureda M. Relevance of Fc Gamma Receptor Polymorphisms in Cancer Therapy With Monoclonal Antibodies. Front Oncol 2022; 12:926289. [PMID: 35814459 PMCID: PMC9263556 DOI: 10.3389/fonc.2022.926289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs), including immune checkpoint inhibitors (ICIs), are an important breakthrough for the treatment of cancer and have dramatically changed clinical outcomes in a wide variety of tumours. However, clinical response varies among patients receiving mAb-based treatment, so it is necessary to search for predictive biomarkers of response to identify the patients who will derive the greatest therapeutic benefit. The interaction of mAbs with Fc gamma receptors (FcγR) expressed by innate immune cells is essential for antibody-dependent cellular cytotoxicity (ADCC) and this binding is often critical for their in vivo efficacy. FcγRIIa (H131R) and FcγRIIIa (V158F) polymorphisms have been reported to correlate with response to therapeutic mAbs. These polymorphisms play a major role in the affinity of mAb receptors and, therefore, can exert a profound impact on antitumor response in these therapies. Furthermore, recent reports have revealed potential mechanisms of ICIs to modulate myeloid subset composition within the tumour microenvironment through FcγR-binding, optimizing their anti-tumour activity. The purpose of this review is to highlight the clinical contribution of FcγR polymorphisms to predict response to mAbs in cancer patients.
Collapse
Affiliation(s)
- Juan J. Mata-Molanes
- Oncology Platform, Hospital Quirónsalud Torrevieja, Alicante, Spain
- *Correspondence: Juan J. Mata-Molanes,
| | | | | | | | | | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Manuel Sureda
- Oncology Platform, Hospital Quirónsalud Torrevieja, Alicante, Spain
| |
Collapse
|
5
|
Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, Pegram MD. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer 2022; 10:jitc-2021-003171. [PMID: 34992090 PMCID: PMC8739678 DOI: 10.1136/jitc-2021-003171] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Several therapeutic monoclonal antibodies (mAbs), including those targeting epidermal growth factor receptor, human epidermal growth factor receptor 2 (HER2), and CD20, mediate fragment crystallizable gamma receptor (FcγR)–dependent activities as part of their mechanism of action. These activities include induction of antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), which are innate immune mechanisms of cancer cell elimination. FcγRs are distinguished by their affinity for the Fc fragment, cell distribution, and type of immune response they induce. Activating FcγRIIIa (CD16A) on natural killer cells plays a crucial role in mediating ADCC, and activating FcγRIIa (CD32A) and FcγRIIIa on macrophages are important for mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa generate variants that bind to the Fc portion of antibodies with different affinities. This results in differential FcγR-mediated activities associated with differential therapeutic outcomes across multiple clinical settings, from early stage to metastatic disease, in patients with HER2+ breast cancer treated with the anti-HER2 mAb trastuzumab. Trastuzumab has, nonetheless, revolutionized HER2+ breast cancer treatment, and several HER2-directed mAbs have been developed using Fc glyco-engineering or Fc protein-engineering to enhance FcγR-mediated functions. An example of an approved anti-HER2 Fc-engineered chimeric mAb is margetuximab, which targets the same epitope as trastuzumab, but features five amino acid substitutions in the IgG 1 Fc domain that were deliberately introduced to increase binding to activating FcγRIIIa and decrease binding to inhibitory FcγRIIb (CD32B). Margetuximab enhances Fc-dependent ADCC in vitro more potently than the combination of pertuzumab (another approved mAb directed against an alternate HER2 epitope) and trastuzumab. Margetuximab administration also enhances HER2-specific B cell and T cell–mediated responses ex vivo in samples from patients treated with prior lines of HER2 antibody-based therapies. Stemming from these observations, a worthwhile future goal in the treatment of HER2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.
Collapse
Affiliation(s)
- Antonino Musolino
- Department of Medicine and Surgery, University Hospital of Parma, Medical Oncology and Breast Unit, Parma, Italy
| | - William J Gradishar
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, Breast Oncology and Clinical Trials Education, University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Mark D Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions. Methods Enzymol 2020; 632:431-456. [PMID: 32000909 PMCID: PMC7000137 DOI: 10.1016/bs.mie.2019.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibody-based therapies are increasingly being used to treat cancer. Some mediate their therapeutic effects through modifying the function of immune cells globally, while others bind directly to tumor cells and can recruit immune effector cells through their Fc regions. As new direct-binding agents are developed, having the ability to test their Fc-mediated functions in a high-throughput manner is important for selecting antibodies with immune effector properties. Here, using monoclonal anti-CD20 antibody (rituximab) as an example and the CD20+ Raji cell line as tumor target, we describe flow cytometry-based assays for determining an antibody's capacity for mediating antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC). These assays are sensitive, reliable, affordable and avoid the use of radioactivity.
Collapse
|