1
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Ishibashi A, Li Y, Hisatomi Y, Ohta N, Uegaki Y, Tanemura A, Ohashi R, Kitamura K, Saga K, Yoshimura Y, Inubushi S, Ishida K, Iwabuchi S, Hashimoto S, Kiyohara E, Yagita H, Kaneda Y, Nimura K. Local treatment of HVJ-E with T cell costimulatory molecule stimulation elicits systemic anti-tumor effects. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200893. [PMID: 39534532 PMCID: PMC11555341 DOI: 10.1016/j.omton.2024.200893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The tumor-infiltrating lymphocyte (TIL) is a crucial factor in controlling tumor growth. A therapeutic method activating TIL is desired for treating patients with metastatic tumors. Here, we show that treating a local tumor with a combination therapy of UV-irradiated hemagglutinating virus of Japan envelope (HVJ-E) plus agonist antibodies, including OX40, against T cell costimulatory molecules induces systemic anti-tumor effects in a T cell-dependent manner in multiple cancer cell lines. Transcriptome and T cell receptor repertoire analyses revealed that HVJ-E + anti-OX40 antibody treatment activates CD4 and CD8 T cells and promotes T cell trafficking between tumors. These systemic anti-tumor effects required an association between Nkg2d and Nkg2d ligands. Our findings provide insights into how systemic anti-tumor effects are induced and may help the development of therapeutic strategies for eliciting such effects.
Collapse
Affiliation(s)
- Airi Ishibashi
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yue Li
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Division of Gene Therapy Science, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuuta Hisatomi
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Ohta
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Division of Gene Therapy Science, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuko Uegaki
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Riuko Ohashi
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Histopathology Core Facility, Center for Research Promotion, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Koji Kitamura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuhide Yoshimura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satoko Inubushi
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kyoso Ishida
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Eiji Kiyohara
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Division of Gene Therapy Science, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
3
|
Sakura K, Kuroyama M, Shintani Y, Funaki S, Atagi S, Kadota Y, Kuribayashi K, Kijima T, Nakano T, Nakajima T, Sasai M, Okumura M, Kaneda Y. Dose-escalation, tolerability, and efficacy of intratumoral and subcutaneous injection of hemagglutinating virus of Japan envelope (HVJ-E) against chemotherapy-resistant malignant pleural mesothelioma: a clinical trial. Cancer Immunol Immunother 2024; 73:243. [PMID: 39358654 PMCID: PMC11447170 DOI: 10.1007/s00262-024-03815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/17/2024] [Indexed: 10/04/2024]
Abstract
The hemagglutinating virus of Japan envelope (HVJ-E) is an inactivated Sendai virus particle with antitumor effect and inducing antitumor immunity. However, its dosage and efficacy have not been verified. We conducted a phase I clinical study on chemotherapy-resistant malignant pleural mesothelioma (MPM) aiming to determine the recommended dosage for a phase II study through dose-limiting toxicity and evaluate HVJ-E's preliminary efficacy. HVJ-E was administered intratumorally and subcutaneously to the patients with chemotherapy-resistant MPM. While no serious adverse events occurred, known adverse events of HVJ-E were observed. In the preliminary antitumor efficacy using modified response evaluation criteria in solid tumors (RECIST) criteria, three low-dose patients exhibited progressive disease, while all high-dose patients achieved stable disease, yielding disease control rates (DCRs) of 0% and 100%, respectively. Furthermore, the dose-dependent effect of HVJ-E revealed on DCR modified by RECIST and the baseline changes in target lesion size (by CT and SUL-peak; p < 0.05). Comparing targeted lesions receiving intratumoral HVJ-E with non-injected ones, while no clear difference existed at the end of the study, follow-up cases suggested stronger antitumor effects with intratumoral administration. Our findings suggest that HVJ-E could be safely administered to patients with chemotherapy-resistant MPM at both study doses. HVJ-E exhibited some antitumor activity against chemotherapy-resistant MPM, and higher doses tended to have stronger antitumor effects than lower doses. Consequently, a phase II clinical trial with higher HVJ-E doses has been conducted for MPM treatment. Trial registration number: UMIN Clinical Trials Registry (#UMIN000019345).
Collapse
Affiliation(s)
- Kazuma Sakura
- Respiratory Center, Osaka University Hospital, Suita, 5650871, Japan.
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan.
| | - Muneyoshi Kuroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Yasushi Shintani
- Respiratory Center, Osaka University Hospital, Suita, 5650871, Japan
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Soichiro Funaki
- Respiratory Center, Osaka University Hospital, Suita, 5650871, Japan
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
- Department of thoracic surgery, Hyogo Medical University, Nishinomiya, 6638501, Japan
| | - Shinji Atagi
- Department of Thoracic Oncology, National Hospital Organization, Kinki-Chuo Chest Medical Center, Sakai, 5918555, Japan
| | - Yoshihisa Kadota
- Department of Thoracic Surgery, Osaka Habikino Medical Center, Habikino, 5838588, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo Medicine University, Nishinomiya, 6638501, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo Medicine University, Nishinomiya, 6638501, Japan
| | - Takashi Nakano
- Division of Respiratory Medicine, Otemae Hospital, Osaka, 5400008, Japan
| | | | - Masao Sasai
- Department of Medical Innovation, Osaka University Hospital, Suita, 5650871, Japan
| | - Meinoshin Okumura
- Department of Respiratory Surgery, National Hospital Organization, National Toneyama Hospital, Toyonaka, 5608552, Japan
| | - Yasufumi Kaneda
- Administration Bureau, Osaka University, Suita, 5650871, Japan
| |
Collapse
|
4
|
Xu J, Mu S, Wang Y, Yu S, Wang Z. Recent advances in immunotherapy and its combination therapies for advanced melanoma: a review. Front Oncol 2024; 14:1400193. [PMID: 39081713 PMCID: PMC11286497 DOI: 10.3389/fonc.2024.1400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
The incidence of melanoma is increasing year by year and is highly malignant, with a poor prognosis. Its treatment has always attracted much attention. Among the more clinically applied immunotherapies are immune checkpoint inhibitors, bispecific antibodies, cancer vaccines, adoptive cell transfer therapy, and oncolytic virotherapy. With the continuous development of technology and trials, in addition to immune monotherapy, combinations of immunotherapy and radiotherapy have shown surprising efficacy. In this article, we review the research progress of immune monotherapy and combination therapy for advanced melanoma, with the aim of providing new ideas for the treatment strategy for advanced melanoma.
Collapse
Affiliation(s)
- Jiamin Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shukun Mu
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yun Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Suchun Yu
- Department of Pharmacy, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Add-On Effect of Hemagglutinating Virus of Japan Envelope Combined with Chemotherapy or Immune Checkpoint Inhibitor against Malignant Pleural Mesothelioma: An In Vivo Study. Cancers (Basel) 2023; 15:cancers15030929. [PMID: 36765886 PMCID: PMC9913709 DOI: 10.3390/cancers15030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a refractory tumor because most of the lesions are already disseminated at diagnosis. Previously, the main treatment for MPM was combination chemotherapy. However, recently, immune checkpoint inhibitors (ICIs) are also used. For better efficacy of MPM treatment, we focused on hemagglutinating virus of Japan envelope (HVJ-E), which activates antitumor immunity and induces tumor-specific cell death. In this paper, we aimed to determine whether HVJ-E as a single agent therapy or in combination with chemotherapy or ICIs is effective in MPM bearing mouse. We confirmed its antitumor efficacy in MPM-bearing mouse. HVJ-E significantly prolonged the survival of human MPM-bearing mouse compared to that of control mouse and when combined with CDDP. This efficacy was lost in NOD-SCID mouse, suggesting that activation of innate immunity by HVJ-E was related to the survival rate. HVJ-E also showed antitumor efficacy in murine MPM-bearing mouse. The combination of chemotherapy and HVJ-E caused a significant increase in cytotoxic T cells (CTLs) compared to chemotherapy alone, suggesting that not only innate immunity activated by HVJ-E but also the increase in CTLs contributed to improved survival. The combination of anti-PD-1 antibody and HVJ-E significantly prolonged the survival rate of murine MPM-bearing mouse. Further, HVJ-E might have exhibited antitumor effects by maintaining immunogenicity against tumors. We believe that HVJ-E may be a beneficial therapy to improve MPM treatment in the future.
Collapse
|
8
|
An In Vivo Screening Model for Investigation of Pathophysiology of Human Implantation Failure. Biomolecules 2022; 13:biom13010079. [PMID: 36671464 PMCID: PMC9856033 DOI: 10.3390/biom13010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
To improve current infertility treatments, it is important to understand the pathophysiology of implantation failure. However, many molecules are involved in the normal biological process of implantation and the roles of each molecule and the molecular mechanism are not fully understood. This review highlights the hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E) vector, which uses inactivated viral particles as a local and transient gene transfer system to the murine uterus during the implantation period in order to investigate the molecular mechanism of implantation. In vivo screening in mice using the HVJ-E vector system suggests that signal transducer and activator of transcription-3 (Stat-3) could be a diagnostic and therapeutic target for women with a history of implantation failure. The HVJ-E vector system hardly induces complete defects in genes; however, it not only suppresses but also transiently overexpresses some genes in the murine uterus. These features may be useful in investigating the pathophysiology of implantation failure in women.
Collapse
|
9
|
Delic M, Boeswald V, Goepfert K, Pabst P, Moehler M. In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells. Onco Targets Ther 2022; 15:1291-1307. [PMID: 36310770 PMCID: PMC9606445 DOI: 10.2147/ott.s350136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. MATERIALS AND METHODS We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. RESULTS We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. CONCLUSION We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens.
Collapse
Affiliation(s)
- Maike Delic
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany,Correspondence: Maike Delic, University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany, Tel +49 6131 179803, Fax +49 6131 179657, Email
| | - Veronika Boeswald
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Katrin Goepfert
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Petra Pabst
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Markus Moehler
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| |
Collapse
|
10
|
Kiyohara E, Tanemura A, Sakura K, Nakajima T, Myoui A, Yamazaki N, Kiyohara Y, Katayama I, Fujimoto M, Kaneda Y. A phase I dose-escalation, safety/tolerability, and preliminary efficacy study of the intratumoral administration of GEN0101 in patients with advanced melanoma. Cancer Immunol Immunother 2022; 71:2041-2049. [PMID: 34984539 PMCID: PMC9293878 DOI: 10.1007/s00262-021-03122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022]
Abstract
Despite recent advance in immunotherapy agents, safe new therapies that enhance the effects of immune checkpoint inhibitors are still required to develop. We previously demonstrated that hemagglutinating virus of Japan-envelope (HVJ-E) induced not only direct tumor cell death but also antitumor immunity through the activation of T and natural killer (NK) cells, thereafter, developed a manufacturing process of HVJ-E (GEN0101) for clinical use. We here performed a phase Ia clinical trial of intratumoral GEN0101 administration in six patients with stage IIIC or IV malignant melanoma. The primary aim was to evaluate the safety and tolerability of GEN0101, and the secondary aim was to examine the objective tumor response. Patients were separated into two groups (n = 3 each) and received a low dose of 30,000 and high dose of 60,000 mNAU of GEN0101. All patients completed a two-week follow-up evaluation without severe adverse events. The overall response rate was 33% (2 of 6), with 2 partial responses in the high-dose group and 2 with stable disease, and 2 with progressive disease in the low-dose group. Local complete or partial responses were observed in 11 of 18 (61%) target lesions. One patient demonstrated shrinkage of lung metastases after the treatment. The activity of NK cells and interferon-γ levels were increased in the circulation, indicating augmentation of antitumor immunity by GEN0101. This trial showed not only the safety and tolerability but also the significant antitumor effect of GEN0101, suggesting that GEN0101 might be a promising new drug for patients with advanced melanoma.
Collapse
|
11
|
Cerqueira OLD, Antunes F, Assis NG, Cardoso EC, Clavijo-Salomón MA, Domingues AC, Tessarollo NG, Strauss BE. Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Front Mol Biosci 2022; 9:777775. [PMID: 35495634 PMCID: PMC9048901 DOI: 10.3389/fmolb.2022.777775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.
Collapse
Affiliation(s)
- Otto Luiz Dutra Cerqueira
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda Antunes
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nadine G Assis
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Elaine C Cardoso
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria A Clavijo-Salomón
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana C Domingues
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nayara G Tessarollo
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- *Correspondence: Bryan E Strauss,
| |
Collapse
|
12
|
Ban W, Guan J, Huang H, He Z, Sun M, Liu F, Sun J. Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy. NANO RESEARCH 2022; 15:4137-4153. [PMID: 35194488 PMCID: PMC8852960 DOI: 10.1007/s12274-021-4031-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 05/16/2023]
Abstract
Oncolytic virotherapy (OVT) is a novel type of immunotherapy that induces anti-tumor responses through selective self-replication within cancer cells and oncolytic virus (OV)-mediated immunostimulation. Notably, talimogene laherparepvec (T-Vec) developed by the Amgen company in 2015, is the first FDA-approved OV product to be administered via intratumoral injection and has been the most successful OVT treatment. However, the systemic administration of OVs still faces huge challenges, including in vivo pre-existing neutralizing antibodies and poor targeting delivery efficacy. Recently, state-of-the-art progress has been made in the development of systemic delivery of OVs, which demonstrates a promising step toward broadening the scope of cancer immunotherapy and improving the clinical efficacy of OV delivery. Herein, this review describes the general characteristics of OVs, focusing on the action mechanisms of OVs as well as the advantages and disadvantages of OVT. The emerging multiple systemic administration approaches of OVs are summarized in the past five years. In addition, the combination treatments between OVT and traditional therapies (chemotherapy, thermotherapy, immunotherapy, and radiotherapy, etc.) are highlighted. Last but not least, the future prospects and challenges of OVT are also discussed, with the aim of facilitating medical researchers to extensively apply the OVT in the cancer therapy.
Collapse
Affiliation(s)
- Weiyue Ban
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Jianhuan Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| |
Collapse
|
13
|
Sugii N, Matsuda M, Okumura G, Shibuya A, Ishikawa E, Kaneda Y, Matsumura A. Hemagglutinating virus of Japan-envelope containing programmed cell death-ligand 1 siRNA inhibits immunosuppressive activities and elicits antitumor immune responses in glioma. Cancer Sci 2020; 112:81-90. [PMID: 33155337 PMCID: PMC7780057 DOI: 10.1111/cas.14721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
The programmed cell death‐1/programmed cell death‐ligand 1 (PD‐1/PD‐L1) pathway is involved in preventing immune system‐mediated destruction of malignant tumors including glioblastoma. However, the therapeutic influence of PD‐1/PD‐L1 inhibition alone in glioblastoma is limited. To develop effective combination therapy involving PD‐1/PD‐L1 inhibition, we used a non‐replicating virus‐derived vector, hemagglutinating virus of Japan‐envelope (HVJ‐E), to inhibit tumor cell PD‐L1 expression by delivering siRNA targeting PD‐L1. HVJ‐E is a promising vector for efficient delivery of enclosed substances to the target cells. Moreover, HVJ‐E provokes robust antitumoral immunity by activating natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), and by suppressing regulatory T lymphocytes (Treg). We hypothesized that we could efficiently deliver PD‐L1‐inhibiting siRNAs to tumor cells using HVJ‐E, and that synergistic activation of antitumoral immunity would occur due to the immunostimulating effects of HVJ‐E and PD‐1/PD‐L1 inhibition. We used artificially induced murine glioma stem‐like cells, TS, to create mouse (C57BL/6N) glioblastoma models. Intratumoral injection of HVJ‐E containing siRNA targeting PD‐L1 (siPDL1/HVJ‐E) suppressed the expression of tumor cell PD‐L1 and significantly suppressed tumor growth in subcutaneous models and prolonged overall survival in brain tumor models. Flow cytometric analyses of brain tumor models showed that the proportions of brain‐infiltrating CTL and NK cells were significantly increased after giving siPDL1/HVJ‐E; in contrast, the rate of Treg/CD4+ cells was significantly decreased in HVJ‐E‐treated tumors. CD8 depletion abrogated the therapeutic effect of siPDL1/HVJ‐E, indicating that CD8+ T lymphocytes mainly mediated this therapeutic effect. We believe that this non‐replicating immunovirotherapy may be a novel therapeutic alternative to treat patients with glioblastoma.
Collapse
Affiliation(s)
- Narushi Sugii
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Majors of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Genki Okumura
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Majors of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Iurescia S, Fioretti D, Rinaldi M. The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation Against Cancer. Cancers (Basel) 2020; 12:E3158. [PMID: 33121210 PMCID: PMC7693898 DOI: 10.3390/cancers12113158] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last 15 years, the ability to harness a patient's own immune system has led to significant progress in cancer therapy. For instance, immunotherapeutic strategies, including checkpoint inhibitors or adoptive cell therapy using chimeric antigen receptor T-cell (CAR-T), are specifically aimed at enhancing adaptive anti-tumour immunity. Several research groups demonstrated that adaptive anti-tumour immunity is highly sustained by innate immune responses. Host innate immunity provides the first line of defence and mediates recognition of danger signals through pattern recognition receptors (PRRs), such as cytosolic sensors of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMP) signals. The retinoic acid-inducible gene I (RIG-I) is a cytosolic RNA helicase, which detects viral double-strand RNA and, once activated, triggers signalling pathways, converging on the production of type I interferons, proinflammatory cytokines, and programmed cell death. Approaches aimed at activating RIG-I within cancers are being explored as novel therapeutic treatments to generate an inflammatory tumour microenvironment and to facilitate cytotoxic T-cell cross-priming and infiltration. Here, we provide an overview of studies regarding the role of RIG-I signalling in the tumour microenvironment, and the most recent preclinical studies that employ RIG-I agonists. Lastly, we present a selection of clinical trials designed to prove the antitumour role of RIG I and that may result in improved therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Sandra Iurescia
- Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy;
| | | | - Monica Rinaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Science, National Research Council (CNR), 00133 Rome, Italy;
| |
Collapse
|