1
|
Khan MAAK, Sedgwick AJ, Sun Y, Vivian JP, Corbett AJ, Dolcetti R, Mantamadiotis T, Mangiola S, Barrow AD. Transcriptional signature of CD56 bright NK cells predicts favourable prognosis in bladder cancer. Front Immunol 2025; 15:1474652. [PMID: 39877370 PMCID: PMC11772185 DOI: 10.3389/fimmu.2024.1474652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Human natural killer (NK) cells can be sub-divided into two functional subsets but the clinical significance of these CD56bright and CD56dim NK cells in anti-tumour immunity remains largely unexplored. We determined the relative abundances of gene signatures for CD56bright and CD56dim NK cells along with 3 stromal and 18 other immune cell types in the patient tumour transcriptomes from the cancer genome atlas bladder cancer dataset (TCGA-BLCA). Using this computational approach, CD56bright NK cells were predicted to be the more abundant tumour-infiltrating NK subset which was also associated with improved patient prognosis. A similar favorable survival trend was projected using gene signatures for mature myeloid dendritic cells (mDC) and CD8+ effector memory T cells (TEM) and unveiled a potential CD56bright NK-mDC-CD8+T cell crosstalk in the BLCA tumour microenvironment. Expression of transcripts encoding the activating NK cell receptors, NKG2D, NKp44, CD2, and CD160, showed positive survival trends in combination with CD56bright NK cell infiltration. Transcription factors including HOBIT, IRF3, and STAT2 were also correlated with CD56bright NK cell abundance. Additionally, a HOBIT-dependent tissue-residency program correlated with the CD56bright NK and CD8+ TEM cell signatures was found to be associated with favourable BLCA patient survival. Overall, our study highlights the significance of CD56bright NK cells in BLCA patient prognosis. Our findings facilitate a better understanding of the NK cell anti-tumour responses that may ultimately lead to the development of promising NK and T cell-based therapies for BLCA.
Collapse
Affiliation(s)
- Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian P. Vivian
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Australian Catholic University, Melbourne, VIC, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Riccardo Dolcetti
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Mangiola
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Dinevska M, Widodo SS, Mantamadiotis T. High-Throughput Multiplex Immunohistochemistry of Glioma Organoids. Methods Mol Biol 2024; 2746:57-65. [PMID: 38070079 DOI: 10.1007/978-1-0716-3585-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The invasive capacity and progression of glioblastoma cells and neoplastic cells in other are dependent on interactions with the surrounding tumor microenvironment. In particular, cancer cells form a reciprocal relationship with noncellular dysregulated extracellular matrix in the tumors. Here, we describe a protocol that can be used to model the functional relationship between tumor cells and extracellular matrix. We demonstrate how 3D organoids, including glioma tumor organoids, can be processed, embedded, and sectioned in a high-throughput setup that enables investigation of the organoids by histopathological methods, multiplex immunohistochemistry, and spatial analysis within the same section.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
You P, Liu S, Li Q, Xie D, Yao L, Guo C, Guo Z, Wang T, Qiu H, Guo Y, Li J, Zhou H. Radiation-sensitive genetic prognostic model identifies individuals at risk for radiation resistance in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:15623-15640. [PMID: 37656244 DOI: 10.1007/s00432-023-05304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The advantages of radiotherapy for head and neck squamous cell carcinoma (HNSCC) depend on the radiation sensitivity of the patient. Here, we established and verified radiological factor-related gene signature and built a prognostic risk model to predict whether radiotherapy would be beneficial. METHODS Data from The Cancer Genome Atlas, Gene Expression Omnibus, and RadAtlas databases were subjected to LASSO regression, univariate COX regression, and multivariate COX regression analyses to integrate genomic and clinical information from patients with HNSCC. HNSCC radiation-related prognostic genes were identified, and patients classified into high- and low-risk groups, based on risk scores. Variations in radiation sensitivity according to immunological microenvironment, functional pathways, and immunotherapy response were investigated. Finally, the expression of HNSCC radiation-related genes was verified by qRT-PCR. RESULTS We built a clinical risk prediction model comprising a 15-gene signature and used it to divide patients into two groups based on their susceptibility to radiation: radiation-sensitive and radiation-resistant. Overall survival was significantly greater in the radiation-sensitive than the radiation-resistant group. Further, our model was an independent predictor of radiotherapy response, outperforming other clinical parameters, and could be combined with tumor mutational burden, to identify the target population with good predictive value for prognosis at 1, 2, and 3 years. Additionally, the radiation-resistant group was more vulnerable to low levels of immune infiltration, which are significantly associated with DNA damage repair, hypoxia, and cell cycle regulation. Tumor Immune Dysfunction and Exclusion scores also suggested that the resistant group would respond less favorably to immunotherapy. CONCLUSIONS Our prognostic model based on a radiation-related gene signature has potential for application as a tool for risk stratification of radiation therapy for patients with HNSCC, helping to identify candidates for radiation therapy and overcome radiation resistance.
Collapse
Affiliation(s)
- Peimeng You
- Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Shengbo Liu
- Second Clinical College of Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chenguang Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zefeng Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yangzhong Guo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Junyu Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China.
| | - Haiyu Zhou
- Nanchang University, Nanchang, China.
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Jiangxi Lung Cancer Institute, Nanchang, China.
| |
Collapse
|
4
|
Zhang HY, Yu HY, Zhao GX, Jiang XZ, Gao G, Wei BJ. Global research trends in immunotherapy for glioma: a comprehensive visualization and bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1273634. [PMID: 37867521 PMCID: PMC10585102 DOI: 10.3389/fendo.2023.1273634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background Glioma is a prevalent and lethal brain malignancy; despite current treatment options, the prognosis remains poor. Therefore, immunotherapy has emerged as a promising therapeutic strategy. However, research trends and hotspots in glioma immunotherapy have not been systematically analyzed. This study aimed to elucidate global research trends and knowledge structures regarding immunotherapy for glioma using bibliometric analysis. Methods Publications related to immunotherapy for glioma from 2000-2023 were retrieved from Web of Science Core Collection database (WoSCC). We conducted quantitative analysis and visualization of research trends using various tools, including VOSviewer (1.6.18), CiteSpace (5.7 R3), Microsoft Charticulator, and the Bibliometrix package in R. Results A total of 4910 publications were included. The number of annual publications exhibited an obvious upward trend since 2019. The USA was the dominant country in terms of publication output and centrality. Frontiers in Immunology published the most articles. Harvard Medical School ranked first in productivity among institutions. Sampson, John H. Ph.D. is the most prolific author in the field with 88 articles and a total of 7055 citations. Clinical Cancer Research has the largest total number and impact factor. Analysis of keywords showed immunotherapy, glioblastoma, immunotherapy, and clinical trials as hot topics. The tumor microenvironment, cell death pathways, chimeric antigen receptor engineering, tumor-associated macrophages, and nivolumab treatment represent indicating shifts in the direction of future glioma immunotherapy development. Conclusion This bibliometric analysis systematically delineated global landscapes and emerging trends in glioma immunotherapy research. This study highlighted the prominence of Chimeric Antigen Receptor T-cell (CAR-T), Programmed Death-1 (PD-1), and nivolumab in current glioma immunotherapy research. The growing emphasis on specific neoantigens and prognostic tumor markers suggests potential avenues for future exploration. Furthermore, the data underscores the importance of strengthened international collaboration in advancing the field.
Collapse
Affiliation(s)
- Hong-yu Zhang
- Department of Neurosurgery, Harbin Medical University, Harbin, China
| | - Han-yong Yu
- Department of Neurosurgery, Harbin Medical University, Harbin, China
| | - Guo-xu Zhao
- Department of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Xin-zhan Jiang
- Department of Neurosurgery, Harbin Medical University, Harbin, China
| | - Ge Gao
- Department of Gastrointestinal Surgery, Linyi People’s Hospital, Linyi, China
| | - Bao-jian Wei
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
5
|
Maddalon A, Iulini M, Melzi G, Corsini E, Galbiati V. New Approach Methodologies in Immunotoxicology: Challenges and Opportunities. Endocr Metab Immune Disord Drug Targets 2023; 23:1681-1698. [PMID: 37069707 DOI: 10.2174/1871530323666230413081128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
To maintain the integrity of an organism, a well-functioning immune system is essential. Immunity is dynamic, with constant surveillance needed to determine whether to initiate an immune response or to not respond. Both inappropriate immunostimulation and decreased immune response can be harmful to the host. A reduced immune response can lead to high susceptibility to cancer or infections, whereas an increased immune response can be related to autoimmunity or hypersensitivity reactions. Animal testing has been the gold standard for hazard assessment in immunotoxicity but a lot of efforts are ongoing to develop non-animal-based test systems, and important successes have been achieved. The term "new approach methodologies" (NAMs) refer to the approaches which are not based on animal models. They are applied in hazard and risk assessment of chemicals and include approaches such as defined approaches for data interpretation and integrated approaches to testing and assessment. This review aims to summarize the available NAMs for immunotoxicity assessment, taking into consideration both inappropriate immunostimulation and immunosuppression, including implication for cancer development.
Collapse
Affiliation(s)
- Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Rao P, Furst L, Meyran D, Mayoh C, Neeson PJ, Terry R, Khuong-Quang DA, Mantamadiotis T, Ekert PG. Advances in CAR T cell immunotherapy for paediatric brain tumours. Front Oncol 2022; 12:873722. [PMID: 36505819 PMCID: PMC9727400 DOI: 10.3389/fonc.2022.873722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.
Collapse
Affiliation(s)
- Padmashree Rao
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia
| | - Liam Furst
- Department of Microbiology & Immunology, The University of Melbourne, Victoria, VIC, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia,Université de Paris, Inserm, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) Unit, Institut de Recherche Saint-Louis, Paris, France,Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Chelsea Mayoh
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Rachael Terry
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Dong-Anh Khuong-Quang
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia,Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Microbiology & Immunology, The University of Melbourne, Victoria, VIC, Australia,Department of Surgery Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Theo Mantamadiotis, ; Paul G. Ekert,
| | - Paul G. Ekert
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Theo Mantamadiotis, ; Paul G. Ekert,
| |
Collapse
|
7
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
8
|
Wu J, Wu Y, Guo Q, Chen S, Wang S, Wu X, Zhu J, Ju X. SPOP promotes cervical cancer progression by inducing the movement of PD-1 away from PD-L1 in spatial localization. J Transl Med 2022; 20:384. [PMID: 36042498 PMCID: PMC9429754 DOI: 10.1186/s12967-022-03574-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/04/2022] [Indexed: 12/20/2022] Open
Abstract
Background Metastasis is a major obstacle in the treatment of cervical cancer (CC), and SPOP-mediated regulatory effects are involved in metastasis. However, the mechanisms have not been fully elucidated. Methods Proteomic sequencing and SPOP immunohistochemistry (IHC) were performed for the pelvic lymph node (pLN)-positive and non-pLN groups of CC patients. The corresponding patients were stratified by SPOP expression level for overall survival (OS) and relapse-free survival (RFS) analysis. In vitro and in vivo tests were conducted to verify the causal relationship between SPOP expression and CC metastasis. Multiplex immunofluorescence (m-IF) and the HALO system were used to analyse the mechanism, which was further verified by in vitro experiments. Results SPOP is upregulated in CC with pLN metastasis and negatively associated with patient outcome. In vitro and in vivo, SPOP promotes CC proliferation and metastasis. According to m-IF and HALO analysis, SPOP may promote CC metastasis by promoting the separation of PD-1 from PD-L1. Finally, it was further verified that SPOP can achieve immune tolerance by promoting the movement of PD-1 away from PD-L1 in spatial location and function. Conclusion This study shows that SPOP can inhibit the immune microenvironment by promoting the movement of PD-1 away from PD-L1, thereby promoting pLN metastasis of CC and resulting in worse OS and RFS. The SPOP is associated with pelvic lymph node (pLN) metastasis and prognosis in cervical cancer (CC) patients. This paper discusses the potential mechanism of pLN metastasis of CC from the perspective of spatial location. This is a multi-cross study, including clinical data, tissue microarray (TMA), multicolor immunofluorescence (m-IF), spatial immunolocalization, in vitro and in vivo functional and mechanism research fusion, from clinical to basic and clinical research.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Siyu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jun Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xingzhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
9
|
Hernandez S, Lazcano R, Serrano A, Powell S, Kostousov L, Mehta J, Khan K, Lu W, Solis LM. Challenges and Opportunities for Immunoprofiling Using a Spatial High-Plex Technology: The NanoString GeoMx ® Digital Spatial Profiler. Front Oncol 2022; 12:890410. [PMID: 35847846 PMCID: PMC9277770 DOI: 10.3389/fonc.2022.890410] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Characterization of the tumor microenvironment through immunoprofiling has become an essential resource for the understanding of the complex immune cell interactions and the assessment of biomarkers for prognosis and prediction of immunotherapy response; however, these studies are often limited by tissue heterogeneity and sample size. The nanoString GeoMx® Digital Spatial Profiler (DSP) is a platform that allows high-plex profiling at the protein and RNA level, providing spatial and temporal assessment of tumors in frozen or formalin-fixed paraffin-embedded limited tissue sample. Recently, high-impact studies have shown the feasibility of using this technology to identify biomarkers in different settings, including predictive biomarkers for immunotherapy in different tumor types. These studies showed that compared to other multiplex and high-plex platforms, the DSP can interrogate a higher number of biomarkers with higher throughput; however, it does not provide single-cell resolution, including co-expression of biomarker or spatial information at the single-cell level. In this review, we will describe the technical overview of the platform, present current evidence of the advantages and limitations of the applications of this technology, and provide important considerations for the experimental design for translational immune-oncology research using this tissue-based high-plex profiling approach.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alejandra Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven Powell
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Larissa Kostousov
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jay Mehta
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Khaja Khan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Rozowsky JS, Meesters-Ensing JI, Lammers JAS, Belle ML, Nierkens S, Kranendonk MEG, Kester LA, Calkoen FG, van der Lugt J. A Toolkit for Profiling the Immune Landscape of Pediatric Central Nervous System Malignancies. Front Immunol 2022; 13:864423. [PMID: 35464481 PMCID: PMC9022116 DOI: 10.3389/fimmu.2022.864423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The prognosis of pediatric central nervous system (CNS) malignancies remains dismal due to limited treatment options, resulting in high mortality rates and long-term morbidities. Immunotherapies, including checkpoint inhibition, cancer vaccines, engineered T cell therapies, and oncolytic viruses, have promising results in some hematological and solid malignancies, and are being investigated in clinical trials for various high-grade CNS malignancies. However, the role of the tumor immune microenvironment (TIME) in CNS malignancies is mostly unknown for pediatric cases. In order to successfully implement immunotherapies and to eventually predict which patients would benefit from such treatments, in-depth characterization of the TIME at diagnosis and throughout treatment is essential. In this review, we provide an overview of techniques for immune profiling of CNS malignancies, and detail how they can be utilized for different tissue types and studies. These techniques include immunohistochemistry and flow cytometry for quantifying and phenotyping the infiltrating immune cells, bulk and single-cell transcriptomics for describing the implicated immunological pathways, as well as functional assays. Finally, we aim to describe the potential benefits of evaluating other compartments of the immune system implicated by cancer therapies, such as cerebrospinal fluid and blood, and how such liquid biopsies are informative when designing immune monitoring studies. Understanding and uniformly evaluating the TIME and immune landscape of pediatric CNS malignancies will be essential to eventually integrate immunotherapy into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Muriël L. Belle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | |
Collapse
|
11
|
Zhou R, Wen Z, Liao Y, Wu J, Xi S, Zeng D, Sun H, Wu J, Shi M, Bin J, Liao Y, Liao W. Evaluation of stromal cell infiltration in the tumor microenvironment enable prediction of treatment sensitivity and prognosis in colon cancer. Comput Struct Biotechnol J 2022; 20:2153-2168. [PMID: 35615026 PMCID: PMC9118126 DOI: 10.1016/j.csbj.2022.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Current clinical factors for screening candidates that might benefit from adjuvant chemotherapy in colon cancer are inadequate. Tumor microenvironment, especially the stromal components, has the potential to determine treatment response. However, clinical translation of the tumor-associated stromal characterization into a practical biomarker for helping treatment decision has not been established. Using machine learning, we established a novel 31-gene signature, called stromal cell infiltration intensity score (SIIS), to distinguish patients characterized by the enrichment of abundant stromal cells in five colon cancer datasets from GEO (N = 990). Patients with high-SIIS were at higher risk for recurrence and mortality, and could not benefit from adjuvant chemotherapy due to their intrinsic drug resistance; however, the opposite was reported for patients with low-SIIS. The role of SIIS in detection of patients with high stromal cell infiltration and reduced drug efficiency was consistently validated in the TCGA-COAD cohort (N = 382), Sun Yat-sen University Cancer Center cohort (N = 30), and could also be observed in TCGA pan-cancer settings (N = 4898) and four independent immunotherapy cohorts (N = 467). Based on multi-omics data analysis and the CRISPR library screen, we reported that lack of gene mutation, hypomethylation in ADCY4 promoter region, activation of WNT-PCP pathway and SIAH2-GPX3 axis were potential mechanisms responsible for the chemoresistance of patients within high-SIIS group. Our findings demonstrated that SIIS provide an important reference for those making treatment decisions for such special patients.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yifu Liao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Corresponding author at: Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China.
| |
Collapse
|
12
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|