1
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Harrer DC, Eder M, Barden M, Pan H, Herr W, Abken H. Ectopic PU.1 Expression Provides Chimeric Antigen Receptor (CAR) T Cells with Innate Cell Capacities Including IFN-β Release. Cancers (Basel) 2024; 16:2737. [PMID: 39123467 PMCID: PMC11311516 DOI: 10.3390/cancers16152737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved extraordinary success in eliminating B cell malignancies; however, so far, it has shown limited efficacy in the treatment of solid tumors, which is thought to be due to insufficient CAR T cell activation. We hypothesized that the transcription factor PU.1, a master regulator of innate cell functionality, may augment pro-inflammatory CAR T cell activation. T cells were engineered with a CEA-specific CAR together with the constitutive expression of PU.1. CAR-redirected T cell activation was recorded for canonical functionality in vitro under conditions of prolonged repetitive antigen exposure. Ectopic PU.1 expression in CAR T cells upregulated the costimulatory receptors CD40, CD80, CD86, and CD70, which, unexpectedly, did not augment effector functions but hampered the upregulation of 4-1BB, decreased IL-2 production, reduced CAR T cell proliferation, and impaired their cytotoxic capacities. Under "stress" conditions of repetitive engagement of cognate tumor cells, CAR T cells with ectopic PU.1 showed reduced persistence, and finally failed to control the growth of cancer cells. Mechanistically, PU.1 caused CAR T cells to secrete IFN-β, a cytokine known to promote CAR T cell attrition and apoptosis. Collectively, PU.1 can polarize the functional capacities of CAR T cells towards innate cells.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Matthias Eder
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Wolfgang Herr
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| |
Collapse
|
3
|
Kamble PR, Kulkarni B, Malaviya A, Bajaj M, Breed AA, Jagtap D, Mahale S, Pathak BR. Comparison of Anti-Trop2 Extracellular Domain Antibodies Generated Against Peptide and Protein Immunogens for Targeting Trop2-Positive Tumour Cells. Appl Biochem Biotechnol 2024; 196:3402-3419. [PMID: 37656352 DOI: 10.1007/s12010-023-04706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Trophoblast antigen 2 (Trop2) is a transmembrane glycoprotein upregulated in multiple solid tumours. Trop2-based passive immunotherapies are in clinical trials, while Trop2 targeting CAR-T cell-based therapies are also reported. Information about its T- and B-cell epitopes is needed for it to be pursued as an active immunotherapeutic target. This study focused on identification of immunodominant epitopes in the Trop2 extracellular domain (ECD) that can mount an efficient anti-Trop2 antibody response. In silico analysis using various B-cell epitope prediction tools was carried out to identify linear and conformational B-cell epitopes in the ECD of Trop2. Three linear peptide immunogens were shortlisted and synthesized. Along with linear peptides, truncated Trop2 ECD that possesses combination of linear and conformational epitopes was also selected. Recombinant protein immunogen was produced in 293-F suspension culture system and affinity purified. Antisera against different immunogens were characterized by ELISA and Western blotting. Two anti-peptide antisera detected recombinant and ectopically expressed Trop2 protein; however, they were unable to recognize the endogenous Trop2 protein expressed by cancer cells. Antibodies against truncated Trop2 ECD could bind to the endogenous Trop2 expressed on the surface of cancer cells. In addition to their high avidity, these polyclonal anti-sera against truncated Trop2 protein also mediated antibody-dependent cell-mediated cytotoxicity (ADCC). In summary, our comparative analysis demonstrated the utility of truncated Trop2 ECD as a promising candidate to be pursued as an active immunotherapeutic molecule against Trop2-positive cancer cells.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Bhalchandra Kulkarni
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | | | - Madhulika Bajaj
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Dhanashree Jagtap
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Smita Mahale
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India.
| |
Collapse
|
4
|
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int 2024; 24:133. [PMID: 38622705 PMCID: PMC11017638 DOI: 10.1186/s12935-024-03315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
5
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
6
|
Somboonpatarakun C, Phanthaphol N, Suwanchiwasiri K, Ramwarungkura B, Yuti P, Poungvarin N, Thuwajit P, Junking M, Yenchitsomanus PT. Cytotoxicity of fourth-generation anti-Trop2 CAR-T cells against breast cancer. Int Immunopharmacol 2024; 129:111631. [PMID: 38359664 DOI: 10.1016/j.intimp.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
The treatment of breast cancer (BC) remains a formidable challenge due to the emergence of drug resistance, necessitating the exploration of innovative strategies. Chimeric antigen receptor (CAR)-T cell therapy, a groundbreaking approach in hematologic malignancies, is actively under investigation for its potential application in solid tumors, including BC. Trophoblast cell surface antigen 2 (Trop2) has emerged as a promising immunotherapeutic target in various cancers and is notably overexpressed in BC. To enhance therapeutic efficacy in BC, a fourth-generation CAR (CAR4) construct was developed. This CAR4 design incorporates an anti-Trop2 single-chain variable fragment (scFv) fused with three costimulatory domains -CD28/4-1BB/CD27, and CD3ζ. Comparative analysis with the conventional second-generation CAR (CAR2; 28ζ) revealed that anti-Trop2 CAR4 T cells exhibited heightened cytotoxicity and interferon-gamma (IFN-γ) production against Trop2-expressing MCF-7 cells. Notably, anti-Trop2 CAR4-T cells demonstrated superior long-term cytotoxic functionality and proliferative capacity. Crucially, anti-Trop2 CAR4-T cells displayed specific cytotoxicity against Trop2-positive BC cells (MDA-MB-231, HCC70, and MCF-7) in both two-dimensional (2D) and three-dimensional (3D) culture systems. Following antigen-specific killing, these cells markedly secreted interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), IFN-γ, and Granzyme B compared to non-transduced T cells. This study highlights the therapeutic potential of anti-Trop2 CAR4-T cells in adoptive T cell therapy for BC, offering significant promise for the advancement of BC treatment strategies.
Collapse
Affiliation(s)
- Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattaporn Phanthaphol
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Kwanpirom Suwanchiwasiri
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Graduate Program in Molecular Medicine, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok 10700, Thailand
| | - Boonyanuch Ramwarungkura
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Graduate Program in Biomedical Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
7
|
Yuti P, Sawasdee N, Natungnuy K, Rujirachaivej P, Luangwattananun P, Sujjitjoon J, Yenchitsomanus PT. Enhanced antitumor efficacy, proliferative capacity, and alleviation of T cell exhaustion by fifth-generation chimeric antigen receptor T cells targeting B cell maturation antigen in multiple myeloma. Biomed Pharmacother 2023; 168:115691. [PMID: 37844355 DOI: 10.1016/j.biopha.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) has been approved for treating multiple myeloma (MM). Some clinical studies reported suboptimal outcomes, including reduced cytotoxicity of CAR-T cells and tumor evasion through increased expression of programmed death-ligand 1 (PD-L1). To enhance CAR-T cell efficiency and overcome PD-L1-mediated T cell suppression, we developed anti-BCMA-CAR5-T cells equipped with three costimulatory domains and the ability to secrete anti-PD-L1 single-chain variable fragment (scFv) blockade molecules. Anti-BCMA-CAR4-T cells contained a fully human anti-BCMA scFv and three intracellular domains (CD28, 4-1BB, and CD27) joined with CD3ζ. Anti-BCMA-CAR5-T cells were generated by fusing anti-BCMA-CAR4 with anti-PD-L1 scFv. Both anti-BCMA-CAR4-T and anti-BCMA-CAR5-T cells demonstrated comparable antitumor activity against parental MM cells. However, at an effector-to-target ratio of 1:2, only anti-BCMA-CAR5-T cells maintained cytolytic activity against PD-L1 high MM cells, unlike anti-BCMA-CAR4 T cells. Anti-BCMA-CAR5-T cells were specifically activated by BCMA-expressing target cells, resulting in increased CAR-T cell proliferation, release of cytolytic mediators, and pro-inflammatory cytokines. Anti-BCMA-CAR5-T cells demonstrated specific cytotoxicity against BCMA-expressing target cells, leading to decreased target cell numbers, increased CAR-T cell numbers, and preserved CAR expression during antigenic re-stimulation. Interestingly, only anti-BCMA-CAR5-T cells showed reduced PD-1 receptor levels, which correlated with decreased PD-L1 expression on target cells. We successfully generated anti-BCMA-CAR5-T cells capable of secreting anti-PD-L1 scFv. These cells exhibited superior antitumor efficiency, proliferative capacity, and alleviated T-cell exhaustion against MM cells. Further investigation into the antitumor efficacy of anti-BCMA-CAR5-T cells is warranted in ex vivo and clinical research settings.
Collapse
Affiliation(s)
- Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krissada Natungnuy
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Punchita Rujirachaivej
- Graduate Program in Clinical Pathology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Yao L, Chen J, Ma W. Decoding TROP2 in breast cancer: significance, clinical implications, and therapeutic advancements. Front Oncol 2023; 13:1292211. [PMID: 37954074 PMCID: PMC10635515 DOI: 10.3389/fonc.2023.1292211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Breast cancer is a heterogeneous disease characterized by distinct molecular subtypes, varied prognoses, and differential treatment responses. Understanding the molecular landscape and identifying therapeutic targets, such as trophoblast cell-surface antigen 2 (TROP2), is vital. TROP2 is notably overexpressed in breast cancer, playing a significant role in tumor growth, invasion, metastasis, and treatment resistance. While significant progress has been made in targeting TROP2 in breast cancer, several challenges and knowledge gaps remain. These challenges include the heterogeneity of TROP2 expression within breast cancer subtypes, resistance to its targeted therapies, potential off-target effects, limited therapeutic agents, and identifying optimal combination treatments. Integrating findings from clinical trials into clinical practice further complicates the landscape. This review article delves deep into TROP2 in breast cancer, highlighting its expression patterns, clinical implications, and therapeutic advancements. By understanding the role of TROP2, we can pave the way for personalized treatments, and transform the landscape of breast cancer care.
Collapse
Affiliation(s)
- Liqin Yao
- Department of Breast Surgical Oncology, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, Zhejiang, China
| | - Junfeng Chen
- Department of Pathology and Clinical Laboratories, Tongxu County Hospital of Traditional Chinese Medicine, Kaifeng, Henan, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Yang P, Yu F, Yao Z, Ding X, Xu H, Zhang J. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer. Cancer Immunol Immunother 2023; 72:3191-3202. [PMID: 37418008 PMCID: PMC10991104 DOI: 10.1007/s00262-023-03491-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and the worst prognosis. The application of immunotherapy for TNBC is limited. This study was to verify the potential application of chimeric antigen receptor-T cells (CAR-T cells) targeting CD24 named as 24BBz in treatment of TNBC. 24BBz was constructed by lentivirus infection and then was co-culture with breast cancer cell lines to evaluate the activation, proliferation and cytotoxicity of engineered T cells. The anti-tumor activity of 24BBz was verified in the subcutaneous xenograft model of nude mice. We found that CD24 gene was significantly up-regulated in breast cancer (BRCA), especially in TNBC. 24BBz showed antigen-specific activation and dose-dependent cytotoxicity against CD24-positive BRCA tumor cells in vitro. Furthermore, 24BBz showed significant anti-tumor effect in CD24-positive TNBC xenografts and T cells infiltration in tumor tissues, while some T cells exhibited exhaustion. No pathological damage of major organs was found during the treatment. This study proved that CD24-specific CAR-T cells have potent anti-tumor activity and potential application value in treatment of TNBC.
Collapse
Affiliation(s)
- Peiwei Yang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China
| | - Fan Yu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
- Nanjing Anji Biological Technology Co., LTD, Nanjing, 210033, People's Republic of China
| | - Zheng Yao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China.
| | - Juan Zhang
- Antibody Engineering Laboratory, Department of Molecular Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Geng P, Chi Y, Yuan Y, Yang M, Zhao X, Liu Z, Liu G, Liu Y, Zhu L, Wang S. Novel chimeric antigen receptor T cell-based immunotherapy: a perspective for triple-negative breast cancer. Front Cell Dev Biol 2023; 11:1158539. [PMID: 37457288 PMCID: PMC10339351 DOI: 10.3389/fcell.2023.1158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and does not express estrogen receptor (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2). It has a poor prognosis, and traditional endocrine and anti-HER2 targeted therapies have low efficacy against it. In contrast, surgery, radiotherapy, and/or systemic chemotherapy are relatively effective at controlling TNBC. The resistance of TNBC to currently available clinical therapies has had a significantly negative impact on its treatment outcomes. Hence, new therapeutic options are urgently required. Chimeric antigen receptor T cell (CAR-T) therapy is a type of immunotherapy that integrates the antigen specificity of antibodies and the tumor-killing effect of T cells. CAR-T therapy has demonstrated excellent clinical efficacy against hematological cancers. However, its efficacy against solid tumors such as TNBC is inadequate. The present review aimed to investigate various aspects of CAR-T administration as TNBC therapy. We summarized the potential therapeutic targets of CAR-T that were identified in preclinical studies and clinical trials on TNBC. We addressed the limitations of using CAR-T in the treatment of TNBC in particular and solid tumors in general and explored key strategies to overcome these impediments. Finally, we comprehensively examined the advancement of CAR-T immunotherapy as well as countermeasures that could improve its efficacy as a TNBC treatment and the prognosis of patients with this type of cancer.
Collapse
Affiliation(s)
- Peizhen Geng
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Xiaohua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengchun Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Guangwei Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yihui Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Liang Zhu
- Clinical Research Center, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
11
|
McKenzie C, El-Kholy M, Parekh F, Robson M, Lamb K, Allen C, Sillibourne J, Cordoba S, Thomas S, Pule M. Novel Fas-TNFR chimeras that prevent Fas ligand-mediated kill and signal synergistically to enhance CAR T cell efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:603-621. [PMID: 37200859 PMCID: PMC10185706 DOI: 10.1016/j.omtn.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
The hostile tumor microenvironment limits the efficacy of adoptive cell therapies. Activation of the Fas death receptor initiates apoptosis and disrupting these receptors could be key to increasing CAR T cell efficacy. We screened a library of Fas-TNFR proteins identifying several novel chimeras that not only prevented Fas ligand-mediated kill, but also enhanced CAR T cell efficacy by signaling synergistically with the CAR. Upon binding Fas ligand, Fas-CD40 activated the NF-κB pathway, inducing greatest proliferation and IFN-γ release out of all Fas-TNFRs tested. Fas-CD40 induced profound transcriptional modifications, particularly genes relating to the cell cycle, metabolism, and chemokine signaling. Co-expression of Fas-CD40 with either 4-1BB- or CD28-containing CARs increased in vitro efficacy by augmenting CAR T cell proliferation and cancer target cytotoxicity, and enhanced tumor killing and overall mouse survival in vivo. Functional activity of the Fas-TNFRs were dependent on the co-stimulatory domain within the CAR, highlighting crosstalk between signaling pathways. Furthermore, we show that a major source for Fas-TNFR activation derives from CAR T cells themselves via activation-induced Fas ligand upregulation, highlighting a universal role of Fas-TNFRs in augmenting CAR T cell responses. We have identified Fas-CD40 as the optimal chimera for overcoming Fas ligand-mediated kill and enhancing CAR T cell efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Pule
- Autolus Therapeutics, London W12 7FP, UK
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London WC1E 6DD, UK
- Corresponding author Martin Pule, Autolus Therapeutics, London W12 7FP, UK.
| |
Collapse
|
12
|
Cruz-Reyes N, Radisky DC. Inflammation, Infiltration, and Evasion-Tumor Promotion in the Aging Breast. Cancers (Basel) 2023; 15:1836. [PMID: 36980723 PMCID: PMC10046531 DOI: 10.3390/cancers15061836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer is a significant cause of morbidity and mortality in women, with over two million new cases reported worldwide each year, the majority of which occur in post-menopausal women. Despite advances in early detection and treatment, approximately one-third of patients diagnosed with breast cancer will develop metastatic disease. The pathogenesis and progression of breast cancer are influenced by a variety of biological and social risk factors, including age, ethnicity, pregnancy status, diet, and genomic alterations. Recent advancements in breast cancer research have focused on harnessing the power of the patient's adaptive and innate immune systems for diagnostic and therapeutic purposes. The breast immune microenvironment plays a critical role in regulating tissue homeostasis and resistance to tumorigenesis. In this review, we explore the dynamic changes in the breast immune microenvironment that occur with age, how these changes impact breast cancer development and progression, and how targeted therapeutic interventions that leverage the immune system can be used to improve patient outcomes. Our review emphasizes the importance of understanding the complex interplay between aging, the immune system, and breast cancer, and highlights the potential of immune-based therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
| | - Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
13
|
Maher J, Davies DM. CAR-Based Immunotherapy of Solid Tumours-A Survey of the Emerging Targets. Cancers (Basel) 2023; 15:1171. [PMID: 36831514 PMCID: PMC9953954 DOI: 10.3390/cancers15041171] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Immunotherapy with CAR T-cells has revolutionised the treatment of B-cell and plasma cell-derived cancers. However, solid tumours present a much greater challenge for treatment using CAR-engineered immune cells. In a partner review, we have surveyed data generated in clinical trials in which patients with solid tumours that expressed any of 30 discrete targets were treated with CAR-based immunotherapy. That exercise confirms that efficacy of this approach falls well behind that seen in haematological malignancies, while significant toxic events have also been reported. Here, we consider approximately 60 additional candidates for which such clinical data are not available yet, but where pre-clinical data have provided support for their advancement to clinical evaluation as CAR target antigens.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
14
|
Cheng Y, Yuan X, Tian Q, Huang X, Chen Y, Pu Y, Long H, Xu M, Ji Y, Xie J, Tan Y, Zhao X, Song H. Preclinical profiles of SKB264, a novel anti-TROP2 antibody conjugated to topoisomerase inhibitor, demonstrated promising antitumor efficacy compared to IMMU-132. Front Oncol 2022; 12:951589. [PMID: 36620535 PMCID: PMC9817100 DOI: 10.3389/fonc.2022.951589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to improve the intratumoral accumulation of an antibody-drug conjugate (ADC) and minimize its off-target toxicity, SKB264, a novel anti-trophoblast antigen 2 (TROP2) ADC that was developed using 2-methylsulfonyl pyrimidine as the linker to conjugate its payload (KL610023), a belotecan-derivative topoisomerase I inhibitor. The preclinical pharmacologic profiles of SKB264 were assessed in this study. Methods The in vitro and in vivo pharmacologic profiles of SKB264, including efficacy, pharmacokinetics-pharmacodynamics (PK-PD), safety, and tissue distribution, were investigated using TROP2-positive cell lines, cell-derived xenograft (CDX), patient-derived xenograft (PDX) models, and cynomolgus monkeys. Moreover, some profiles were compared with IMMU-132. Results In vitro, SKB264 and SKB264 monoclonal antibody (mAb) had similar internalization abilities and binding affinities to TROP2. After cellular internalization, KL610023 was released and inhibited tumor cell survival. In vivo, SKB264 significantly inhibited tumor growth in a dose-dependent manner in both CDX and PDX models. After SKB264 administration, the serum or plasma concentration/exposure of SKB264 (conjugated ADC, number of payload units ≥1), total antibody (Tab, unconjugated and conjugated mAb regardless of the number of the payload units), and KL610023 in cynomolgus monkeys increased proportionally with increasing dosage from 1 to 10 mg/kg. The linker stability of SKB264 was significantly enhanced as shown by prolonged payload half-life in vivo (SKB264 vs. IMMU-132, 56.3 h vs. 15.5 h). At the same dose, SKB264's exposure in tumor tissue was 4.6-fold higher than that of IMMU-132. Conclusions Compared with IMMU-132, the longer half-life of SKB264 had a stronger targeting effect and better antitumor activity, suggesting the better therapeutic potential of SKB264 for treating TROP2-positive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xi Zhao
- Center of Translational Medicine, Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, China
| | - Hongmei Song
- Center of Translational Medicine, Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, China
| |
Collapse
|
15
|
Yuti P, Wutti-in Y, Sawasdee N, Kongkhla K, Phanthaphol N, Choomee K, Chieochansin T, Panya A, Junking M, Yenchitsomanus PT, Sujjitjoon J. Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. Int Immunopharmacol 2022; 113:109442. [DOI: 10.1016/j.intimp.2022.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
|
16
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
The challenge of selecting tumor antigens for chimeric antigen receptor T-cell therapy in ovarian cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:232. [PMID: 36175774 DOI: 10.1007/s12032-022-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
Ovarian cancer (OC) is one of the most common cancers in women, with a high mortality rate and very few available and effective treatments. Evidence shows that immunotherapy in OC has not been very successful because immune checkpoint blockers have not achieved satisfactory clinical outcomes. On the other hand, as one of the effective treatment approaches, chimeric antigen receptor T-cell (CAR T-cell) therapy has gained a moral position, especially in blood malignancies. Although in solid tumors, CAR T-cell therapy faces various complications and challenges. One of these challenges is selecting the appropriate tumor antigen targeted by CAR T cells, making the selection difficult due to the expression of antigens by tumor cells and normal cells. In addition, the rate of tumor antigen expression and CAR T-cell access to the desired antigen and proper stimulation of CAR T cells can be other important points in antigen selection. This review summarized common tumor antigens and the challenges of selecting them in CAR T cells therapy of OC.
Collapse
|
18
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
19
|
Zhu H, Fang X, Tuhin IJ, Tan J, Ye J, Jia Y, Xu N, Kang L, Li M, Lou X, Zhou JE, Wang Y, Yan Z, Yu L. CAR T cells equipped with a fully human scFv targeting Trop2 can be used to treat pancreatic cancer. J Cancer Res Clin Oncol 2022; 148:2261-2274. [PMID: 35445870 DOI: 10.1007/s00432-022-04017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T cell therapy has demonstrated clinical success in treating haematologic malignancies but has not been effective against solid tumours thus far. Trop2 is a tumour-related antigen broadly overexpressed on a variety of tumours and has been reported as a promising target for pancreatic cancers. Our study aimed to determine whether CAR T cells designed with a fully human Trop2-specific single-chain fragment variable (scFv) can be used in the treatment of Trop2-positive pancreatic tumours. METHODS We designed Trop2-targeted chimeric antigen receptor engineered T cells with a novel human anti-Trop2 scFv (2F11) and then investigated the cytotoxicity, degranulation, and cytokine secretion profiles of the anti-Trop2 CAR T cells when they were exposed to Trop2 + cancer cells in vitro. We also studied the antitumour efficacy and toxicity of Trop2-specific CAR T cells in vivo using a BxPC-3 pancreatic xenograft model. RESULTS Trop2-targeted CAR T cells designed with 2F11 effectively killed Trop2-positive pancreatic cancer cells and produced high levels of cytotoxic cytokines in vitro. In addition, Trop2-targeted CAR T cells, which persistently circulate in vivo and efficiently infiltrate into tumour tissues, significantly blocked and even eliminated BxPC-3 pancreatic xenograft tumour growth without obvious deleterious effects observed after intravenous injection into NSG mice. Moreover, disease-free survival was efficiently prolonged. CONCLUSION These results show that Trop2-targeted CAR T cells equipped with a fully human anti-Trop2 scFv could be a potential treatment strategy for pancreatic cancer and could be useful for clinical evaluation.
Collapse
Affiliation(s)
- Hongjia Zhu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Xiaoyan Fang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Israth Jahan Tuhin
- Shanghai Unicar Therapy Biomedicine Technology Co., Ltd., Shanghai, 201612, People's Republic of China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Jing Ye
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Liqing Kang
- Shanghai Unicar Therapy Biomedicine Technology Co., Ltd., Shanghai, 201612, People's Republic of China
| | - Minghao Li
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - XiaoYan Lou
- Shanghai Unicar Therapy Biomedicine Technology Co., Ltd., Shanghai, 201612, People's Republic of China
| | - Jing-E Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
20
|
Cortesi M, Zanoni M, Maltoni R, Ravaioli S, Tumedei MM, Pirini F, Bravaccini S. TROP2 (trophoblast cell-surface antigen 2): a drug target for breast cancer. Expert Opin Ther Targets 2022; 26:593-602. [PMID: 35962580 DOI: 10.1080/14728222.2022.2113513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most common diagnosed cancer and the second leading cause of cancer-associated death in women, with the triple negative (TNBC) subtype being characterized by the poorest prognosis. New therapeutic targets are urgently needed to overcome the high metastatic potential, aggressiveness and poor survival of these tumors. Trop2 transmembrane glycoprotein, acting as an intracellular calcium signal transducer, recently emerged as a new potential target in epithelial cancers, in particular in breast cancer. AREAS COVERED We summarize the key features of Trop2 structure and function, describing the therapeutic strategies targeting this protein in cancer. Particular attention is paid to antibody-drug conjugates (ADCs), actually representing the most successful strategy. EXPERT OPINION ADCs targeting Trop2 recently received an accelerated FDA approval for the therapy of metastatic TNBC. The prospects for these novel ADCs in BC subtypes other than TNBC are discussed, taking into account the main pitfalls relative to Trop2 structure and function.
Collapse
Affiliation(s)
- Michela Cortesi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Maria Maddalena Tumedei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| |
Collapse
|
21
|
Zhang H, Zhu S, Deng W, Li R, Zhou H, Xiong H. The landscape of chimeric antigen receptor T cell therapy in breast cancer: Perspectives and outlook. Front Immunol 2022; 13:887471. [PMID: 35935930 PMCID: PMC9354605 DOI: 10.3389/fimmu.2022.887471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a revolutionary adoptive cell therapy, which could modify and redirect T cells to specific tumor cells. Since CAR-T cell therapy was first approved for B cell-derived malignancies in 2017, it has yielded unprecedented progress in hematological tumors and has dramatically reshaped the landscape of cancer therapy in recent years. Currently, cumulative evidence has demonstrated that CAR-T cell therapy could be a viable therapeutic strategy for solid cancers. However, owing to the immunosuppressive tumor microenvironment (TME) and heterogenous tumor antigens, the application of CAR-T cell therapy against solid cancers requires circumventing more challenging obstacles. Breast cancer is characterized by a high degree of invasiveness, malignancy, and poor prognosis. The review highlights the underlying targets of CAR-T cell therapy in breast cancer, summarizes the challenges associated with CAR-T cell therapy, and proposes the strategies to overcome these challenges, which provides a novel approach to breast cancer treatment.
Collapse
|
22
|
Yu T, Yu SK, Xiang Y, Lu KH, Sun M. Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Front Immunol 2022; 13:936496. [PMID: 35903099 PMCID: PMC9315443 DOI: 10.3389/fimmu.2022.936496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have enormous potentials for clinical therapies. The CAR-T therapy has been approved for treating hematological malignancies. However, their application is limited in solid tumors owing to antigen loss and mutation, physical barriers, and an immunosuppressive tumor microenvironment. To overcome the challenges of CAR-T, increasing efforts are put into developing CAR-T to expand its applied ranges. Varied receptors are utilized for recognizing tumor-associated antigens and relieving immunosuppression. Emerging co-stimulatory signaling is employed for CAR-T activation. Furthermore, other immune cells such as NK cells and macrophages have manifested potential for delivering CAR. Hence, we collected and summarized the last advancements of CAR engineering from three aspects, namely, the ectodomains, endogenous domains, and immune cells, aiming to inspire the design of next-generation adoptive immunotherapy for treating solid tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| |
Collapse
|
23
|
Jiang H, Sun J, Liu F, Wu X, Wen Z. An Immune-Related Long Noncoding RNA Pair as a New Biomarker to Predict the Prognosis of Patients in Breast Cancer. Front Genet 2022; 13:895200. [PMID: 35812755 PMCID: PMC9257047 DOI: 10.3389/fgene.2022.895200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune-related long non-coding RNAs (irlncRNAs) might remodel the tumor immune microenvironment by changing the inherent properties of tumor cells and the expression of immune genes, which have been used to predict the efficacy of immunotherapy and the prognosis of various tumors. However, the value of irlncRNAs in breast cancer (BRCA) remains unclear.Materials and Methods: Initially, transcriptome data and immune-related gene sets were downloaded from The Cancer Genome Atlas (TCGA) database. The irlncRNAs were extracted from the Immunology Database and Analysis Portal (ImmPort) database. Differently expressed irlncRNAs (DEirlncRNAs) were further identified by utilizing the limma R package. Then, univariate and multivariate Cox regression analyses were conducted to select the DEirlncRNAs associated with the prognosis of BRCA patients. In addition, the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed to determine the DEirlncRNA pairs with the independent prediction capability of prognosis in BRCA patients. Finally, the chosen DEirlncRNA pair would be evaluated in terms of survival time, clinicopathological characteristics, tumor-infiltrating immune cells, immune checkpoints (ICs), signaling pathways, and potential small-molecule drugs.Results: A total of 21 DEirlncRNA pairs were extracted, and among them, lncRNA MIR4435-2HG and lncRNA U62317.1 were chosen to establish a risk signature that served as an independent prognostic biomarker in BRCA patients. Patients in the high-risk group had a worse prognosis than those in the low-risk group, and they also had an abundance of infiltration of CD4+ T and CD8+ T cells to enhance the immune response to tumor cells. Furthermore, the risk signature showed a strong correlation with ICs, signaling pathways, and potential small-molecule drugs.Conclusion: Our research revealed that the risk signature independent of specific DEirlncRNA pair expression was closely associated with the prognosis and tumor immune microenvironment in BRCA patients and had the potential to function as an independent prognostic biomarker and a predictor of immunotherapy for BRCA patients, which would provide new insights for BRCA accurate treatment.
Collapse
Affiliation(s)
- Hanwen Jiang
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fucong Liu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xincai Wu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaohui Wen
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Zhaohui Wen,
| |
Collapse
|
24
|
Chen H, Yang Y, Deng Y, Wei F, Zhao Q, Liu Y, Liu Z, Yu B, Huang Z. Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy. J Immunother Cancer 2022; 10:jitc-2021-003737. [PMID: 35110357 PMCID: PMC8811602 DOI: 10.1136/jitc-2021-003737] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T cell therapy has been successfully applied in treating lymphoma malignancies, but not in solid tumors. CD47 is highly expressed on tumor cells and its overexpression is believed to inhibit phagocytosis by macrophages and dendritic cells. Given the antitumor activity against preclinical model of CD47-blocking to induce the innate and adaptive immune system in the tumor microenvironment, here we developed a CAR-T cell secreting CD47 blocker signal regulatory protein α (SIRPα)-Fc fusion protein (Sirf CAR-T) to boost CAR-T cell therapeutic effect in solid tumor therapy. Methods Murine T cells were transduced to express a conventional anti-Trop2 CAR and Sirf CAR. The expression of SIRPα-Fc fusion protein in the supernatant of CAR-T cells and its effect on macrophage phagocytosis were tested in vitro. In vivo antitumor efficacy of CAR-T cells was evaluated in immunocompetent mice and analysis of the tumor microenvironment in the tumor-bearing mice was performed. Results We found that Sirf CAR-T cells dramatically decreased tumor burden and significantly prolonged survival in several syngeneic immunocompetent tumor models. Furthermore, we found that Sirf CAR-T cells induced more central memory T cells (TCM) and improved the persistence of CAR-T cells in tumor tissue, as well as decreased PD-1 expression on the CAR-T cell surface. In addition, we demonstrated that Sirf CAR-T cells could modulate the tumor microenvironment by decreasing myeloid-derived stem cells as well as increasing CD11c+ dendritic cells and M1-type macrophages in tumor tissue. Conclusions In summary, our findings indicate that CD47 blocker SIRPα-Fc enhances the antitumor efficacy of CAR-T cells and propose to block CD47/SIRPα signaling effect on CAR-T cells function, which could provide a new strategy for successful cancer immunotherapy by rationalizing combination of CD47 blocker and CAR-T cell therapy.
Collapse
Affiliation(s)
- Huanpeng Chen
- BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Yuying Yang
- Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuqing Deng
- Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Fengjiao Wei
- Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qingyu Zhao
- ICU, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongqi Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghua Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bolan Yu
- BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaofeng Huang
- Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China .,Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Mao R, Hussein MS, He Y. Chimeric antigen receptor engineered T cells and their application in the immunotherapy of solid tumours. Expert Rev Mol Med 2022; 24:e7. [PMID: 35086597 PMCID: PMC9617572 DOI: 10.1017/erm.2021.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this article, we reviewed the current literature studies and our understanding of the parameters that affect the chimeric antigen receptor T cells (CAR-T's) activation, effector function, in vivo persistence, and antitumour effects. These factors include T cell subsets and their differentiation stages, the components of chimeric antigen receptors (CAR) design, the expression promoters and delivery vectors, and the CAR-T production process. The CAR signalling and CAR-T activation were also studied in comparison to TCR. The last section of the review gave special consideration of CAR design for solid tumours, focusing on strategies to improve CAR-T tumour infiltration and survival in the hostile tumour microenvironment. With several hundred clinical trials undergoing worldwide, the pace of CAR-T immunotherapy moves from bench to bedside is unprecedented. We hope that the article will provide readers a clear and comprehensive view of this rapidly evolving field and will help scientists and physician to design effective CAR-Ts immunotherapy for solid tumours.
Collapse
Affiliation(s)
- Rui Mao
- Georgia Cancer Center, Augusta, USA
| | | | - Yukai He
- Georgia Cancer Center, Augusta, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, USA
| |
Collapse
|
26
|
Buechner J, Caruana I, Künkele A, Rives S, Vettenranta K, Bader P, Peters C, Baruchel A, Calkoen FG. Chimeric Antigen Receptor T-Cell Therapy in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia: Curative Treatment Option or Bridge to Transplant? Front Pediatr 2022; 9:784024. [PMID: 35145941 PMCID: PMC8823293 DOI: 10.3389/fped.2021.784024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor T-cell therapy (CAR-T) targeting CD19 has been associated with remarkable responses in paediatric patients and adolescents and young adults (AYA) with relapsed/refractory (R/R) B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). Tisagenlecleucel, the first approved CD19 CAR-T, has become a viable treatment option for paediatric patients and AYAs with BCP-ALL relapsing repeatedly or after haematopoietic stem cell transplantation (HSCT). Based on the chimeric antigen receptor molecular design and the presence of a 4-1BB costimulatory domain, tisagenlecleucel can persist for a long time and thereby provide sustained leukaemia control. "Real-world" experience with tisagenlecleucel confirms the safety and efficacy profile observed in the pivotal registration trial. Recent guidelines for the recognition, management and prevention of the two most common adverse events related to CAR-T - cytokine release syndrome and immune-cell-associated neurotoxicity syndrome - have helped to further decrease treatment toxicity. Consequently, the questions of how and for whom CD19 CAR-T could substitute HSCT in BCP-ALL are inevitable. Currently, 40-50% of R/R BCP-ALL patients relapse post CD19 CAR-T with either CD19- or CD19+ disease, and consolidative HSCT has been proposed to avoid disease recurrence. Contrarily, CD19 CAR-T is currently being investigated in the upfront treatment of high-risk BCP-ALL with an aim to avoid allogeneic HSCT and associated treatment-related morbidity, mortality and late effects. To improve survival and decrease long-term side effects in children with BCP-ALL, it is important to define parameters predicting the success or failure of CAR-T, allowing the careful selection of candidates in need of HSCT consolidation. In this review, we describe the current clinical evidence on CAR-T in BCP-ALL and discuss factors associated with response to or failure of this therapy: product specifications, patient- and disease-related factors and the impact of additional therapies given before (e.g., blinatumomab and inotuzumab ozogamicin) or after infusion (e.g., CAR-T re-infusion and/or checkpoint inhibition). We discuss where to position CAR-T in the treatment of BCP-ALL and present considerations for the design of supportive trials for the different phases of disease. Finally, we elaborate on clinical settings in which CAR-T might indeed replace HSCT.
Collapse
Affiliation(s)
- Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, Würzburg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susana Rives
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu de Barcelona, Institut per la Recerca Sant Joan de Déu, Barcelona, Spain
| | - Kim Vettenranta
- University of Helsinki and Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt, Germany
| | - Christina Peters
- St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - André Baruchel
- Université de Paris et Institut de Recherche Saint-Louis (EA 35-18) and Hôpital Universitaire Robert Debré (APHP), Paris, France
| | - Friso G. Calkoen
- Department of Stem Cell Transplantation and Cellular Therapy, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
27
|
Wutti-in Y, Sujjitjoon J, Sawasdee N, Panya A, Kongkla K, Yuti P, Yongpitakwattana P, Thepmalee C, Junking M, Chieochansin T, Poungvarin N, Yamabhai M, Yenchitsomanus PT. Development of a Novel Anti-CD19 CAR Containing a Fully Human scFv and Three Costimulatory Domains. Front Oncol 2022; 11:802876. [PMID: 35117999 PMCID: PMC8804167 DOI: 10.3389/fonc.2021.802876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Second-generation anti-CD19-chimeric antigen receptor T cells (anti-CD19-CAR2 T cells) are effective for treating B-cell malignancies; however, anti-CD19-CAR2 T cells can induce human anti-mouse immune responses because anti-CD19 single-chain variable fragment (scFv) in the CAR molecules is derived from a murine FMC63 (mFMC63) monoclonal antibody. Consequently, the persistence of mFMC63-CAR2 T cells and their therapeutic efficiency in patients are decreased, which results in tumor relapse. In an attempt to remedy this shortcoming, we generated a new anti-CD19-CAR T cells containing fully human anti-CD19 scFv (Hu1E7-CAR4 T cells) to pre-clinically evaluate and compare with mFMC63-CAR4 T cells. The human anti-CD19 scFv (Hu1E7) was isolated from a human scFv phage display library and fused to the hinge region of CD8α, the transmembrane domain of CD28, three intracellular costimulatory domains (CD28, 4-1BB, and CD27), and a CD3ζ signaling domain (28BB27ζ). Compared to mFMC63-CAR2 T cells (BBζ) and mFMC63-CAR3 (BB27ζ), the mFMC63-CAR4 T cells (28BB27ζ) exerted superior anti-tumor activity against Raji (CD19+) target cell. The Hu1E7-CAR4 and mFMC63-CAR4 T cells demonstrated comparable cytotoxicity and proliferation. Interestingly, compared to mFMC63-CAR4 T cells, the Hu1E7-CAR4 T cells secreted lower levels of cytokines (IFN-γ and TNF-α), which may be due to the lower binding affinity of Hu1E7-CAR4 T cells. These findings demonstrated the successfulness in creation of a new CAR T cells containing a novel fully human-derived scFv specific to CD19+ cancer cells. In vivo studies are needed to further compare the anti-tumor efficacy and safety of Hu1E7-CAR4 T cells and mFMC63-CAR4 T cells.
Collapse
Affiliation(s)
- Yupanun Wutti-in
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Pa-thai Yenchitsomanus, ; ; Jatuporn Sujjitjoon, ;
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Katesara Kongkla
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petlada Yongpitakwattana
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutamas Thepmalee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Pa-thai Yenchitsomanus, ; ; Jatuporn Sujjitjoon, ;
| |
Collapse
|
28
|
Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010087. [PMID: 35008509 PMCID: PMC8745008 DOI: 10.3390/ijms23010087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Oral cancer often presents with aggressive behavior and a high risk of recurrence and metastasis. For oral squamous cell carcinoma (OSCC), which is the most frequent histological subtype, therapy strategies include surgery, radiation therapy, chemotherapy, immune checkpoint inhibitors, and EGFR inhibitors. Recently, a Trop-2 antibody-drug conjugate (ADC) has been approved in the United States of America for the treatment of advanced triple-negative breast cancer. However, this ADC has also been tested in other solid tumors including head & neck squamous cell carcinoma. The prognostic impact of Trop-2 has already been reported for several cancers. We studied the prognostic influence of Trop-2 protein expression on OSCC patients' survival. The cohort comprised n = 229 OSCC patients with available archived tumor tissue and corresponding non-neoplastic oral mucosa tissue. Using immunohistochemistry, we investigated Trop-2 expression in both the central and peripheral regions of each tumor and in corresponding non-neoplastic oral mucosa. In patients suffering from OSCC with combined high central and low peripheral Trop-2 expression, five-year overall survival (OS) was 41.2%, whereas 55.6% of OSCC patients who presented lower central and/or higher peripheral tumoral Trop-2 expression were alive after five years (p = 0.075). In multivariate Cox regression, the expression pattern of high central tumoral and lower peripheral Trop-2 expression was significantly correlated with impaired OS (HR = 1.802, 95%-CI: 1.134-2.864; p = 0.013) and recurrence-free survival (RFS) (HR = 1.633, 95%-CI: 1.042-2.560; p = 0.033), respectively, when adjusting for co-variables. Hence, Trop-2 may serve as an independent prognostic biomarker in OSCC. In subsequent studies, the pathophysiological meaning of downregulated Trop-2 expression in the OSCC periphery has to be analyzed.
Collapse
|
29
|
De Bousser E, Callewaert N, Festjens N. T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers (Basel) 2021; 13:6067. [PMID: 34885176 PMCID: PMC8657024 DOI: 10.3390/cancers13236067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
In the past decade, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect the patient's own immune cells to recognize specific antigens expressed on the surface of tumor cells. The unprecedented success of anti-CD19 CAR T cell therapy against B cell malignancies has resulted in its approval by the US Food and Drug Administration (FDA) in 2017. However, major scientific challenges still remain to be addressed for the broad use of CAR T cell therapy. These include severe toxicities, limited efficacy against solid tumors, and immune suppression in the hostile tumor microenvironment. Furthermore, CAR T cell therapy is a personalized medicine of which the production is time- and resource-intensive, which makes it very expensive. All these factors drive new innovations to engineer more powerful CAR T cells with improved antitumor activity, which are reviewed in this manuscript.
Collapse
Affiliation(s)
- Elien De Bousser
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nele Festjens
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| |
Collapse
|
30
|
Poplawska M, Dutta D, Lee Y, Lim SH. Sperm protein 17 targeting for epithelial ovarian cancer treatment in the era of modern immunoengineering. Mol Ther Oncolytics 2021; 23:378-386. [PMID: 34853809 PMCID: PMC8604669 DOI: 10.1016/j.omto.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
31
|
The Immune Landscape of Breast Cancer: Strategies for Overcoming Immunotherapy Resistance. Cancers (Basel) 2021; 13:cancers13236012. [PMID: 34885122 PMCID: PMC8657247 DOI: 10.3390/cancers13236012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is a rapidly advancing field in breast cancer treatment, however, it encounters many obstacles that leave open gateways for breast cancer cells to resist novel immunotherapies. It is believed that the tumor microenvironment consisting of cancer, stromal, and immune cells as well as a plethora of tumor-promoting soluble factors, is responsible for the failure of therapeutic strategies in cancer, including breast tumors. Therefore, an in-depth understanding of key barriers to effective immunotherapy, focusing the research efforts on harnessing the power of the immune system, and thus, developing new strategies to overcome the resistance may contribute significantly to increase breast cancer patient survival. In this review, we discuss the latest reports regarding the strategies rendering the immunosuppressive tumor microenvironment more sensitive to immunotherapy in breast cancers, HER2-positive and triple-negative types of breast cancer, which are attractive from an immunotherapeutic point of view. Abstract Breast cancer (BC) has traditionally been considered to be not inherently immunogenic and insufficiently represented by immune cell infiltrates. Therefore, for a long time, it was thought that the immunotherapies targeting this type of cancer and its microenvironment were not justified and would not bring benefits for breast cancer patients. Nevertheless, to date, a considerable number of reports have indicated tumor-infiltrating lymphocytes (TILs) as a prognostic and clinically relevant biomarker in breast cancer. A high TILs expression has been demonstrated in primary tumors, of both, HER2-positive BC and triple-negative (TNBC), of patients before treatment, as well as after treatment with adjuvant and neoadjuvant chemotherapy. Another milestone was reached in advanced TNBC immunotherapy with the help of the immune checkpoint inhibitors directed against the PD-L1 molecule. Although those findings, together with the recent developments in chimeric antigen receptor T cell therapies, show immense promise for significant advancements in breast cancer treatments, there are still various obstacles to the optimal activity of immunotherapeutics in BC treatment. Of these, the immunosuppressive tumor microenvironment constitutes a key barrier that greatly hinders the success of immunotherapies in the most aggressive types of breast cancer, HER2-positive and TNBC. Therefore, the improvement of the current and the demand for the development of new immunotherapeutic strategies is strongly warranted.
Collapse
|