1
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
2
|
Jeffreys N, Brockman JM, Zhai Y, Ingber DE, Mooney DJ. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. APPLIED PHYSICS REVIEWS 2024; 11:011304. [PMID: 38434676 PMCID: PMC10848667 DOI: 10.1063/5.0166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Adoptive T cell immunotherapies, including engineered T cell receptor (eTCR) and chimeric antigen receptor (CAR) T cell immunotherapies, have shown efficacy in treating a subset of hematologic malignancies, exhibit promise in solid tumors, and have many other potential applications, such as in fibrosis, autoimmunity, and regenerative medicine. While immunoengineering has focused on designing biomaterials to present biochemical cues to manipulate T cells ex vivo and in vivo, mechanical cues that regulate their biology have been largely underappreciated. This review highlights the contributions of mechanical force to several receptor-ligand interactions critical to T cell function, with central focus on the TCR-peptide-loaded major histocompatibility complex (pMHC). We then emphasize the role of mechanical forces in (i) allosteric strengthening of the TCR-pMHC interaction in amplifying ligand discrimination during T cell antigen recognition prior to activation and (ii) T cell interactions with the extracellular matrix. We then describe approaches to design eTCRs, CARs, and biomaterials to exploit TCR mechanosensitivity in order to potentiate T cell manufacturing and function in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
| | | | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
3
|
Han D, Wang F, Ma Y, Zhao Y, Zhang W, Zhang Z, Liu H, Yang X, Zhang C, Zhang J, Li Z. Redirecting Antigens by Engineered Photosynthetic Bacteria and Derived Outer Membrane Vesicles for Enhanced Cancer Immunotherapy. ACS NANO 2023; 17:18716-18731. [PMID: 37782086 DOI: 10.1021/acsnano.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Significant strides have been made in the development of cancer vaccines to combat malignant tumors. However, the natural immunosuppressive environment within tumors, known as the tumor microenvironment (TME), hampers the uptake and presentation of antigens by antigen-presenting cells (APCs) within the tumor itself. This limitation results in inadequate activation of immune responses against cancer. In contrast, immune cells in peritumoral tissue maintain their normal functions. In this context, we present an interesting approach to enhance cancer immunotherapy by utilizing engineered photosynthetic bacteria (PSB) and their outer membrane vesicles (OMVPSB) to capture and transport antigens to the outer regions of the tumor. We modified PSB with maleimide (PSB-MAL), which, when exposed to near-infrared (NIR) laser-mediated photothermal therapy (PTT), induced extensive cancer cell death and the release of tumor antigens. Subsequently, the NIR-phototactic PSB-MAL transported these tumor antigens to the peripheral regions of the tumor under NIR laser exposure. Even more intriguingly, PSB-MAL-derived OMVPSB-MAL effectively captured and delivered antigens to tumor-draining lymph nodes (TDLNs). This facilitated enhanced antigen presentation by mature and fully functional APCs in the TDLNs. This intricate communication network between PSB-MAL, the OMVPSB-MAL, and APCs promoted the efficient presentation of tumor antigens in the tumor periphery and TDLNs. Consequently, there was a notable increase in the infiltration of cytotoxic T lymphocytes (CTLs) into the tumor, triggering potent antitumor immune responses in both melanoma and breast cancer models. This cascade of events resulted in enhanced suppression of tumor metastasis and recurrence, underscoring the robust efficacy of our approach. Our interesting study, harnessing the potential of bacteria and OMVs to redirect tumor antigens for enhanced cancer immunotherapy, provides a promising path toward the development of personalized cancer vaccination strategies.
Collapse
Affiliation(s)
- Dandan Han
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong 510515, China
| | - Fei Wang
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong 510515, China
| | - Yichuan Ma
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Yu Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ziyang Zhang
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Xinjian Yang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Chi Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong 510515, China
| |
Collapse
|
4
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
5
|
Closset L, Gultekin O, Salehi S, Sarhan D, Lehti K, Gonzalez-Molina J. The extracellular matrix - immune microenvironment crosstalk in cancer therapy: Challenges and opportunities. Matrix Biol 2023; 121:217-228. [PMID: 37524251 DOI: 10.1016/j.matbio.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Targeting the tumour immune microenvironment (TIME) by cancer immunotherapy has led to improved patient outcomes. However, response to these treatments is heterogeneous and cancer-type dependant. The therapeutic activity of classical cancer therapies such as chemotherapy, radiotherapy, and surgical oncology is modulated by alterations of the TIME. A major regulator of immune cell function and resistance to both immune and classical therapies is the extracellular matrix (ECM). Concurrently, cancer therapies reshape the TIME as well as the ECM, causing both pro- and anti-tumour responses. Accordingly, the TIME-ECM crosstalk presents attractive opportunities to improve therapy outcomes. Here, we review the molecular crosstalk between the TIME and the ECM in cancer and its implications in cancer progression and clinical intervention. Additionally, we discuss examples and future directions of ECM and TIME co-targeting in combination with oncological therapies including surgery, chemotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Lara Closset
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Saint-Antoine Research center (CRSA), UMR_S 938, INSERM, Sorbonne Université, Paris F-75012, France
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden
| | - Sahar Salehi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden.
| |
Collapse
|
6
|
Singh A, Dalal N, Tayalia P. An interplay of matrix stiffness, dimensionality and adhesivity on cellular behavior. Biomed Mater 2023; 18. [PMID: 36720169 DOI: 10.1088/1748-605x/acb7c0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Cell-based assays are essentialin vitrotools for understanding basic cell biology, pathophysiology of diseases and mechanism of drug actions most cancer studies have utilized two-dimensional (2D) cell culture methods, which have their shortcomings including lack of cell- extracellular matrix interactions and three-dimensional (3D) geometry, and inaccurate representation of cell polarity. Hence, 3D matrices are being increasingly used to study the effect of 3D niche on cell behavior. Till date, very few systematic studies have been done to show comparison of cell behavior when seeded on the surface and encapsulated inside the matrix. In this study, we fabricated poly(ethylene glycol) (PEG) and gelatin-based matrices using UV mediated photo-polymerization to establish 2D and 3D cell culture methods using breast cancer MDA-MB-231 cells. We have found that the adhesion and spreading of cells on the gel surface is different from that when embedded in gels. The stiffness of poly (ethylene glycol) diacrylate (PEGDA)-gelatin methacryloyl (GelMA) hydrogels with lower concentration of GelMA is lower than that with higher GelMA; further, those with higher overall concentration of polymers (>5%) retain their mechanical integrity and do not degrade even after 7 d. Physical characterization of these matrices demonstrate their optimal pore size, mechanical stiffness and degradation, which are further tunable for tissue engineering, regenerative medicine, drug delivery and cancer studies. Additionally, these semi-synthetic PEGDA-GelMA matrices are transparent in nature, thereby, allowing easy imaging of cells in 3D. The system developed here can be used for short and long term cell culture and can be potentially explored for cell migration and metastasis studies.
Collapse
Affiliation(s)
- Archana Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|