1
|
Qi Y, Zhang L, Liu Y, Li Y, Liu Y, Zhang Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. Biomed Pharmacother 2024; 180:117590. [PMID: 39423752 DOI: 10.1016/j.biopha.2024.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells originating from the bone marrow, known for their potent immunosuppressive functions that contribute to tumor immune evasion and progression. This paper provides a comprehensive analysis of the multifaceted interactions between MDSCs and tumors, exploring their distinct phenotypes and immunosuppressive mechanisms. Key roles of MDSCs in tumor biology are discussed, including their involvement in the formation of the pre-metastatic niche, facilitation of angiogenesis, enhancement of vascular permeability, suppression of tumor cell apoptosis, and promotion of resistance to cancer therapies. Additionally, the review highlights recent advances in the development of MDSC-targeting therapies, with a focus on their potential to enhance anti-tumor immunity. The therapeutic potential of Traditional Chinese Medicine (TCM) in modulating MDSC quantity and function is also explored, suggesting a novel approach to cancer treatment by integrating traditional and modern therapeutic strategies.
Collapse
Affiliation(s)
- Yafeng Qi
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Liying Zhang
- School of Integrative Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yeyuan Liu
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yangyang Li
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
2
|
Hu Y, Sarkar A, Song K, Michael S, Hook M, Wang R, Heczey A, Song X. Selective refueling of CAR T cells using ADA1 and CD26 boosts antitumor immunity. Cell Rep Med 2024; 5:101530. [PMID: 38688275 PMCID: PMC11148642 DOI: 10.1016/j.xcrm.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor β1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.
Collapse
MESH Headings
- Animals
- Adenosine Deaminase/metabolism
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Immunotherapy, Adoptive/methods
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Inosine
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
Collapse
Affiliation(s)
- Yue Hu
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Abhijit Sarkar
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kevin Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Biology, University of Houston, Houston, TX, USA
| | - Sara Michael
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Synthesis Biology, University of Houston, Houston, TX, USA
| | - Magnus Hook
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Andras Heczey
- Texas Children's Hospital, Houston, TX, USA; Department of Pediatric, Baylor College of Medicine, Houston, TX, USA
| | - Xiaotong Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
3
|
Shaikh S, Basu S, Bag S, Chatterjee A, Datta S, Banerjee D, Manikantan K, Arun I, Arun P, Biswas NK, Maitra A, Mishra DK, Majumder PP, Dhar H, Mukherjee G. Uracil as a biomarker for spatial pyrimidine metabolism in the development of gingivobuccal oral squamous cell carcinoma. Sci Rep 2024; 14:11609. [PMID: 38773214 PMCID: PMC11109148 DOI: 10.1038/s41598-024-62434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Soni Shaikh
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- Tata Consultancy Services (TCS), Kolkata, WB, India
| | - Sangramjit Basu
- Tata Translational Cancer Research Centre (TTCRC), 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Swarnendu Bag
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi, 110007, India
| | - Ankita Chatterjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Sourav Datta
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India
| | - Devmalya Banerjee
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
| | - Kapila Manikantan
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Indu Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Pattatheyil Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Deepak Kumar Mishra
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
- John C. Martin Centre for Liver Research and Innovations, Sitala East, IILDS, Hospital Road, Rajpur Sonarpur, Kolkata, WB, 700150, India
| | - Harsh Dhar
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India.
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India.
| | - Geetashree Mukherjee
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India.
| |
Collapse
|
4
|
Yu GT, Zhu WX, Zhao YY, Cui H, Chen H, Chen Y, Ning TT, Rong MD, Rao L, Ma DD. 3D-printed bioink loading with stem cells and cellular vesicles for periodontitis-derived bone defect repair. Biofabrication 2024; 16:025007. [PMID: 38241709 DOI: 10.1088/1758-5090/ad2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
The suitable microenvironment of bone regeneration is critically important for periodontitis-derived bone defect repair. Three major challenges in achieving a robust osteogenic reaction are the exist of oral inflammation, pathogenic bacteria invasion and unaffluent seed cells. Herein, a customizable and multifunctional 3D-printing module was designed with glycidyl methacrylate (GMA) modified epsilon-poly-L-lysine (EPLGMA) loading periodontal ligament stem cells (PDLSCs) and myeloid-derived suppressive cells membrane vesicles (MDSCs-MV) bioink (EPLGMA/PDLSCs/MDSCs-MVs, abbreviated as EPM) for periodontitis-derived bone defect repair. The EPM showed excellent mechanical properties and physicochemical characteristics, providing a suitable microenvironment for bone regeneration.In vitro, EPMs presented effectively kill the periodontopathic bacteria depend on the natural antibacterial properties of the EPL. Meanwhile, MDSCs-MV was confirmed to inhibit T cells through CD73/CD39/adenosine signal pathway, exerting an anti-inflammatory role. Additionally, seed cells of PDLSCs provide an adequate supply for osteoblasts. Moreover, MDSCs-MV could significantly enhance the mineralizing capacity of PDLSCs-derived osteoblast. In the periodontal bone defect rat model, the results of micro-CT and histological staining demonstrated that the EPM scaffold similarly had an excellent anti-inflammatory and bone regeneration efficacyin vivo. This biomimetic and multifunctional 3D-printing bioink opens new avenues for periodontitis-derived bone defect repair and future clinical application.
Collapse
Affiliation(s)
- Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Wen-Xiang Zhu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, People's Republic of China
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Ting-Ting Ning
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Ming-Deng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, People's Republic of China
| | - Dan-Dan Ma
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| |
Collapse
|
5
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|