1
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Maloney J, Strand N, Wie C, Pew S, Dawodu A, Dunn T, Johnson B, Eells A, Viswanath O, Freeman J, Covington S. Current Review of Regenerative Medicine Therapies for Spine-Related Pain. Curr Pain Headache Rep 2024; 28:949-955. [PMID: 38112985 DOI: 10.1007/s11916-023-01194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE OF REVIEW Persistent spinal pain syndromes are pervasive and lead to functional impairment, increased healthcare utilization, potential disability, and high societal costs. Spinal (cervical, thoracic, lumbar, and sacroiliac joint) pain includes mechanical, degenerative, inflammatory, oncologic, and infectious etiologies. Regenerative medicine is a novel biotechnology targeting mechanical, degenerative, and inflammatory conditions believed to cause pain. Preparations including platelet-rich plasma, mesenchymal stem cells (adipose tissue and bone marrow aspirate concentrates), and growth factors are derived from an autologous donor. The goal of intervention through guided injection of the regenerative media is to reduce inflammation and reverse the degenerative cascade in hopes of restoring normal cellular composition (physiologic homeostasis) and anatomical function to improve pain and function. The authors review limited research supporting the use of platelet-rich plasma injections for facet joint arthropathy and sacroiliac joint pain compared to traditional steroid treatments, as well as the use of platelet rich plasma or mesenchymal stem cells for lumbar discogenic and radicular pain. RECENT FINDINGS Current evidence to support regenerative medicine for spine-related pain is limited. Although several studies demonstrated a reduction in pain, many of these studies had a small number of participants and were case series or prospective trials. Regenerative medicine treatments lack evidence for the treatment of spine-related pain. Large randomized controlled trials are needed with consistent study protocols to make further recommendations.
Collapse
Affiliation(s)
- Jillian Maloney
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA.
| | - N Strand
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - C Wie
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - S Pew
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - A Dawodu
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - T Dunn
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - B Johnson
- Mayo Clinic Arizona, Department of Anesthesiology and Perioperative Medicine, Phoenix, AZ, USA
| | - A Eells
- Mayo Clinic Arizona, Department of Anesthesiology and Perioperative Medicine, Phoenix, AZ, USA
| | - O Viswanath
- Innovative Pain and Wellness, LSU Health Sciences Center School of Medicine, Creighton University School of Medicine, Phoenix, AZ, USA
| | - J Freeman
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - S Covington
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| |
Collapse
|
3
|
McDonnell EE, Ní Néill T, Wilson N, Darwish SL, Butler JS, Buckley CT. In silico modeling the potential clinical effect of growth factor treatment on the metabolism of human nucleus pulposus cells. JOR Spine 2024; 7:e1352. [PMID: 39092165 PMCID: PMC11291302 DOI: 10.1002/jsp2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background While growth factors have the potential to halt degeneration and decrease inflammation in animal models, the literature investigating the effect of dosage on human cells is lacking. Moreover, despite the completion of clinical trials using growth differentiation factor-5 (GDF-5), no results have been publicly released. Aims The overall objective was to quantitatively assess the effect of three clinically relevant concentrations of GDF-5 (0.25, 1, and 2 mg) as a therapeutic for disc regeneration. Materials and methods Firstly, this work experimentally determined the effects of GDF-5 concentration on the metabolic and matrix synthesis rates of human nucleus pulposus (NP) cells. Secondly, in silico modeling was employed to predict the subsequent regenerative effect of different GDF-5 treatments (± cells). Results This study suggests a trend of increased matrix synthesis with 0.25 and 1 mg of GDF-5. However, 2 mg of GDF-5 significantly upregulates oxygen consumption. Despite this, in silico models highlight the potential of growth factors in promoting matrix synthesis compared to cell-only treatments, without significantly perturbing the nutrient microenvironment. Discussion This work elucidates the potential of GDF-5 on human NP cells. Although the results did not reveal statistical differences across all doses, the variability and response among donors is an interesting finding. It highlights the complexity of human response to biological treatments and reinforces the need for further human research and personalized approaches. Furthermore, this study raises a crucial question about whether these potential biologics are more regenerative in nature or better suited as prophylactic therapies for younger patient groups. Conclusion Biological agents exhibit unique characteristics and features, demanding tailored development strategies and individualized assessments rather than a one-size-fits-all approach. Therefore, the journey to realizing the full potential of biological therapies is long and costly. Nonetheless, it holds the promise of revolutionizing spinal healthcare and improving the quality of life for patients suffering from discogenic back pain.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- Department of Trauma and OrthopaedicsNational Orthopaedic Hospital, CappaghDublinIreland
- Department of OrthopaedicsSt Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland, Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
4
|
de Oliveira CAA, Oliveira BS, Theodoro R, Wang J, Santos GS, Rodrigues BL, Rodrigues IJ, Jorge DDMF, Jeyaraman M, Everts PA, Navani A, Lana JF. Orthobiologic Management Options for Degenerative Disc Disease. Bioengineering (Basel) 2024; 11:591. [PMID: 38927827 PMCID: PMC11200769 DOI: 10.3390/bioengineering11060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Degenerative disc disease (DDD) is a pervasive condition that limits quality of life and burdens economies worldwide. Conventional pharmacological treatments primarily aimed at slowing the progression of degeneration have demonstrated limited long-term efficacy and often do not address the underlying causes of the disease. On the other hand, orthobiologics are regenerative agents derived from the patient's own tissue and represent a promising emerging therapy for degenerative disc disease. This review comprehensively outlines the pathophysiology of DDD, highlighting the inadequacies of existing pharmacological therapies and detailing the potential of orthobiologic approaches. It explores advanced tools such as platelet-rich plasma and mesenchymal stem cells, providing a historical overview of their development within regenerative medicine, from foundational in vitro studies to preclinical animal models. Moreover, the manuscript delves into clinical trials that assess the effectiveness of these therapies in managing DDD. While the current clinical evidence is promising, it remains insufficient for routine clinical adoption due to limitations in study designs. The review emphasizes the need for further research to optimize these therapies for consistent and effective clinical outcomes, potentially revolutionizing the management of DDD and offering renewed hope for patients.
Collapse
Affiliation(s)
| | - Bernardo Scaldini Oliveira
- Orthopedics, ABCOliveira Medical Clinic, São Paulo 03310-000, SP, Brazil; (C.A.A.d.O.); (B.S.O.); (R.T.)
| | - Rafael Theodoro
- Orthopedics, ABCOliveira Medical Clinic, São Paulo 03310-000, SP, Brazil; (C.A.A.d.O.); (B.S.O.); (R.T.)
| | - Joshua Wang
- Learning and Teaching Unit, Queensland University of Technology, Brisbane, QLD 4059, Australia;
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
| | - Bruno Lima Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
| | - Daniel de Moraes Ferreira Jorge
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | - Annu Navani
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Medical Director, Le Reve, San Jose, CA 95124, USA
- Chief Medical Officer, Boomerang Healthcare, Walnut Creek, CA 94598, USA
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13918-110, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| |
Collapse
|
5
|
Mizuno S, Vadala G, Kang JD. Biological Therapeutic Modalities for Intervertebral Disc Diseases: An Orthoregeneration Network (ON) Foundation Review. Arthroscopy 2024; 40:1019-1030. [PMID: 37918699 DOI: 10.1016/j.arthro.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Orthoregeneration is defined as a solution for orthopaedic conditions that harnesses the benefits of biology to improve healing, reduce pain, improve function, and, optimally, provide an environment for tissue regeneration. Options include drugs, surgical intervention, scaffolds, biologics as a product of cells, and physical and electromagnetic stimuli. The goal of regenerative medicine is to enhance the healing of tissue after musculoskeletal injuries as both isolated treatment and adjunct to surgical management, using novel therapies to improve recovery and outcomes. Various orthopaedic biologics (orthobiologics) have been investigated for the treatment of pathology involving the spine, including lower back pain, with or without numbness and/or dysfunction in the lower extremities, disc herniation, spinal stenosis, and spondylolisthesis. Promising and established treatment modalities include repair of the annulus fibrosis, injection of expanded or nonexpanded autologous or allogenic cells that are chondrogenic or from a stem cell lineage used to promote matrix tissue regeneration of the intervertebral disc, including nucleus pulpous cells and mesenchymal stem cells isolated from bone marrow, umbilical cord blood, or adipose tissue; and injection of platelet-rich plasma, platelet-rich fibrin, or fibrin sealant. Early clinical studies show promise for pain reduction and functional recovery. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Gianluca Vadala
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - James D Kang
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A..
| |
Collapse
|
6
|
DesRochers J, DesRochers R, Patel D, Andruszka C, Manchanda S, Ernazarov A, Mobley A. Mesenchymal stem cells and thermal annular procedures for discogenic pain: a systematic review with pooled analysis. Pain Manag 2024; 14:101-114. [PMID: 38275178 DOI: 10.2217/pmt-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Aim: Compare the effectiveness of mesenchymal stem cell injection therapies (MSC) and thermal annular procedures for the treatment of discogenic lower back pain. Materials & methods: A systematic review was performed following PRISMA 2020 guidelines. Pooled analysis was performed using patients' pain scores at baseline and at 12 months post-intervention. Results: Effect sizes based on change in pain score from baseline to 12 month follow-up revealed clinically significant improvement in pain score across all interventions. Conclusion: Minimally invasive interventions provide meaningful relief in discogenic back pain, with results suggesting promise for MSC injection therapies as a treatment model.
Collapse
Affiliation(s)
- John DesRochers
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ryan DesRochers
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Dev Patel
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Cassidy Andruszka
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Shikhar Manchanda
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Akhmad Ernazarov
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Aleesa Mobley
- Rowan Medicine NeuroMusculoskeletal Institute, Stratford, NJ 08084, USA
| |
Collapse
|
7
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
8
|
Lee DH, Park KS, Shin HE, Kim SB, Choi H, An SB, Choi H, Kim JP, Han I. Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. Int J Mol Sci 2023; 24:16827. [PMID: 38069151 PMCID: PMC10706656 DOI: 10.3390/ijms242316827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Functionally enhanced mesenchymal stromal cells participate in the repair of intervertebral disc. This study aimed to assess the safety and tolerability of intradiscal administration of matrilin-3-primed adipose-derived stromal cell (ASC) spheroids with hyaluronic acid (HA) in patients with chronic discogenic low back pain (LBP). In this single-arm, open-label phase I clinical trial, eight patients with chronic discogenic LBP were observed over 6 months. Each patient underwent a one-time intradiscal injection of 1 mL of 6.0 × 106 cells/disc combined with HA under real-time fluoroscopic guidance. Safety and feasibility were gauged using Visual Analogue Scale (VAS) pain and Oswestry Disability Index (ODI) scores and magnetic resonance imaging. All participants remained in the trial, with no reported adverse events linked to the procedure or stem cells. A successful outcome-marked by a minimum 2-point improvement in the VAS pain score and a 10-point improvement in ODI score from the start were observed in six participants. Although the modified Pfirrmann grade remained consistent across all participants, radiological improvements were evident in four patients. Specifically, two patients exhibited reduced high-intensity zones while another two demonstrated decreased disc protrusion. In conclusion, the intradiscal application of matrilin-3-primed ASC spheroids with HA is a safe and feasible treatment option for chronic discogenic LBP.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Neurosurgery, Spine Center, The Leon Wiltse Memorial Hospital, Suwon 16480, Republic of Korea;
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Hae Eun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyejeong Choi
- Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Joo Pyung Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| |
Collapse
|
9
|
Zhang W, Wang D, Li H, Xu G, Zhang H, Xu C, Li J. Mesenchymal stem cells can improve discogenic pain in patients with intervertebral disc degeneration: a systematic review and meta-analysis. Front Bioeng Biotechnol 2023; 11:1155357. [PMID: 37397969 PMCID: PMC10313064 DOI: 10.3389/fbioe.2023.1155357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Background: The meta-analysis aimed to estimate the efficacy of mesenchymal stem cells on lumbar discogenic pain in patients with intervertebral disc degeneration. Methods: A comprehensive literature search was conducted in the PubMed, Web of Science, Embase and Cochrane Library databases with predetermined search strategy up to 18 September 2022. The clinical studies focusing on evaluating the efficacy and safety of mesenchymal stem cells in patients with intervertebral disc degeneration were identified. The primary outcomes were changes of pain score and Oswestry Disability Index. The Newcastle-Ottawa Scale for cohort studies was used for quality assessment. Review Manager was used to conduct the statistical analysis. Pooled risk ratios were calculated based on the random effect model. Heterogeneity, subgroup, and publication bias analyses were also performed. Results: There were 2,392 studies were identified in the initial search, and 9 eligible studies with 245 patients were eventually included in this review. The Visual Analogue Scale score was significantly lower in patients after receiving mesenchymal stem cells therapy (mean difference = 41.62; 95% confidence interval 24.32 to 58.93; Heterogeneity: I2 = 98%; p < 0.01). And the pooled mean difference of Oswestry Disability Index was 22.04 from baseline to final follow-up points (95% confidence interval 8.75 to 35.33; p = 0.001; Heterogeneity: I2 = 98%; p < 0.001). The pooled reoperation proportion was 0.074 (95% confidence interval 0.009 to 0.175; Heterogeneity: I2 = 72%; p < 0.01). There were no serious related adverse events associated with the therapy. Conclusion: The findings of this meta-analysis indicated that mesenchymal stem cells therapy may be effective in relieving pain and improving Oswestry Disability Index significantly in patients with lumbar discogenic pain. Mesenchymal stem cells therapy may also be associated with a lower risk of adverse events and reoperation rates.
Collapse
Affiliation(s)
- Wupeng Zhang
- School of Medicine, Nankai University, Tianjin, China
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hao Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
10
|
Nguyen M, Saffarian M, Smith CC, Holder EK, Lee H, Marshall BJ, Mattie R, Patel J, Schneider B, McCormick ZL. FactFinders for patient safety: Understanding potential procedure-related complications: RFN/multifidus atrophy, intradiscal biologics, and facet cyst rupture. INTERVENTIONAL PAIN MEDICINE 2023; 2:100248. [PMID: 39238672 PMCID: PMC11372888 DOI: 10.1016/j.inpm.2023.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 09/07/2024]
Abstract
This series of FactFinders presents a brief summary of the evidence and outlines recommendations to improve our understanding and management of several potential procedure-related complications. The evidence in support of the following facts is presented: (1) Multifidus Atrophy After Lumbar Medial Branch Radiofrequency Neurotomy (LMBRFN) -- There is no conclusive published literature indicating that LMBRFN leads to increased multifidus atrophy relative to natural history. High-quality prospective studies with a natural history comparison group evaluating immediate pre-procedure as well as post-procedure longitudinal cross-sectional imaging are needed to accurately assess for any possible influence of LMBRFN on multifidus atrophy as well as the clinical relevance. (2) Intradiscal Biologics -- Although the available evidence on intradiscal biologic interventions is limited, it nonetheless shows a non-zero risk of complications. Until larger sample sizes are reported, the actual magnitude of the risk cannot be ascertained. In the meantime, physicians who perform intradiscal injections of biologics should conscientiously consider the risk-benefit of these procedures. (3) Lumbar Facet Synovial Cyst Rupture -- There have been few reports of complications secondary to lumbar facet synovial cyst rupture. Risks of may include increased pain, infection, and nerve root compression.
Collapse
Affiliation(s)
- Minh Nguyen
- University of Texas Southwestern, Department of Physical Medicine and Rehabilitation, Dallas, TX, USA
| | - Mathew Saffarian
- Michigan State University, Department of Physical Medicine and Rehabilitation, East Lansing, MI, USA
| | - Clark C Smith
- Columbia University Medical Center, Rehabilitation and Regenerative Medicine, New York, NY, USA
| | - Eric K Holder
- Yale University School of Medicine, Department of Orthopedics and Rehabilitation, New Haven, CT, USA
| | - Haewon Lee
- University of California, San Diego, Department of Orthopedic Surgery, San Diego, CA, USA
| | - Benjamin J Marshall
- Department of Physical Medicine and Rehabilitation, University of Colorado, School of Medicine, Denver, CO, USA
| | - Ryan Mattie
- Providence Cedars-Sinai Tarzana Medical Center, Department of Interventional Pain & Spine, Los Angeles, CA, USA
| | - Jaymin Patel
- Emory University, Department of Orthopaedics, Atlanta, GA, USA
| | - Byron Schneider
- Vanderbilt University Medical Center, Dept of Physical Medicine & Rehabilitation, Nashville, TN, USA
- Vanderbilt University Medical Center, Center for Musculoskeletal Research, Nashville, TN, USA
| | - Zachary L McCormick
- University of Utah, Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Soufi KH, Castillo JA, Rogdriguez FY, DeMesa CJ, Ebinu JO. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108893. [PMID: 37240236 DOI: 10.3390/ijms24108893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Back pain is the single leading cause of disability worldwide. Despite the prevalence and morbidity of lower back pain, we still lack a gold-standard treatment that restores the physiological function of degenerated intervertebral discs. Recently, stem cells have emerged as a promising strategy for regenerative therapy for degenerative disc disease. In this study, we review the etiology, pathogenesis, and developing treatment strategies for disc degeneration in low back pain with a focus on regenerative stem cell therapies. A systematic search of PubMed/MEDLINE/Embase/Clinical Trials.gov databases was conducted for all human subject abstracts or studies. There was a total of 10 abstracts and 11 clinical studies (1 RCT) that met the inclusion criteria. The molecular mechanism, approach, and progress of the different stem cell strategies in all studies are discussed, including allogenic bone marrow, allogenic discogenic cells, autologous bone marrow, adipose mesenchymal stem cells (MSCs), human umbilical cord MSC, adult juvenile chondrocytes, autologous disc derived chondrocytes, and withdrawn studies. Clinical success with animal model studies is promising; however, the clinical outcomes of stem cell regenerative therapy remain poorly understood. In this systematic review, we found no evidence to support its use in humans. Further studies on efficacy, safety, and optimal patient selection will establish whether this becomes a viable, non-invasive therapeutic option for back pain.
Collapse
Affiliation(s)
- Khadija H Soufi
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Jose A Castillo
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Freddie Y Rogdriguez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Charles J DeMesa
- Department of Anesthesia and Pain Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Julius O Ebinu
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
12
|
Afzali MF, Pannone SC, Martinez RB, Campbell MA, Sanford JL, Pezzanite L, Kurihara J, Johnson V, Dow SW, Santangelo KS. Intravenous injection of adipose-derived mesenchymal stromal cells benefits gait and inflammation in a spontaneous osteoarthritis model. J Orthop Res 2023; 41:902-912. [PMID: 36030381 PMCID: PMC9968820 DOI: 10.1002/jor.25431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression. Indeed, multiple manuscripts have evaluated intra-articular administration of adMSCs as a therapeutic; however, comparatively few evaluations of systemic delivery methods have been published. Therefore, the aim of this study was to evaluate the short-term impact of intravenous (IV) delivery of allogeneic adMSCs in an established model of spontaneous OA, the Hartley guinea pig. Animals with moderate OA received once weekly injections of 2 × 106 adMSCs or vehicle control for 4 weeks in peripheral veins; harvest occurred 2 weeks after the final injection. Systemic administration of adMSCs resulted in no adverse effects and was efficacious in reducing clinical signs of OA (as assessed by computer-aided gait analysis) compared to control injected animals. Further, there were significant decreases in key inflammatory mediators (including monocyte chemoattractant protein-1, tumor necrosis factor, and prostaglandin E2 ) both systemically (liver, kidney, and serum) and locally in the knee (joint tissues and synovial fluid) in animals treated with IV adMSCs relative to controls (as per enzyme-linked immunosorbent assay and/or immunohistochemistry, dictated by tissue sample). Thus, systemic administration of adMSCs by IV injection significantly improved gait parameters and reduced both systemic and intra-articular inflammatory mediators in animals with OA. These findings demonstrate the potential utility of alternative delivery approaches for cellular therapy of OA, particularly for patients with multiple affected joints.
Collapse
Affiliation(s)
- Maryam F. Afzali
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Stephen C. Pannone
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Richard B. Martinez
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Margaret A Campbell
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Joseph L. Sanford
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Lynn Pezzanite
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jade Kurihara
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Valerie Johnson
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Steven W. Dow
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| |
Collapse
|
13
|
Schol J, Sakai D. Comprehensive narrative review on the analysis of outcomes from cell transplantation clinical trials for discogenic low back pain. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 13:100195. [PMID: 36655116 PMCID: PMC9841054 DOI: 10.1016/j.xnsj.2022.100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background Intervertebral disc (IVD) degeneration is one of the primary causes of low back pain (LBP) and despite a prominent prevalence, present treatment options remain inadequate for a large portion of LBP patients. New developments in regenerative therapeutics offer potentially powerful medical tools to modify this pathology, with specific focus on (stem) cell transplantations. Multiple clinical trials have since reported overall beneficial outcomes favoring cell therapy. Nonetheless, the significance of these improvements is often not (clearly) discussed. As such, this narrative review aims to summarize the significance of the reported improvements from human clinical trials on IVD-targeted cell therapy. Methods Through a comprehensive narrative review we discuss the improvements in pain, disability, quality of life, and imaging modalities and reported adverse events following cell therapy for discogenic pain. Results Most clinical trials were able to report clear and significant improvements in pain and disability outcomes. Imaging and quality of life improvements however were not as clearly reported but did present some enhancements for a select number of patients. Finally, whether cell therapy can outperform placebo treatment remains intangible. Conclusions Our review highlights the clinical significance of observed trends in pain and disability improvement. Nevertheless, reporting quality was found unsatisfactory and large-scale randomized controlled studies remain small in number. Future studies and articles should put more emphasis on improvements in imaging modalities and compare outcomes to (placebo) control groups to fully elucidate the efficacy and safety of cellular therapeutics against LBP.
Collapse
Affiliation(s)
- Jordy Schol
- Tokai University School of Medicine, Department of Orthopedic Surgery, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Daisuke Sakai
- Tokai University School of Medicine, Department of Orthopedic Surgery, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
14
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
15
|
Cheng J. Cell-Based Therapies in Clinical Pain Management. NEUROIMMUNE INTERACTIONS IN PAIN 2023:273-286. [DOI: 10.1007/978-3-031-29231-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Axial Spine and Sacroiliac Joint. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
17
|
Centeno CJ, Hyzy M, Williams CJ, Lucas M, Jerome MA, Cartier C. Bone Marrow-Derived Stem Cells and Their Application in Pain Medicine. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
18
|
Low Back Pain, Disability, and Quality of Life One Year following Intradiscal Injection of Autologous Bone Marrow Aspirate Concentrate. Stem Cells Int 2022; 2022:9617511. [PMID: 36579141 PMCID: PMC9792240 DOI: 10.1155/2022/9617511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Degenerative disc disease is a common cause of chronic low back pain. Surgical intervention is an invasive treatment associated with high costs. There is growing interest in regenerative medicine as a less invasive but direct disc treatment for chronic discogenic low back pain. Objective To evaluate clinical improvement of primary discogenic low back pain with intradiscal injection of autologous bone marrow aspirate concentrate (BMAC). Study Design. Prospective cohort study. Setting. Single, multiphysician center. Patients. 32 adult patients undergoing intradiscal injection of autologous BMAC for the treatment of primary discogenic low back pain. Interventions. Intradiscal injection of autologous BMAC. Main Outcome Measures. Primary outcome measure is visual analog back pain scale (VAS back pain). Secondary outcome measures include ODI, VAS leg pain, and EQ-5D-5L scores. Outcomes were compared from baseline to 1 year. Results Thirty-two patients (56.3% male) with a mean age of 45.9 years were enrolled, giving 92 treated levels. Mean VAS back and leg pain scores improved from 5.4 to 3.0 (p < 0.001) and 2.8 to 1.3 (p = 0.005), respectively. Mean ODI scores decreased from 33.5 to 21.1 (p < 0.001), and EQ-5D-5L scores improved from 0.69 to 0.78 (p = 0.001). Using established MCID values, 59.4% had clinically significant improvement in VAS back pain, 43.8% in VAS leg pain, and 56.3% in ODI scores. Conclusion Intradiscal injection of autologous BMAC significantly improved low back pain, disability, and quality of life at one year. This study suggests that intradiscal BMAC has the potential to be an effective nonsurgical treatment for chronic discogenic low back pain.
Collapse
|
19
|
Her YF, Kubrova E, Martinez Alvarez GA, D’Souza RS. The Analgesic Efficacy of Intradiscal Injection of Bone Marrow Aspirate Concentrate and Culture-Expanded Bone Marrow Mesenchymal Stromal Cells in Discogenic Pain: A Systematic Review. J Pain Res 2022; 15:3299-3318. [PMID: 36299501 PMCID: PMC9590351 DOI: 10.2147/jpr.s373345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pain originating from the intervertebral disc (discogenic pain) is a prevalent manifestation of low back pain and is often challenging to treat. Of recent interest, regenerative medicine options with injectable biologics have been trialed in discogenic pain and a wide variety of other painful musculoskeletal conditions. In particular, the role of bone marrow aspirate concentrate (BMAC) and culture-expanded bone marrow derived mesenchymal stromal cells (BM-MSCs) in treating discogenic pain remains unclear. The primary objective of this systematic review was to appraise the evidence of intradiscal injection with BMAC and culture-expanded BM-MSCs in alleviating pain intensity from discogenic pain. Secondary outcomes included changes in physical function after intradiscal injection, correlation between stromal cell count and pain intensity, and anatomical changes of the disc assessed by radiographic imaging after intradiscal injection. Overall, 16 studies consisting of 607 participants were included in qualitative synthesis without pooling. Our synthesis revealed that generally intradiscal autologous or allogeneic BMAC and culture-expanded BM-MSCs improved discogenic pain compared to baseline. Intradiscal injection was also associated with improvements in physical functioning and positive anatomical changes on spine magnetic resonance imaging (improved disc height, disc water content, Pfirrmann grading) although anatomical findings were inconsistent across studies. However, the overall GRADEscore for this study was very low due to heterogeneity and poor generalizability. There were no serious adverse events reported post intradiscal injection except for a case of discitis.
Collapse
Affiliation(s)
- Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN, 55905, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Hospital, Rochester, MN, 55905, USA
| | | | - Ryan S D’Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN, 55905, USA,Correspondence: Ryan S D’Souza, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA, Tel +507-284-9696, Email
| |
Collapse
|
20
|
Sakai D, Schol J, Watanabe M. Clinical Development of Regenerative Medicine Targeted for Intervertebral Disc Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:267. [PMID: 35208590 PMCID: PMC8878570 DOI: 10.3390/medicina58020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Low back pain is critical health, social, and economic issue in modern societies. This disease is often associated with intervertebral disc degeneration; however, contemporary treatments are unable to target this underlying pathology to alleviate the pain symptoms. Cell therapy offers a promising novel therapeutic that, in theory, should be able to reduce low back pain through mitigating the degenerative disc environment. With the clinical development of cell therapeutics ongoing, this review aims to summarize reporting on the different clinical trials and assess the different regenerative strategies being undertaken to collectively obtain an impression on the potential safety and effectiveness of cell therapeutics against intervertebral disc-related diseases.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara 259-1193, Japan; (J.S.); (M.W.)
| | | | | |
Collapse
|
21
|
Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12020420. [PMID: 35204509 PMCID: PMC8870820 DOI: 10.3390/diagnostics12020420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Low back pain (LBP) is one of the leading causes of disability worldwide, with a significant socioeconomic burden on healthcare systems. It is mainly caused by degenerative disc disease (DDD), a progressive, chronic, and age-related process. With its capacity to accurately characterize intervertebral disc (IVD) and spinal morphology, magnetic resonance imaging (MRI) has been established as one of the most valuable tools in diagnosing DDD. However, existing technology cannot detect subtle changes in IVD tissue composition and cell metabolism. In this review, we summarized the state of the art regarding innovative quantitative MRI modalities that have shown the capacity to discriminate and quantify changes in matrix composition and integrity, as well as biomechanical changes in the early stages of DDD. Validation and implementation of this new technology in the clinical setting will allow for an early diagnosis of DDD and ideally guide conservative and regenerative treatments that may prevent the progression of the degenerative process rather than intervene at the latest stages of the disease.
Collapse
|
22
|
Schneider BJ, Hunt C, Conger A, Qu W, Maus TP, Vorobeychik Y, Cheng J, Duszynski B, McCormick ZL. The effectiveness of intradiscal biologic treatments for discogenic low back pain: a systematic review. Spine J 2022; 22:226-237. [PMID: 34352363 DOI: 10.1016/j.spinee.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT There are limited treatments for discogenic low back pain. Intradiscal injections of biologic agents such as platelet-rich plasma (PRP) or stem cells (SC) are theorized to have regenerative properties and have gained increasing interest as a possible treatment, but the evidence supporting their use in clinical practice is not yet well-defined. PURPOSE Determine the effectiveness of intradiscal biologics for treating discogenic low back pain. STUDY DESIGN PRISMA-compliant systematic review. PATIENT SAMPLE Patients with discogenic low back pain confirmed by provocation discography or clinical and imaging findings consistent with discogenic pain. OUTCOME MEASURES The primary outcome was the proportion of individuals with ≥50% pain relief after intradiscal biologic injection at 6 months. Secondary outcomes included ≥2-point pain score reduction on NRS; patient satisfaction; functional improvement; decreased use of other health care, including analgesics and surgery; and structural disc changes on MRI. METHODS Comprehensive literature search performed in 2018 and updated in 2020. Interventions included were biologic therapies including mesenchymal stem cells, platelet rich plasma, microfragmented fat, amniotic membrane-based injectates, and autologous conditioned serum. Any other treatment (sham or active) was considered for comparative studies. Studies were independently reviewed. RESULTS The literature search yielded 3,063 results, 37 studies were identified for full-text review, and 12 met established inclusion criteria for review. The quality of evidence on effectiveness of intradiscal biologics was very low. A single randomized controlled trial evaluating platelet-rich plasma reported positive outcomes but had significant methodological flaws. A single trial that evaluated mesenchymal stem cells was negative. Success rates for platelet-rich plasma injectate in aggregate were 54.8% (95% Confidence Interval: 40%-70%). For mesenchymal stem cells, the aggregate success rate at six months was 53.5% (95% Confidence Interval: 38.6%-68.4%), though using worst-case analysis this decreased to 40.7% (95% Confidence Interval: 28.1%-53.2%). Similarly, ≥30% functional improvement was achieved in 74.3% (95% Confidence Interval: 59.8%-88.7%) at six months but using worst-case analysis, this decreased to 44.1% (95% Confidence Interval: 28.1%-53.2%). CONCLUSION Limited observational data support the use of intradiscal biologic agents for the treatment of discogenic low back pain. According to the Grades of Recommendation, Assessment, Development and Evaluation System, the evidence supporting use of intradiscal mesenchymal stem cells and platelet-rich plasma is very low quality.
Collapse
Affiliation(s)
- Byron J Schneider
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, USA.
| | - Christine Hunt
- Department of Anesthesiology & Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aaron Conger
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Wenchun Qu
- Department of Pain Medicine, Center of Regenerative Medicine, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Timothy P Maus
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yakov Vorobeychik
- Penn State Health, Milton S. Hershey Medical Center, Department of Anesthesiology and Perioperative Medicine, Department of Neurology, Hershey, PA, USA
| | - Jianguo Cheng
- Departments of Pain Management and Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | | | - Zachary L McCormick
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Kirnaz S, Singh S, Capadona C, Lintz M, Goldberg JL, McGrath LB, Medary B, Sommer F, Bonassar LJ, Härtl R. Innovative Biological Treatment Methods for Degenerative Disc Disease. World Neurosurg 2021; 157:282-299. [PMID: 34929786 DOI: 10.1016/j.wneu.2021.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
Low back pain is the leading cause of work absences and years lived with disability, and it is often associated with degenerative disc disease. In recent years, biological treatment approaches such as the use of growth factors, cell injections, annulus fibrosus (AF) repair, nucleus pulposus replacement, and tissue-engineered discs have been explored as means for preventing or reversing degenerative disc disease. Both animal and clinical studies have shown promising results for cell-based therapy on the grounds of its regenerative potential. Clinical data also indicate that stem cell injection is safe when appropriately performed, albeit its long-term safety and efficacy are yet to be explored. Numerous challenges also remain to be overcome, such as isolating, differentiating, and preconditioning the disc cells, as well as managing the nutrient-deficient and oxygen-deficient micromilieu of the intervertebral disc (IVD). AF repair methods including devices used in clinical trials have shown success in decreasing reherniation rates and improving overall clinical outcomes. In addition, recent studies that combined AF repair and nucleus pulposus replacement have shown improved biomechanical stability in IVDs after the combined treatment. Tissue-engineered IVDs for total disc replacement are still being developed, and future studies are necessary to overcome the challenges in their delivery, efficacy, and safety.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Sunidhi Singh
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Marianne Lintz
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Medicine Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
24
|
Regenerative Medicine Modalities for the Treatment of Degenerative Disk Disease. Clin Spine Surg 2021; 34:363-368. [PMID: 33264128 DOI: 10.1097/bsd.0000000000001114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2020] [Indexed: 11/26/2022]
Abstract
Degenerative disk disease is a pathologic state associated with axial skeletal pain, radiculopathy, and myelopathy, and will inevitably increase in prevalence in parallel with an aging population. The objective of regenerative medicine is to convert the inflammatory, catabolic microenvironment of degenerative disease into an anti-inflammatory, anabolic environment. This comprehensive review discusses and outlines both in vitro and in vivo efficacy of regenerative treatment modalities for degenerative disk disease, such as; mesenchymal stem cells, gene therapy, tissue engineering, and biologic treatments. To date, clinical applications have been limited secondary to a lack of standardized high quality clinical data. Additional research should focus on determining the optimal cellular makeup and concentration for each of these interventions. Nevertheless, modern medicine provides a new avenue of confronting disease, with methods surpassing traditional methods of removing the pathology in question, as regenerative medicine provides the opportunity to recover from the diseased state.
Collapse
|
25
|
Vadalà G, Ambrosio L, Russo F, Papalia R, Denaro V. Stem Cells and Intervertebral Disc Regeneration Overview-What They Can and Can't Do. Int J Spine Surg 2021; 15:40-53. [PMID: 34376495 DOI: 10.14444/8054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low back pain (LPB) is the main cause of disability worldwide with enormous socioeconomic burdens. A major cause of LBP is intervertebral disc degeneration (IDD): a chronic, progressive process associated with exhaustion of the resident cell population, tissue inflammation, degradation of the extracellular matrix and dehydration of the nucleus pulposus. Eventually, IDD may lead to serious sequelae including chronic LBP, disc herniation, segmental instability, and spinal stenosis, which may require invasive surgical interventions. However, no treatment is actually able to directly tackle IDD and hamper the degenerative process. In the last decade, the intradiscal injection of stem cells is raising as a promising approach to regenerate the intervertebral disc. This review aims to describe the rationale behind a regenerative stem cell therapy for IDD as well as the effect of stem cells following their implantation in the disc environment according to preclinical studies. Furthermore, actual clinical evidence and ongoing trials will be discussed, taking into account the future perspective and current limitations of this cutting-edge therapy. METHODS A literature analysis was performed for this narrative review. A database search of PubMed, Scopus and ClinicalTrials.gov was conducted using "stem cells" combined with "intervertebral disc", "degeneration" and "regeneration" without exclusion based on publication date. Articles were firstly screened on a title-abstract basis and, subsequently, full-text were reviewed. Both preclinical and clinical studies have been included. RESULTS The database search yielded recent publications from which the narrative review was completed. CONCLUSIONS Based on available evidence, intradiscal stem cell therapy has provided encouraging results in terms of regenerative effects and reduction of LBP. However, multicenter, prospective randomized trials are needed in order confirm the safety, efficacy and applicability of such a promising treatment.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
26
|
Jerome MA, Lutz C, Lutz GE. Risks of Intradiscal Orthobiologic Injections: A Review of the Literature and Case Series Presentation. Int J Spine Surg 2021; 15:26-39. [PMID: 34376494 DOI: 10.14444/8053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intervertebral disc disease (IDD) is responsible for a large portion of back pain with historically suboptimal treatments for long-term improvement. IDD pathogenesis is thought to arise at a cellular and biochemical level, making biologically based injections an area of clinical interest. Although human studies have shown promise, emerging data suggest there may be risks inherent to such injections that were previously unrecognized. The aim of this review is to summarize the known risks to date and provide mitigation steps to reduce potential complications in the future. In addition, we present a small case series of serious adverse events (SAEs) from our clinical practice. METHODS A literature review was performed to identify human intradiscal autologous biologic injection studies to date, including mesenchymal signaling cells (MSCs) and platelet-rich plasma (PRP) preparations, which were reviewed for complications. Cases of complication following intradiscal orthobiologic injection were identified from a single outpatient center and reviewed. RESULTS Publications of MSC-based intradiscal injection documented 136 total patients treated with two SAEs reported, one infection and one progressive disc herniation. Publications of PRP intradiscal injection included 194 patients with one SAE reported. We also review three cases of previously unpublished SAEs, including one case of confirmed infection with Cutibacterium acnes (C acnes) and two presumed cases of discitis without pathogen confirmation. Bone marrow concentrate was the injectate in all three cases. CONCLUSIONS Although biologic intradiscal injection shows promise for the treatment of discogenic back pain, there are inherent risks to be considered and mitigated. We currently recommend a leukocyte-rich PRP and a two-needle delivery technique coupled with intradiscal gentamicin to mitigate the risk of postinjection spondylodiscitis. Further research is needed using large registries to not only track clinical outcomes but also complication rates.
Collapse
Affiliation(s)
| | - Christopher Lutz
- Regenerative SportsCare Institute, New York, New York.,Department of Physiatry, Hospital for Special Surgery, New York, New York.,Department of Rehabilitation Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory E Lutz
- Regenerative SportsCare Institute, New York, New York.,Department of Physiatry, Hospital for Special Surgery, New York, New York.,Department of Rehabilitation Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
27
|
El-Kadiry AEH, Lumbao C, Rafei M, Shammaa R. Autologous BMAC Therapy Improves Spinal Degenerative Joint Disease in Lower Back Pain Patients. Front Med (Lausanne) 2021; 8:622573. [PMID: 33816523 PMCID: PMC8012529 DOI: 10.3389/fmed.2021.622573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/26/2021] [Indexed: 01/08/2023] Open
Abstract
Spinal degenerative joint disease (DJD) is associated with lower back pain (LBP) arising from the degeneration of intervertebral discs (IVD), facet joints, intertransversarii muscles, and interspinous ligaments among other anatomical structures. To circumvent the socioeconomic burdens and often-problematic surgical options imposed by DJD therapy, cell-based biologic modalities like bone marrow aspirate concentrate (BMAC) have been investigated in pre-clinical and clinical settings, mostly for IVD degeneration (IDD), with encouraging outcomes. In this study, we evaluated the differences in therapeutic benefits of BMAC between IVD- and facet joint-originating chronic LBP. Eighteen patients diagnosed with chronic LBP met the selection criteria. Following discography and provocation testing, 13 patients tested positive and were assigned into IDD-associated LBP (1st arm), while the remaining 5 tested negative and were assigned into facetogenic LBP (2nd arm). Autologous BMAC was injected intradiscally in the 1st arm, while the 2nd arm received posterior spinal chain injections. No procedure-related serious events ensued. Clinical improvement was evaluated over 12 months based on pain and functionality questionnaires (VAS, BPI, RAND-36), opioid use, and changes in disc parameters assessed by magnetic resonance imaging (MRI). Ameliorated VAS and BPI scores differed significantly between both arms in favor of IDD patients who also took significantly less opioids. Average RAND-36 scores showed no significant difference between groups albeit a trend suggesting improvement was observed in IDD patients. MRI scans conducted on IDD patients demonstrated marked elevation in disc height and spinal canal space size without worsening disc quality. Overall, this is the first study investigating the potency of BMAC as an IDD treatment in Canada and the first globally for addressing facetogenic pain using cellular therapy.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Carlos Lumbao
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Migliore A, Sorbino A, Bacciu S, Bellelli A, Frediani B, Tormenta S, Pirri C, Foti C. The Technique of Intradiscal Injection: A Narrative Review. Ther Clin Risk Manag 2020; 16:953-968. [PMID: 33116545 PMCID: PMC7553660 DOI: 10.2147/tcrm.s251495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Background Low back pain (LBP) is one of the most common spine diseases and represents the most frequent cause of absence from work in developed countries. Approximately 40% of chronic LBP is related to discogenic origin. The goal of the study is producing a review of literature to describe analytically the techniques of intradiscal injections. Methods PubMed database was searched for clinical studies with the different key terms: “intradiscal”, “injection”, “steroid” “procedures”, “techniques”, “CT”, “MRI”, “fluoroscopy”, “fluoroscopic”, “guidance”, “ozone”, “ultrasound”, “images”. Only studies written in English, French, or Italian in which the intradiscal injection represents the main procedure for the low back discopathy treatment on humans were considered. We excluded the articles that do not mention this procedure; those which indicated that the intradiscal injection had happened accidentally during other treatments; those reporting the patient’s pain was determined by other causes than the discopathy (facet joint syndrome, tumor, spondylodiscitis). Results Thirty-one articles dated from 1969 to 2018 met the criteria. The examined population was 6843 subjects, 52.3% male and 47.7% female, with a mean age of 45.9±10.1 years. The techniques are highly variable in terms of procedure: different operators, needle guidance, injection sites, drugs, tilt angle of the needle). Conclusion The efficacy and the safety of the intradiscal procedures are not easily comparable due to different types of studies and their limited number. Further studies are needed to standardize the intradiscal injection technique/procedure to improve safety, repeatability and effectiveness, and last but not least to reduce peri- and postoperative care and health-care costs.
Collapse
Affiliation(s)
| | - Andrea Sorbino
- Physical and Rehabilitation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Serenella Bacciu
- Physical and Rehabilitation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Bruno Frediani
- Research Centre of Systemic Autoinflammatory Diseases Behcet Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Centre Department of Medical Sciences Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Carmelo Pirri
- Physical and Rehabilitation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Calogero Foti
- Physical and Rehabilitation Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
29
|
Abstract
Biologics are a growing field that has shown immense promise for the treatment of musculoskeletal conditions both in orthopedic sports medicine and interventional pain management. These procedures utilize injection of supraphysiologic levels of platelets and growth factors to invoke the body's own inflammatory cascade to augment the healing of many bony and soft tissue conditions. While many patients improve with conservative care, there is a need to address the gap between those that improve with rehabilitation alone and those who ultimately require operative management. Orthobiologic procedures have the potential to fill this void. The purpose of this review is to summarize the basic science, evidence for use, and post-injection rehabilitation concepts of platelet-rich plasma (PRP) and mesenchymal stromal cells (MSCs) as they pertain to joints, tendons, ligaments, and the spine.
Collapse
Affiliation(s)
- Robert L Bowers
- Department of Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA.
| | - Wesley D Troyer
- Department of Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
| | - Rudolph A Mason
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA; Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Mautner
- Department of Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
30
|
A. Everts P, Flanagan II G, Rothenberg J, Mautner K. The Rationale of Autologously Prepared Bone Marrow Aspirate Concentrate for use in Regenerative Medicine Applications. Regen Med 2020. [DOI: 10.5772/intechopen.91310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
31
|
Kreiner DS, Matz P, Bono CM, Cho CH, Easa JE, Ghiselli G, Ghogawala Z, Reitman CA, Resnick DK, Watters WC, Annaswamy TM, Baisden J, Bartynski WS, Bess S, Brewer RP, Cassidy RC, Cheng DS, Christie SD, Chutkan NB, Cohen BA, Dagenais S, Enix DE, Dougherty P, Golish SR, Gulur P, Hwang SW, Kilincer C, King JA, Lipson AC, Lisi AJ, Meagher RJ, O'Toole JE, Park P, Pekmezci M, Perry DR, Prasad R, Provenzano DA, Radcliff KE, Rahmathulla G, Reinsel TE, Rich RL, Robbins DS, Rosolowski KA, Sembrano JN, Sharma AK, Stout AA, Taleghani CK, Tauzell RA, Trammell T, Vorobeychik Y, Yahiro AM. Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of low back pain. Spine J 2020; 20:998-1024. [PMID: 32333996 DOI: 10.1016/j.spinee.2020.04.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The North American Spine Society's (NASS) Evidence Based Clinical Guideline for the Diagnosis and Treatment of Low Back Pain features evidence-based recommendations for diagnosing and treating adult patients with nonspecific low back pain. The guideline is intended to reflect contemporary treatment concepts for nonspecific low back pain as reflected in the highest quality clinical literature available on this subject as of February 2016. PURPOSE The purpose of the guideline is to provide an evidence-based educational tool to assist spine specialists when making clinical decisions for adult patients with nonspecific low back pain. This article provides a brief summary of the evidence-based guideline recommendations for diagnosing and treating patients with this condition. STUDY DESIGN This is a guideline summary review. METHODS This guideline is the product of the Low Back Pain Work Group of NASS' Evidence-Based Clinical Guideline Development Committee. The methods used to develop this guideline are detailed in the complete guideline and technical report available on the NASS website. In brief, a multidisciplinary work group of spine care specialists convened to identify clinical questions to address in the guideline. The literature search strategy was developed in consultation with medical librarians. Upon completion of the systematic literature search, evidence relevant to the clinical questions posed in the guideline was reviewed. Work group members utilized NASS evidentiary table templates to summarize study conclusions, identify study strengths and weaknesses, and assign levels of evidence. Work group members participated in webcasts and in-person recommendation meetings to update and formulate evidence-based recommendations and incorporate expert opinion when necessary. The draft guideline was submitted to an internal and external peer review process and ultimately approved by the NASS Board of Directors. RESULTS Eighty-two clinical questions were addressed, and the answers are summarized in this article. The respective recommendations were graded according to the levels of evidence of the supporting literature. CONCLUSIONS The evidence-based clinical guideline has been created using techniques of evidence-based medicine and best available evidence to aid practitioners in the diagnosis and treatment of adult patients with nonspecific low back pain. The entire guideline document, including the evidentiary tables, literature search parameters, literature attrition flowchart, suggestions for future research, and all of the references, is available electronically on the NASS website at https://www.spine.org/ResearchClinicalCare/QualityImprovement/ClinicalGuidelines.aspx.
Collapse
Affiliation(s)
- D Scott Kreiner
- Barrow Neurological Institute, 4530 E. Muirwood Dr. Ste. 110, Phoenix, AZ 85048-7693, USA.
| | - Paul Matz
- Advantage Orthopedics and Neurosurgery, Casper, WY, USA
| | | | - Charles H Cho
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zoher Ghogawala
- Lahey Hospital and Medical Center, Burlington, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| | | | | | - William C Watters
- Institute of Academic Medicine Houston Methodist Hospital, Houston, TX, USA
| | - Thiru M Annaswamy
- VA North Texas Health Care System, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Shay Bess
- Denver International Spine Center, Denver, CO, USA
| | - Randall P Brewer
- River Cities Interventional Pain Specialists, Shreveport, LA, USA
| | | | - David S Cheng
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Paul Park
- University Of Michigan, Ann Arbor, MI, USA
| | | | | | - Ravi Prasad
- University of California, Davis, Sacramento, CA, USA
| | | | - Kris E Radcliff
- Rothman Institute, Thomas Jefferson University, Egg Harbor Township, NJ, USA
| | | | | | | | | | | | | | | | | | | | - Ryan A Tauzell
- Choice Physical Therapy & Wellness, Christiansburg, VA, USA
| | | | - Yakov Vorobeychik
- Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Amy M Yahiro
- North American Spine Society, Burr Ridge, IL, USA
| |
Collapse
|
32
|
Ramos O, Speirs JN, Danisa O. Lumbar Discitis and Osteomyelitis After a Spinal Stem Cell Injection?: A Case Report and Literature Review. JBJS Case Connect 2020; 10:e1900636. [PMID: 32773702 DOI: 10.2106/jbjs.cc.19.00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CASE A 32-year-old man developed lumbar discitis and osteomyelitis after receiving a cell-based injection for the treatment of degenerative disc disease. Initial cultures were negative, but he continued to worsen, and a repeat set of cultures was taken. On day 10, Cutibacterium acnes was isolated. He was then successfully treated with 12 weeks of intravenous antibiotics. CONCLUSIONS There is minimal regulation on the preparation or administration of cell-based interventions. It is important to consider slow growing organisms such as C. acnes in patients presenting with spinal infection with insidious onset after these treatments.
Collapse
Affiliation(s)
- Omar Ramos
- 1Department of Orthopaedic Surgery, Loma Linda University, Loma Linda, California
| | | | | |
Collapse
|
33
|
Bone Morphogenetic Proteins for Nucleus Pulposus Regeneration. Int J Mol Sci 2020; 21:ijms21082720. [PMID: 32295299 PMCID: PMC7215319 DOI: 10.3390/ijms21082720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Matrix production by nucleus pulposus (NP) cells, the cells residing in the center of the intervertebral disc, can be stimulated by growth factors. Bone morphogenetic proteins (BMPs) hold great promise. Although BMP2 and BMP7 have been used most frequently, other BMPs have also shown potential for NP regeneration. Heterodimers may be more potent than single homodimers, but it is not known whether combinations of homodimers would perform equally well. In this study, we compared BMP2, BMP4, BMP6, and BMP7, their combinations and heterodimers, for regeneration by human NP cells. The BMPs investigated induced variable matrix deposition by NP cells. BMP4 was the most potent, both in the final neotissue glysosaminoglycan content and incorporation efficiency. Heterodimers BMP2/6H and BMP2/7H were more potent than their respective homodimer combinations, but not the BMP4/7H heterodimer. The current results indicate that BMP4 might have a high potential for regeneration of the intervertebral disc. Moreover, the added value of BMP heterodimers over their respective homodimer BMP combinations depends on the BMP combination applied.
Collapse
|
34
|
Wolff M, Shillington JM, Rathbone C, Piasecki SK, Barnes B. Injections of concentrated bone marrow aspirate as treatment for Discogenic pain: a retrospective analysis. BMC Musculoskelet Disord 2020; 21:135. [PMID: 32111220 PMCID: PMC7049206 DOI: 10.1186/s12891-020-3126-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background There are an overwhelming number of patients suffering from low back pain (LBP) resulting from disc pathology. Although several strategies are being developed pre-clinically, simple strategies to treat the large number of patients currently affected is still needed. One option is to use concentrated bone marrow aspirate (cBMA), which may be effective due to its intrinsic stem cells and growth factors. Methods Thirty-three patients who received intradiscal injections of cBMA to relieve LBP were followed up based on Numeric Rating Scale (NRS), Oswestry Low Back Pain Disability Index (ODI), and Short Form-36 Health Survey (SF-36) scores. Patients were also subdivided into those with a pre-injection NRS > 5 and pre-injection NRS ≤ 5. The proportion of patients demonstrating at least 50% improvement (and 95% confidence intervals) from baseline at five follow-up visits for each outcome was evaluated. Results At least 50% improvement in NRS was observed for 13.8, 45.8, 41.1, 23.5, and 38.9% of patients across five follow-up visits, out to 1 year. When stratified by high (> 5) versus low (≤ 5) baseline NRS scores, the values were 14.3, 45.5, 71.4, 22.2, and 44.4% among those with high baseline pain, and 13.3, 46.2, 20.0, 25.0, and 33.3% among those with low baseline pain. The 50% improvement rates across visits were 4.3, 28.6, 30.0, 22.2, and 30.8% for SF-36, and 4.2, 26.7, 36.4, 55.6, and 30.8% for ODI. Conclusions Intradiscal cBMA injections may be effective to reduce pain and improve function. Patients with relatively higher initial pain may have potential for greatest improvement.
Collapse
Affiliation(s)
- Michael Wolff
- Southwest Spine and Sports, 9913 N. 95th St, Scottsdale, AZ, 85258, USA.
| | | | | | | | | |
Collapse
|
35
|
Aoun SG, Peinado Reyes V, El Ahmadieh TY, Davies M, Patel AR, Ban VS, Plitt A, El Tecle NE, Moreno JR, Raisanen J, Bagley CA. Stem cell injections for axial back pain: a systematic review of associated risks and complications with a case illustration of diffuse hyperplastic gliosis resulting in cauda equina syndrome. J Neurosurg Spine 2019; 31:906-913. [PMID: 31491761 DOI: 10.3171/2019.6.spine19594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Axial low-back pain is a disease of epidemic proportions that exerts a heavy global toll on the active workforce and results in more than half a trillion dollars in annual costs. Stem cell injections are being increasingly advertised as a restorative solution for various degenerative diseases and are becoming more affordable and attainable by the public. There have been multiple reports in the media of these injections being easily available abroad outside of clinical trials, but scientific evidence supporting them remains scarce. The authors present a case of a serious complication after a stem cell injection for back pain and provide a systematic review of the literature of the efficacy of this treatment as well as the associated risks and complications. METHODS A systematic review of the literature was performed using the PubMed, Google Scholar, and Scopus online electronic databases to identify articles reporting stem cell injections for axial back pain in accordance with the PRISMA guidelines. The primary focus was on outcomes and complications. A case of glial hyperplasia of the roots of the cauda equina directly related to stem cell injections performed abroad is also reported. RESULTS The authors identified 14 publications (including a total of 147 patients) that met the search criteria. Three of the articles presented data for the same patient population with different durations of follow-up and were thus analyzed as a single study, reducing the total number of studies to 12. In these 12 studies, follow-up periods ranged from 6 months to 6 years, with 50% having a follow-up period of 1 year or less. Most studies reported favorable outcomes, although 36% used subjective measures. There was a tendency for pain relief to wane after 6 months to 2 years, with patients seeking a surgical solution. Only 1 study was a randomized controlled trial (RCT). CONCLUSIONS There are still insufficient data to support stem cell injections for back pain. Additional RCTs with long-term follow-up are necessary before statements can be made regarding the efficacy and safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Najib E El Tecle
- 2Department of Neurological Surgery, Saint Louis University Hospital, St. Louis, Missouri
| | | | - Jack Raisanen
- 3Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | |
Collapse
|
36
|
Kolber MJ, Purita J, Sterling B, Stermer J, Salamh P, Masaracchio M, Hanney WJ. Stem Cell Injections for Musculoskeletal Pathology: An Overview for the Sports Medicine Professional. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Kingery MT, Manjunath AK, Anil U, Strauss EJ. Bone Marrow Mesenchymal Stem Cell Therapy and Related Bone Marrow-Derived Orthobiologic Therapeutics. Curr Rev Musculoskelet Med 2019; 12:451-459. [PMID: 31749105 DOI: 10.1007/s12178-019-09583-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of the current article is to review the available literature related to bone marrow-derived mesenchymal stem cell therapy in the management of musculoskeletal pathologies and demonstrate the critical need for additional well-designed clinical studies. RECENT FINDINGS In recent years, there has been a rapid increase in interest regarding the use of bone marrow-derived mesenchymal stem cells in the treatment of musculoskeletal injury and disease. The clinical use of BM-MSCs and other forms of stem cell therapy has far outpaced the basic and translational science evidence required to elucidate the potential efficacy of this orthobiologic treatment approach. Early studies have demonstrated potential clinical benefit of utilizing bone marrow-derived mesenchymal stem cell therapy in the management of knee osteoarthritis, focal chondral lesions, shoulder pathology including rotator cuff tears and glenohumeral arthritis, and degenerative disk disease in the spine. To date, most published studies are small case series often lacking a control group or a standardized method of treatment. Bone marrow-derived mesenchymal stem cell therapy is becoming an increasingly common treatment for musculoskeletal injuries and disease. Although early clinical studies have shown promising outcomes, methodological flaws and lack of standardization among trials have limited the conclusions that can be drawn from the existing literature. A better understanding of the underlying mechanism of action and more carefully designed clinical trials will help reveal the efficacy and utility of BM-MSCs as a treatment modality for various orthopedic pathologies.
Collapse
Affiliation(s)
- Matthew T Kingery
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Amit K Manjunath
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Utkarsh Anil
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA. .,NYU Langone Orthopedics, 333 East 38th Street, 4th Floor, New York, NY, 10016, USA.
| |
Collapse
|
38
|
The Effectiveness and Safety of Percutaneous Platelet-Rich Plasma and Bone Marrow Aspirate Concentrate for the Treatment of Suspected Discogenic Low Back Pain: a Comprehensive Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2019. [DOI: 10.1007/s40141-019-00243-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
40
|
Urits I, Capuco A, Sharma M, Kaye AD, Viswanath O, Cornett EM, Orhurhu V. Stem Cell Therapies for Treatment of Discogenic Low Back Pain: a Comprehensive Review. Curr Pain Headache Rep 2019; 23:65. [PMID: 31359164 DOI: 10.1007/s11916-019-0804-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Discogenic low back pain (DLBP) stems from pathology in one or more intervertebral discs identified as the root cause of the pain. It is the most common type of chronic low back pain (LBP), representing 26-42% of attributable cases. RECENT FINDINGS The clinical presentation of DLBP includes increased pain when sitting, coughing, or sneezing, and experiencing relief when standing or ambulating. Dermatomal radiation of pain to the lower extremity and neurological symptoms including numbness, motor weakness, and urinary or fecal incontinence are signs of advanced disease with disc prolapse, nerve root compression, or spinal stenosis. Degenerative disc disease is caused by both a decrease in disc nutrient supply causing decreased oxygen, lowered pH, and lessened ability of the intervertebral disc (IVD) to respond to increased load or injury; moreover, changes in the extracellular matrix composition cause weakening of the tissue and skewing the extracellular matrix's (ECM) harmonious balance between catabolic and anabolic factors for cell turnover in favor of catabolism. Thus, the degeneration of the disc causes a shift from type II to type I collagen expression by NP cells and a decrease in aggrecan synthesis leads to dehydrated matrix cells ultimately with loss of swelling pressure needed for mechanical support. Cell-based therapies such as autologous nucleus pulposus cell re-implantation have in animal models and human trials shown improvements in LBP score, retention of hydration in IVD, and increased disc height. Percutaneously delivered multipotent mesenchymal stem cell (MSC) therapy has been proposed as a potential means to uniquely ameliorate discogenic LBP holistically through three mechanisms: mitigation of primary nociceptive disc pain, slow or reversal of the catabolic metabolism, and restoration of disc tissue. Embryonic stem cells (ESCs) can differentiate into cells of all three germ layers in vitro, but their use is hindered related to ethical concerns, potential for immune rejection after transplantation, disease, and teratoma formation. Another similar approach to treating back pain is transplantation of the nucleus pulposus, which, like stem cell therapy, seeks to address the underlying cause of intervertebral disc degeneration by aiming to reverse the destructive inflammatory process and regenerate the proteoglycans and collagen found in healthy disc tissue. Preliminary animal models and clinical studies have shown mesenchymal stem cell implantation as a potential therapy for IVD regeneration and ECM restoration via a shift towards favorable anabolic balance and reduction of pain.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | | | - Medha Sharma
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Vwaire Orhurhu
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
41
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
42
|
Meisel HJ, Agarwal N, Hsieh PC, Skelly A, Park JB, Brodke D, Wang JC, Yoon ST, Buser Z. Cell Therapy for Treatment of Intervertebral Disc Degeneration: A Systematic Review. Global Spine J 2019; 9:39S-52S. [PMID: 31157145 PMCID: PMC6512192 DOI: 10.1177/2192568219829024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To review, critically appraise, and synthesize evidence on use of cell therapy for intervertebral disc repair. METHODS A systematic search of PubMed/MEDLINE was conducted for literature published through October 31, 2018 and EMBASE and ClinicalTrials.gov databases through April 13, 2018 comparing allogenic or autologous cell therapy for intervertebral disc (IVD) repair in the lumbar or cervical spine. In the absence of comparative studies, case series of ≥10 patients were considered. RESULTS From 1039 potentially relevant citations, 8 studies across 10 publications on IVD cell therapies in the lumbar spine met the inclusion criteria. All studies were small and primarily case series. For allogenic cell sources, no difference in function or pain between mesenchymal cell treatment and sham were reported in 1 small randomized controlled trial; 1 small case series reported improved function and pain relative to baseline but it was unclear if the change was clinically significant. Similarly for autologous cell sources, limited data across case series suggest pain and function may be improved relative to baseline; whether the changes were clinically significant was not clear. Safety data was sparse and poorly reported. The need for subsequent surgery was reported in 3 case-series studies ranging from 6% to 80%. CONCLUSIONS The overall strength of evidence for efficacy and safety of cell therapy for lumbar IVD repair was very low primarily due to substantial risk of bias, small sample sizes and lack of a comparator intervention. Methodologically sound studies comparing cell therapies to other treatments are needed.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Beom Park
- Uijongbu St. Mary’s Hospital, The Catholic University of Korea, Uijongbu, Republic of Korea
| | | | | | | | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Rivera E, Seijas R, Rubio M, García-Balletbó M, Vilar JM, Boada PL, Cugat R. Outcomes at 2-Years Follow-Up After Hip Arthroscopy Combining Bone Marrow Concentrate. J INVEST SURG 2019; 33:655-663. [DOI: 10.1080/08941939.2018.1535010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eila Rivera
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
| | - Roberto Seijas
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
- Department of Anatomy, Universidad Internacional de Catalunya, Barcelona, Spain
| | - Mónica Rubio
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Animal Medicine and Surgery, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
- CEU-UCH Chair of Medicine and Regenerative Surgery, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - Montserrat García-Balletbó
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
| | - Jose Manuel Vilar
- Research Institute in Biomedical and Health Sciences, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Patricia Laiz Boada
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
| | - Ramón Cugat
- Department of Orthopaedic Surgery, Hospital Quirónsalud, Barcelona, Spain
- Garcia-Cugat Fundation, Barcelona, Spain
- Department of Orthopaedic Surgery, Artroscopia GC, Barcelona, Spain
- CEU-UCH Chair of Medicine and Regenerative Surgery, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| |
Collapse
|
44
|
Scarpone M, Kuebler D, Chambers A, De Filippo CM, Amatuzio M, Ichim TE, Patel AN, Caradonna E. Isolation of clinically relevant concentrations of bone marrow mesenchymal stem cells without centrifugation. J Transl Med 2019; 17:10. [PMID: 30611285 PMCID: PMC6321705 DOI: 10.1186/s12967-018-1750-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND This study examined the quality of bone marrow aspirates extracted using a novel, FDA cleared method to optimally target cells from the inner cortical iliac bone surface without the need for centrifugation. This method employs small draws from a single puncture that promote only lateral flow from multiple sites (SSLM method). The study utilized the Marrow Cellutions bone marrow aspiration system (MC system) which is based on the SSLM method and compared the MC system directly to bone marrow concentrates (BMAC) generated by centrifugation of aspirates harvested with a standard aspiration needle. METHODS Three direct comparisons were conducted evaluating the SSLM draws and BMACs derived from the same patient from contralateral iliac crests. The levels of TNCs/mL, CD34+ cells/mL, CD117+ cells/mL, and CFU-f/mL were compared between the various bone marrow preparations. The cellular content of a series of SSLM draws was also analyzed to determine the total nucleated cell (TNC) count and the concentration of mesenchymal stem/progenitor cells as measured by colony forming unit fibroblasts (CFU-f). RESULTS In direct comparisons with BMAC systems, SSLM draws yielded significantly higher CFU-f concentrations and comparable concentrations of CD34+ and CD117+ cells. In addition, the average quantity of TNCs/mL in a series of 30 patients utilizing the SSLM draw was 35.2 × 106 ± 17.1 × 106 and the average number of CFU-f/mL was 2885 ± 1716. There were small but significant correlations between the TNCs/mL and the CFU-fs/mL using the SSLM method as well as between the age of the patient and the CFU-fs/mL. CONCLUSIONS The MC Device, using the SSLM draw technique, produced concentrations of CFU-fs, CD34+ cells and CD117+ cells that were comparable or greater to BMACs derived from the same patient. Given the rapid speed and simplicity of the MC Device, we believe this novel system possesses significant practical advantages to other currently available centrifugation based systems.
Collapse
Affiliation(s)
- Michael Scarpone
- Trinity Sports Medicine and Performance Center, Trinity Hospital, Steubenville, OH, 43952, USA.
| | - Daniel Kuebler
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, 43952, USA.
| | - Andrew Chambers
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, 43952, USA
| | - Carlo Maria De Filippo
- The Centre of Research and Formation High Technologies "Johannes Paulus II", Catholic University of Campobasso, Campobasso, Italy
| | - Mariangela Amatuzio
- The Centre of Research and Formation High Technologies "Johannes Paulus II", Catholic University of Campobasso, Campobasso, Italy
| | | | - Amit N Patel
- Department of Bioengineering, University of Utah, Salt Lake City, USA
| | - Eugenio Caradonna
- The Centre of Research and Formation High Technologies "Johannes Paulus II", Catholic University of Campobasso, Campobasso, Italy
| |
Collapse
|
45
|
Current concepts for lumbar disc herniation. INTERNATIONAL ORTHOPAEDICS 2018; 43:841-851. [PMID: 30506088 DOI: 10.1007/s00264-018-4247-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the pathophysiology, biology, clinical presentation, diagnosis, and current treatment options for lumbar disc herniation. METHODS A thorough literature search was undertaken in PubMed and Google Scholar to summarize the current knowledge and future perspectives on lumbar disc herniation. RESULTS Several changes in the biology of the intervertebral disc are thought to contribute to disc herniation; nevertheless, the exact inciting event leading to disc herniation is yet to be discovered. Non-operative treatments have stood the test of time as the first-line treatment for most patients with lumbar disc herniation; however, operative treatment remains the current gold standard, with minimally invasive endoscopic microdiscectomy techniques showing best results with respect to postoperative pain and function. CONCLUSIONS The exact event leading to disc herniation remains unclear. Non-operative treatments should be the first-line treatment for most patients with lumbar disc herniation. Operative treatment remains the current gold standard, with minimally invasive endoscopic microdiscectomy techniques showing best results with respect to postoperative pain and function. Regenerative medicine is promising.
Collapse
|
46
|
Schol J, Sakai D. Cell therapy for intervertebral disc herniation and degenerative disc disease: clinical trials. INTERNATIONAL ORTHOPAEDICS 2018; 43:1011-1025. [PMID: 30498909 DOI: 10.1007/s00264-018-4223-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 01/07/2023]
Abstract
Low back pain is the primary cause of disability and is highly associated with progression of intervertebral disc degeneration. Current treatment options are limited and fail to address the origin of the problem. New advancements in cellular therapies might offer novel and potent strategies for low back pain patients. In this review, we summarize and discuss the contemporary status of in-human trials investigating cellular transplantation for treatment of low back pain. We aim to highlight current trends, shortcomings, and hurdles for effective clinical trials and consecutive commercialization.
Collapse
Affiliation(s)
- Jordy Schol
- Department for Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasya, Isehara, Kanagawa, 259-1143, Japan.
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasya, Isehara, Kanagawa, 259-1143, Japan.
| |
Collapse
|
47
|
Treatment outcome of quality of life and clinical symptoms in patients with symptomatic lumbar degenerative disc diseases: which treatment modality is superior? INTERNATIONAL ORTHOPAEDICS 2018; 43:875-881. [DOI: 10.1007/s00264-018-4248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
|
48
|
Guo W, Imai S, Yang JL, Zou S, Li H, Xu H, Moudgil KD, Dubner R, Wei F, Ren K. NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief. Front Integr Neurosci 2018; 12:49. [PMID: 30459569 PMCID: PMC6232783 DOI: 10.3389/fnint.2018.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC's ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine signaling is critical to BMSCs' pain-relieving effect, we further evaluated a role of chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced BMSCs with Ccl4 shRNA, incubated BMSCs with RS 102895, a CCR2b antagonist, or maraviroc, a CCR5 antagonist. The antagonism of chemokines significantly reduced BMSC-induced upregulation of p65, suggesting that upregulation of p65 was related to BMSCs' pain-relieving effect. We then tested the effect of a selective NF-κB activation inhibitor, BAY 11-7082. The mechanical hyperalgesia of the rat was assessed with the von Frey method. In the pre-treatment experiment, BAY 11-7082 (2.5 and 25 pmol) was injected into the RVM at 2 h prior to BMSC infusion. Pretreatment with BAY 11-7082 attenuated BMSCs' antihyperalgesia, but post-treatment at 5 weeks post-BMSC was not effective. On the contrary, in TL rats receiving BAY 11-7082 without BMSCs, TL-induced hyperalgesia was attenuated, consistent with dual roles of NF-κB in pain hypersensitivity and BMSC-produced pain relief. These results indicate that the NF-κB signaling pathway in the descending circuitry is involved in initiation of BMSC-produced behavioral antihyperalgesia.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Satoshi Imai
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Clinical Pharmacology & Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Shiping Zou
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Huijuan Li
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Neurology, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huakun Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Kamal D Moudgil
- Department of Microbiology & Immunology, University of Maryland, Baltimore, MD, United States
| | - Ronald Dubner
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
49
|
Levi D, Carnahan D, Horn S, Levin J. Is a History of Severe Episodic Low Back Pain an Indicator of a Discogenic Etiology? PAIN MEDICINE 2018; 19:1334-1339. [PMID: 29016955 DOI: 10.1093/pm/pnx147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective To determine if a history of severe episodic low back pain (LBP) correlates with positive discography. Methods A retrospective chart review identified patients undergoing discography from January 2012 through February 2016. The review determined if the patient's LBP began or continued with severe disabling episodes (lasting a minimum of two days). A gradual onset or initiating event with continuous symptoms was considered a nonepisodic history. Patients were excluded for unclear record, workers' compensation, litigation, prior lumbar surgery, radiologic instability, or indeterminate discography. Results Seventy-eight patients underwent discography. Thirty-nine patients were included, 31 of which had positive discograms. Eight had negative discograms. Nineteen patients had a history of episodic LBP, and 20 had no history of episodic LBP. Of those 19 with a history of episodic LBP, 18 had positive discography and one had negative discography. Of those with no history of episodic LBP, 13 had positive discography and seven had negative discography. Using the historical finding of severe episodic LBP as a test for discogenic source of LBP, the sensitivity is 58% (95% confidence interval [CI] = 41-75%) and the specificity is 88% (95% CI = 65-100%). The likelihood ratio is 4.7 (95% CI = 0.72-30). The positive predictive value (PPV) is 95% (95% CI = 72-100%). The PPV is based upon a prevalence of 79% (discogram positive) in our sample of patients considering fusion surgery. The diagnostic confidence odds are 18.2, with a diagnostic confidence of 95%. Conclusions A positive history of severe episodic LBP may be a strong indicator for a discogenic etiology.
Collapse
Affiliation(s)
- David Levi
- APM Spine and Sports Physicians, Virginia Beach, Virginia
| | - Diana Carnahan
- APM Spine and Sports Physicians, Virginia Beach, Virginia
| | - Scott Horn
- APM Spine and Sports Physicians, Virginia Beach, Virginia
| | - Josh Levin
- Department of Orthopaedic Surgery, Stanford School of Medicine, Redwood City, California, USA
| |
Collapse
|
50
|
Huang X, Wang W, Liu X, Xi Y, Yu J, Yang X, Ye X. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model. Cell Tissue Res 2018; 374:99-110. [PMID: 29858667 DOI: 10.1007/s00441-018-2855-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xilin Liu
- Department of Orthopaedics, Chengdu General Hospital of Chengdu Military Command Region, Chengdu, 610083, China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiangqun Yang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|