1
|
Selig M, Azizi S, Walz K, Lauer JC, Rolauffs B, Hart ML. Cell morphology as a biological fingerprint of chondrocyte phenotype in control and inflammatory conditions. Front Immunol 2023; 14:1102912. [PMID: 36860844 PMCID: PMC9968733 DOI: 10.3389/fimmu.2023.1102912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Little is known how inflammatory processes quantitatively affect chondrocyte morphology and how single cell morphometric data could be used as a biological fingerprint of phenotype. Methods We investigated whether trainable high-throughput quantitative single cell morphology profiling combined with population-based gene expression analysis can be used to identify biological fingerprints that are discriminatory of control vs. inflammatory phenotypes. The shape of a large number of chondrocytes isolated from bovine healthy and human osteoarthritic (OA) cartilages was quantified under control and inflammatory (IL-1β) conditions using a trainable image analysis technique measuring a panel of cell shape descriptors (area, length, width, circularity, aspect ratio, roundness, solidity). The expression profiles of phenotypically relevant markers were quantified by ddPCR. Statistical analysis, multivariate data exploration, and projection-based modelling were used for identifying specific morphological fingerprints indicative of phenotype. Results Cell morphology was sensitive to both cell density and IL-1β. In both cell types, all shape descriptors correlated with expression of extracellular matrix (ECM)- and inflammatory-regulating genes. A hierarchical clustered image map revealed that individual samples sometimes responded differently in control or IL-1β conditions than the overall population. Despite these variances, discriminative projection-based modeling revealed distinct morphological fingerprints that discriminated between control and inflammatory chondrocyte phenotypes: the most essential morphological characteristics attributable to non-treated control cells was a higher cell aspect ratio in healthy bovine chondrocytes and roundness in OA human chondrocytes. In contrast, a higher circularity and width in healthy bovine chondrocytes and length and area in OA human chondrocytes indicated an inflammatory (IL-1β) phenotype. When comparing the two species/health conditions, bovine healthy and human OA chondrocytes exhibited comparable IL-1β-induced morphologies in roundness, a widely recognized marker of chondrocyte phenotype, and aspect ratio. Discussion Overall, cell morphology can be used as a biological fingerprint for describing chondrocyte phenotype. Quantitative single cell morphometry in conjunction with advanced methods for multivariate data analysis allows identifying morphological fingerprints that can discriminate between control and inflammatory chondrocyte phenotypes. This approach could be used to assess how culture conditions, inflammatory mediators, and therapeutic modulators regulate cell phenotype and function.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Saman Azizi
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Kathrin Walz
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Chubinskaya S, Cotter EJ, Frank RM, Hakimiyan AA, Yanke AB, Cole BJ. Biologic Characteristics of Shoulder Articular Cartilage in Comparison to Knee and Ankle Articular Cartilage From Individual Donors. Cartilage 2021; 12:456-467. [PMID: 31088162 PMCID: PMC8461154 DOI: 10.1177/1947603519847740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To describe histological and metabolic characteristics of glenohumeral joint (GHJ) articular cartilage and compare to knee and ankle joints. DESIGN Macroscopically healthy human humeral head, glenoid, knee, and ankle articular cartilage were obtained from tissue donors (N = 16, 9 males, 7 females; age 45-78 years), within 24 hours of death. Gross morphology of each joint was assessed using Collins grading. Cartilage explants were removed from the entire surface of each joint, cultured for 48 hours with or without interleukin-1β and processed for histology with Safranin O, proteoglycan (PG) synthesis/content, and polymerase chain reaction for collagen II, aggrecan, and SOX9. Results were compared between uncultured and cultured controls and across all 3 joints. RESULTS Structural differences were seen on histology between GHJ cartilage and knee and ankle cartilage of the same Collins grade, specifically, depletion of Safranin O staining in the extracellular matrix. Treatment of glenoid and humerus specimens with IL-1β demonstrated a trend toward decreased PG synthesis in each explant but this decrease did not reach significance. There was no significant difference in PG synthesis between humerus, glenoid, knee, and ankle samples at baseline, day-0 control, 48-hour control, and 48 hours after treatment with 0.1 ng or 10 ng of IL-1β. There were no significant increases in collagen II, SOX9, and aggrecan expression in glenoid and humeral head cartilage samples treated with IL-1β compared to baseline controls. CONCLUSIONS GHJ articular cartilage did not significantly differ from ankle or knee cartilage with regard to PG synthesis and gene expression. However, it did differ in its histological appearance in normal state.
Collapse
Affiliation(s)
| | - Eric J. Cotter
- Department of Orthopaedic Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Rachel M. Frank
- Department of Orthopaedic Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Adam B. Yanke
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Brian J. Cole
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA,Brian J. Cole, Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St, Suite 300, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
4
|
Koh SM, Chan CK, Teo SH, Singh S, Merican A, Ng WM, Abbas A, Kamarul T. Elevated plasma and synovial fluid interleukin-8 and interleukin-18 may be associated with the pathogenesis of knee osteoarthritis. Knee 2020; 27:26-35. [PMID: 31917106 DOI: 10.1016/j.knee.2019.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Osteoarthritis (OA) of the knee is a multifactorial degenerative disease typically defined as the 'wear and tear' of articular joint cartilage. However, recent studies suggest that OA is a disease arising from chronic low-grade inflammation. We conducted a study to investigate the relationship between chronic inflammatory mediators present in both the systemic peripheral blood system and localised inflammation in synovial fluid (SF) of OA and non-OA knees; and subsequently made direct comparative analyses to understand the mechanisms that may underpin the processes involved in OA. METHODS 20-Plex proteins were quantified using Human Magnetic Luminex® assay (R&D Systems, USA) from plasma and SF of OA (n = 14) and non-OA (n = 14) patients. Ingenuity Pathway Analysis (IPA) software was used to predict the relationship and possible interaction of molecules pertaining to OA. RESULTS There were significant differences in plasma level for matrix metalloproteinase (MMP)-3, interleukin (IL)-27, IL-8, IL-4, tumour necrosis factor-alpha, MMP-1, IL-15, IL-21, IL-10, and IL-1 beta between the groups, as well as significant differences in SF level for IL-15, IL-8, vascular endothelial growth factor (VEGF), MMP-1, and IL-18. Our predictive OA model demonstrated that toll-like receptor (TLR) 2, macrophage migration inhibitory factor (MIF), TLR4 and IL-1 were the main regulators of IL-1B, IL-4, IL-8, IL-10, IL-15, IL-21, IL-27, MMP-1 and MMP-3 in the plasma system; whilst IL-1B, TLR4, IL-1, and basigin (BSG) were the regulators of IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, IL-27, MMP-1, and MMP-3 in the SF system. CONCLUSION The elevated plasma IL-8 and SF IL-18 may be associated with the pathogenesis of OA via the activation of MMP-3.
Collapse
Affiliation(s)
- S M Koh
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - C K Chan
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Teo
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S Singh
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - A Merican
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - W M Ng
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - A Abbas
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - T Kamarul
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep 2019; 9:10542. [PMID: 31332239 PMCID: PMC6646303 DOI: 10.1038/s41598-019-46896-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
The function of connective tissues depends on the physical and biochemical properties of their extracellular matrix (ECM), which are in turn dictated by ECM protein composition. With the primary objective of obtaining quantitative estimates for absolute and relative amounts of ECM proteins, we performed a systematic review of papers reporting protein composition of human connective tissues. Articles were included in meta-analysis if they contained absolute or relative quantification of proteins found in the ECM of human bone, adipose tissue, tendon, ligament, cartilage and skeletal muscle. We generated absolute quantitative estimates for collagen in articular cartilage, intervertebral disk (IVD), skeletal muscle, tendon, and adipose tissue. In addition, sulfated glycosaminoglycans were quantified in articular cartilage, tendon and skeletal muscle; total proteoglycans in IVD and articular cartilage, fibronectin in tendon, ligament and articular cartilage, and elastin in tendon and IVD cartilage. We identified significant increases in collagen content in the annulus fibrosus of degenerating IVD and osteoarthritic articular cartilage, and in elastin content in degenerating disc. In contrast, collagen content was decreased in the scoliotic IVD. Finally, we built quantitative whole-tissue component breakdowns. Quantitative estimates improve our understanding of composition of human connective tissues, providing insights into their function in physiology and pathology.
Collapse
|
6
|
Aurich M, Hofmann GO, Gras F, Rolauffs B. Human osteochondritis dissecans fragment-derived chondrocyte characteristics ex vivo, after monolayer expansion-induced de-differentiation, and after re-differentiation in alginate bead culture. BMC Musculoskelet Disord 2018; 19:168. [PMID: 29793458 PMCID: PMC5968539 DOI: 10.1186/s12891-018-2079-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is a therapy for articular cartilage and osteochondral lesions that relies on notch- or trochlea-derived primary chondrocytes. An alternative cell source for ACI could be osteochondritis dissecans (OCD) fragment-derived chondrocytes. Assessing the potential of these cells, we investigated their characteristics ex vivo and after monolayer expansion, as monolayer expansion is an integral step of ACI. However, as monolayer expansion can induce de-differentiation, we asked whether monolayer-induced de-differentiation can be reverted through successive alginate bead culture. METHODS Chondrocytes were isolated from the OCD fragments of 15 patient knees with ICRS grades 3-4 lesions for ex vivo analyses, primary alginate bead culture, monolayer expansion, and alginate bead culture following monolayer expansion for attempting re-differentiation. We determined yield, viability, and the mRNA expression of aggrecan and type I, II, and X collagen. RESULTS OCD fragment-derived chondrocyte isolation yielded high numbers of viable cells with a low type I:II collagen expression ratio (< 1) and a relatively high aggrecan and type II and X collagen mRNA expression, indicating chondrogenic and hypertrophic characteristics. As expected, monolayer expansion induced de-differentiation. Alginate bead culture of monolayer-expanded cells significantly improved the expression profile of all genes investigated, being most successful in decreasing the hypertrophy marker type X collagen to 1.5% of its ex vivo value. However, the chondrogenic phenotype was not fully restored, as the collagen type I:II expression ratio decreased significantly but remained > 1. CONCLUSION OCD fragment derived human chondrocytes may hold not yet utilized clinical potential for cartilage repair.
Collapse
Affiliation(s)
- Matthias Aurich
- Center for Orthopaedic and Trauma Surgery, Klinikum Mittleres Erzgebirge, Alte Marienberger, Str. 52, 09405, Zschopau, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
- Department of Biochemistry, Rush Medical College, 1735 W. Harrison St, Chicago, IL, 60612, USA
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Florian Gras
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
- Massachusetts Institute of Technology, Center for Biomedical Engineering, 500 Technology Sq, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Aurich M, Hofmann GO, Best N, Rolauffs B. Induced Redifferentiation of Human Chondrocytes from Articular Cartilage Lesion in Alginate Bead Culture After Monolayer Dedifferentiation: An Alternative Cell Source for Cell-Based Therapies? Tissue Eng Part A 2017; 24:275-286. [PMID: 28610480 DOI: 10.1089/ten.tea.2016.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human chondrocytes isolated from articular cartilage (AC) lesions as an alternative cell source to the standard nonweight-bearing notch biopsy site may hold clinical potential for cell-based therapies. The aim was to characterize human AC lesion site chondrocytes, compare them to notch chondrocytes, and evaluate their redifferentiation potential after monolayer expansion and subsequent three-dimensional (3D) alginate bead culture. Lesion chondrocytes from knee joints of 20 patients with International Cartilage Repair Society (ICRS) grade 3 and 4 cartilage defects were analyzed ex vivo or cultured in primary alginate bead culture, monolayer expansion, or redifferentiated in alginate culture following monolayer expansion. The mRNA expression of the types I, II, and X collagen, and the proteoglycan aggrecan was compared between the four groups. In addition, notch chondrocytes of nine patients were compared to lesion chondrocytes ex vivo. AC lesion chondrocytes displayed ex vivo a nondegenerative phenotype, characterized by a relatively high mRNA expression of aggrecan and type II and X collagen, but a low type I collagen expression and a low ratio of type I to II collagen mRNA expression. Compared to notch chondrocytes, the mRNA expression of aggrecan and type II collagen was comparable and the ratio of type I to II collagen mRNA expression was below 1 in both groups, indicating a functional chondrocyte phenotype. Dedifferentiation led to a significantly altered degenerative mRNA expression profile. Induced redifferentiation in alginate beads after monolayer expansion significantly improved the mRNA expression of aggrecan, the type I and II collagen, and the type I to II collagen ratio, compared to monolayer expansion only. These data suggested that redifferentiating lesion chondrocytes after monolayer expansion in alginate beads resulted in a pool of cells with greater chondrogenic potential, compared to expanded dedifferentiated chondrocytes. Collectively, these data suggest that ex vivo and redifferentiated lesion chondrocytes may hold nonutilized clinical potential for the tissue engineering of AC.
Collapse
Affiliation(s)
- Matthias Aurich
- 1 Center for Orthopaedic and Trauma Surgery, Ingolstadt Hospital , Ingolstadt, Germany .,2 Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena , Jena, Germany .,3 Department of Biochemistry, Rush Medical College , Chicago, Illinois
| | - Gunther O Hofmann
- 2 Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena , Jena, Germany
| | - Norman Best
- 4 Institute of Physiotherapy, Universitätsklinikum Jena , Jena, Germany
| | - Bernd Rolauffs
- 5 G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center, Albert-Ludwigs-University of Freiburg , Freiburg, Germany .,6 Faculty of Medicine, Albert-Ludwigs-University of Freiburg , Freiburg, Germany .,7 Massachusetts Institute of Technology , Center for Biomedical Engineering, Cambridge, Massachusetts
| |
Collapse
|