1
|
Effects of ectoparasite infestation during pregnancy on physiological stress and reproductive output in a rodent-flea system. Int J Parasitol 2021; 51:659-666. [PMID: 33713646 DOI: 10.1016/j.ijpara.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022]
Abstract
Biotic and abiotic stressors impose various fitness costs on individuals across a variety of taxa. In vertebrates, these stressors typically trigger complex neuroendocrine responses that stimulate glucocorticoid (GC) secretion from the adrenal cortex. Short-term elevation of GCs can be adaptive as it shifts energy toward physiological processes that cope with acute stressors; however, chronic increases in GC levels could have detrimental effects on fitness. Parasitism can be considered an important biotic stressor in nature and a possible cause of reproductive failure that could substantially affect an individual's fitness. Thus, we aimed to test the effects of parasitism and maternal stress, as measured by GCs, during pregnancy and the relationship between these variables and measures of reproductive output using a rodent-flea system. Female Egyptian spiny mice (Acomys cahirinus) were randomly assigned to flea (Parapulex chephrenis) infested or uninfested treatments before and during pregnancy. The offspring of these females were flea-free. Feces were collected at five time points during the experiment to determine maternal fecal glucocorticoid metabolite (FGCM) concentrations. Overall, infested females had lower FGCM levels during gestation but higher FGCM levels post-parturition and larger mass changes than uninfested females. Additionally, models related to pup quality and quantity often included some measure of maternal investment or body condition moderating relationships between infestation and stress. This suggests that flea parasitism or high GC levels alone might not significantly impact host reproduction but rather females can experience different effects depending on their level of investment, which could be limited by body condition and/or the number of pups present in a litter.
Collapse
|
2
|
Molecular characterization of Acomys louisae from Somaliland: a deep divergence and contrasting genetic patterns in a rift zone. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Flea infestation, social contact, and stress in a gregarious rodent species: minimizing the potential parasitic costs of group-living. Parasitology 2019; 147:78-86. [PMID: 31452472 DOI: 10.1017/s0031182019001185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Both parasitism and social contact are common sources of stress that many gregarious species encounter in nature. Upon encountering such stressors, individuals secrete glucocorticoids and although short-term elevation of glucocorticoids is adaptive, long-term increases are correlated with higher mortality and deleterious reproductive effects. Here, we used an experimental host-parasite system, social rodents Acomys cahirinus and their characteristic fleas Parapulex chephrenis, in a fully-crossed design to test the effects of social contact and parasitism on stress during pregnancy. By analysing faecal glucocorticoid metabolites, we found that social hierarchy did not have a significant effect on glucocorticoid concentration. Rather, solitary females had significantly higher glucocorticoid levels than females housed in pairs. We found a significant interaction between the stressors of parasitism and social contact with solitary, uninfested females having the highest faecal glucocorticoid metabolite levels suggesting that both social contact and infestation mitigate allostatic load in pregnant rodents. Therefore, the increased risk of infestation that accompanies group-living could be outweighed by positive aspects of social contact within A. cahirinus colonies in nature.
Collapse
|
4
|
Pinheiro G, Prata DF, Araújo IM, Tiscornia G. The African spiny mouse ( Acomys spp.) as an emerging model for development and regeneration. Lab Anim 2018; 52:565-576. [PMID: 29699452 DOI: 10.1177/0023677218769921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The African spiny mouse ( Acomys spp.) is an emerging animal model with remarkable biological characteristics that make it a subject of interest for a broad range of research fields. Typically a desert species adapted to a low-calorie diet, spiny mice develop diabetes-related symptoms when switched to high-energy diets. Spiny mice undergo relatively long gestation periods and have small litters of highly developed pups, making them an adequate model for late organogenesis and perinatal biology. Recently, they have been shown to have remarkable healing and regeneration capabilities, which make them unique among mammals. In this work, we describe our experience in housing a colony of African spiny mice and cover all basic aspects of feeding, maintenance and breeding for research purposes.
Collapse
Affiliation(s)
- Gonçalo Pinheiro
- 1 Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,2 Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Diogo Filipe Prata
- 1 Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,2 Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Inês Maria Araújo
- 1 Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,2 Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,3 Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Gustavo Tiscornia
- 1 Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,3 Algarve Biomedical Center, University of Algarve, Faro, Portugal.,4 Clínica Eugin, Research and Innovation Department, Spain
| |
Collapse
|
5
|
Wells C, Van Vuren D. Female kin density affects offspring sex ratio in an asocial mammal, the golden-mantled ground squirrel, Callospermophilus lateralis. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Warburton EM, Khokhlova IS, Dlugosz EM, Der Mescht LV, Krasnov BR. Effects of parasitism on host reproductive investment in a rodent–flea system: host litter size matters. Parasitol Res 2016; 116:703-710. [DOI: 10.1007/s00436-016-5336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
|
7
|
Cameron EZ, Edwards AM, Parsley LM. Developmental sexual dimorphism and the evolution of mechanisms for adjustment of sex ratios in mammals. Ann N Y Acad Sci 2016; 1389:147-163. [PMID: 27862006 DOI: 10.1111/nyas.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022]
Abstract
Sex allocation theory predicts biased offspring sex ratios in relation to local conditions if they would maximize parental lifetime reproductive return. In mammals, the extent of the birth sex bias is often unpredictable and inconsistent, leading some to question its evolutionary significance. For facultative adjustment of sex ratios to occur, males and females would need to be detectably different from an early developmental stage, but classic sexual dimorphism arises from hormonal influences after gonadal development. Recent advances in our understanding of early, pregonadal sexual dimorphism, however, indicate high levels of dimorphism in gene expression, caused by chromosomal rather than hormonal differences. Here, we discuss how such dimorphism would interact with and link previously hypothesized mechanisms for sex-ratio adjustment. These differences between males and females are sufficient for offspring sex both to be detectable to parents and to provide selectable cues for biasing sex ratios from the earliest stages. We suggest ways in which future research could use the advances in our understanding of sexually dimorphic developmental physiology to test the evolutionary significance of sex allocation in mammals. Such an approach would advance our understanding of sex allocation and could be applied to other taxa.
Collapse
Affiliation(s)
- Elissa Z Cameron
- School of Biological Sciences, University of Tasmania, Hobart, Australia.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy M Edwards
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Laura M Parsley
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
8
|
Sex allocation and secondary sex ratio in Cuban boa (Chilabothrus angulifer): mother's body size affects the ratio between sons and daughters. Naturwissenschaften 2016; 103:48. [PMID: 27216175 DOI: 10.1007/s00114-016-1369-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Secondary sex ratios of animals with genetically determined sex may considerably deviate from equality. These deviations may be attributed to several proximate and ultimate factors. Sex ratio theory explains some of them as strategic decisions of mothers improving their fitness by selective investment in sons or daughters, e.g. local resource competition hypothesis (LRC) suggests that philopatric females tend to produce litters with male-biased sex ratios to avoid future competition with their daughters. Until now, only little attention has been paid to examine predictions of sex ratio theory in snakes possessing genetic sex determination and exhibiting large variance in allocation of maternal investment. Cuban boa is an endemic viviparous snake producing large-bodied newborns (∼200 g). Extremely high maternal investment in each offspring increases importance of sex allocation. In a captive colony, we collected breeding records of 42 mothers, 62 litters and 306 newborns and examined secondary sex ratios (SR) and sexual size dimorphism (SSD) of newborns. None of the examined morphometric traits of neonates appeared sexually dimorphic. The sex ratio was slightly male biased (174 males versus 132 females) and litter sex ratio significantly decreased with female snout-vent length. We interpret this relationship as an additional support for LRC as competition between mothers and daughters increases with similarity of body sizes between competing snakes.
Collapse
|
9
|
Pluháček J, Steck BL. Different Sex Allocations in Two Related Species: The Case of the Extant Hippopotamus. Ethology 2015. [DOI: 10.1111/eth.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jan Pluháček
- Department of Ethology; Institute of Animal Science; Praha - Uhříněves Czech Republic
- Ostrava Zoo; Ostrava Czech Republic
| | | |
Collapse
|
10
|
Litter sex ratios in Richardson's ground squirrels: long-term data support random sex allocation and homeostasis. Oecologia 2014; 174:1225-39. [PMID: 24385085 DOI: 10.1007/s00442-013-2861-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
When costs of producing male versus female offspring differ, parents may vary allocation of resources between sons and daughters. We tested leading sex-allocation theories using an information-theoretic approach and Bayesian hierarchical models to analyse litter sex ratios (proportion males) at weaning for 1,049 litters over 24 years from a population of Richardson's ground squirrels (Urocitellus richardsonii), a polygynandrous, annually reproducing mammal in which litter size averages from six to seven offspring and sons are significantly heavier than daughters at birth and weaning. The model representing random Mendelian sex-chromosome assortment fit the data best; a homeostatic model received similar support but other models performed poorly. Embryo resorption was rare, and 5 years of litter data in a second population revealed no differences in litter size or litter sex ratio between birth and weaning, suggesting that litter size and sex ratio are determined in early pregnancy. Sex ratio did not vary with litter size at weaning in any of 29 years, and the observed distribution of sex ratios did not differ significantly from the binomial distribution for any litter size. For 1,580 weaned litters in the two populations, average sex ratio deviated from parity in only 3 of 29 years. Heavier females made a greater reproductive investment than lighter females, weaning larger and heavier litters composed of smaller sons and daughters, but litter sex ratio was positively related to maternal mass in only 2 of 29 years. Such occasional significant patterns emphasize the importance of multi-season studies in distinguishing infrequent events from normal patterns.
Collapse
|
11
|
Frynta D, Fraňková M, Čížková B, Skarlandtová H, Galeštoková K, Průšová K, Šmilauer P, Šumbera R. Social and life history correlates of litter size in captive colonies of precocial spiny mice (Acomys). ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13364-011-0024-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Grant VJ, Chamley LW. Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction 2010; 140:425-33. [PMID: 20591970 DOI: 10.1530/rep-10-0137] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although controversial, growing evidence from evolutionary biology suggests that the mammalian mother may have a role in influencing the sex of her offspring. However, there is competing information on the molecular mechanisms by which such influence could be manifested. The new initiatives are based on hypotheses from evolutionary biology: the 'good condition' hypothesis, which suggests that post conception, higher levels of maternal glucose may differentially promote the development of male embryos; and the 'maternal dominance' hypothesis, which proposes that before conception, higher follicular testosterone may influence the development of the ovum so that it emerges already adapted to receive an X- or a Y-chromosome-bearing spermatozoon. Now, it seems these hypothesised mechanisms could be operating in synchrony, each complementing and reinforcing the other. On the other hand, there are continuing problems in identifying a precise sequence of mechanisms as evidenced from research in sperm-sorting. Research on high-fat diets and the sex ratio in polytocous species may indicate important differences in proximate mechanisms for sex allocation between polytocous and monotocous mammals.
Collapse
Affiliation(s)
- Valerie J Grant
- Department of Psychological Medicine Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | |
Collapse
|