1
|
Szczuka A, Sochacka-Marlowe A, Korczyńska J, Mazurkiewicz PJ, Symonowicz B, Kukina O, Godzińska EJ. Do They Know What They Are Doing? Cognitive Aspects of Rescue Behaviour Directed by Workers of the Red Wood Ant Formica polyctena to Nestmate Victims Entrapped in Artificial Snares. Life (Basel) 2024; 14:515. [PMID: 38672785 PMCID: PMC11051173 DOI: 10.3390/life14040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Ant rescue behaviour belongs to the most interesting subcategories of prosocial and altruistic behaviour encountered in the animal world. Several studies suggested that ants are able to identify what exactly restrains the movements of another individual and to direct their rescue behaviour precisely to that object. To shed more light on the question of how precise the identification of the source of restraint of another ant is, we investigated rescue behaviour of red wood ant Formica polyctena workers, using a new version of an artificial snare bioassay in which a nestmate victim bore two wire loops on its body, one (acting as a snare) placed on its petiole and an additional one on its leg. The tested ants did not preferentially direct their rescue behaviour towards the snare. Moreover, the overall strategy adopted by the most active rescuers was not limited to precisely targeted rescue attempts directed towards the snare, but consisted of frequent switching between various subcategories of rescue behaviour. These findings highlight the importance of precise identification of cognitive processes and overall behavioural strategies for better understanding of causal factors underlying animal helping behaviour in light of new facts discovered by testing of various successive research hypotheses.
Collapse
Affiliation(s)
- Anna Szczuka
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| | - Alicja Sochacka-Marlowe
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Julita Korczyńska
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| | - Paweł Jarosław Mazurkiewicz
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), University of Warsaw, Stefana Banacha St. 2c, PL 02-097 Warsaw, Poland
| | - Beata Symonowicz
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| | - Olga Kukina
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
- Department of Entomology, Phytopathology and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska St. 86, 61024 Kharkiv, Ukraine
| | - Ewa Joanna Godzińska
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| |
Collapse
|
2
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
3
|
Stock M, Milutinović B, Hoenigsberger M, Grasse AV, Wiesenhofer F, Kampleitner N, Narasimhan M, Schmitt T, Cremer S. Pathogen evasion of social immunity. Nat Ecol Evol 2023; 7:450-460. [PMID: 36732670 PMCID: PMC9998270 DOI: 10.1038/s41559-023-01981-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers' detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts.
Collapse
Affiliation(s)
- Miriam Stock
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Barbara Milutinović
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria. .,Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | | | - Anna V Grasse
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | - Niklas Kampleitner
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.
| |
Collapse
|
4
|
Scharf I, Stoldt M, Libbrecht R, Höpfner AL, Jongepier E, Kever M, Foitzik S. Social isolation causes downregulation of immune and stress response genes and behavioural changes in a social insect. Mol Ecol 2021; 30:2378-2389. [PMID: 33772940 DOI: 10.1111/mec.15902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestmates, increased the duration of brood contact, and reduced the time spent self-grooming, an important sanitary behaviour. Our brain transcriptome analysis revealed that only a few behaviour-related genes had altered their expression with isolation time. Rather, many genes linked to immune system functioning and stress response had been downregulated. This probably sensitizes isolated individuals to various stressors, in particular because isolated workers exhibit reduced sanitary behaviour. We provide evidence of the diverse consequences of social isolation in social insects, some of which resemble those found in social mammals, suggesting a general link between social well-being, stress tolerance, and immune competence in social animals.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna Lena Höpfner
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
5
|
|
6
|
Qin D, Zhang P, Zhou Y, Zheng Q, Hou R, Liu B, Chen J, Zhang Z. Different lethal treatments induce changes in piperidine (1,1'-(1,2-ethanediyl)bis-) in the epidermal compounds of red imported fire ants and affect corpse-removal behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110391. [PMID: 32155480 DOI: 10.1016/j.ecoenv.2020.110391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Corpse-removal behavior of the red imported fire ant (RIFA) and the effects of lethal substances on RIFA signal communication were investigated in this study. The RIFA corpses, obtained through freezing, ether, 0.25 mg/L thiamethoxam, and starvation to death treatments, and naturally dead red fire ants were subjected to gas chromatography-mass spectrometry to identify the cuticular hydrocarbon profiles that had an effect on the corpse-removal behavior. The results showed that lethal toxic substances altered the epidermal compounds of RIFA and affected their corpse-removal behavior. Lethal toxic substances increased the number of worker touches with corpses and identification time of corpses. In addition, the content of piperidine (1,1'-(1,2-ethanediyl)bis-) on the surface of the corpse was different following the various treatments. Contamination with toxic substances resulted in the increased secretion of piperidine and led to increased identification time of corpses, number of touch with corpses, and total time for removal of corpses. Piperidine content was higher under conditions of natural death (4.67 ± 0.55%) and with thiamethoxam (10.43 ± 0.78%), freezing (0.83 ± 0.25%), and ether treatment (12.50 ± 0.70%) than under starvation treatment (0). The higher content of piperidine led to a longer number of touches with corpses and identification time. Piperidine compounds may be an element in warning information, which could affect the occurrence of different corpse-removal behaviors.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Peiwen Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - You Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Zheng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiquan Hou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Benju Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jianjun Chen
- Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA.
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Fouks B, Wagoner KM. Pollinator parasites and the evolution of floral traits. Ecol Evol 2019; 9:6722-6737. [PMID: 31236255 PMCID: PMC6580263 DOI: 10.1002/ece3.4989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/16/2018] [Accepted: 01/27/2019] [Indexed: 11/26/2022] Open
Abstract
The main selective force driving floral evolution and diversity is plant-pollinator interactions. Pollinators use floral signals and indirect cues to assess flower reward, and the ensuing flower choice has major implications for plant fitness. While many pollinator behaviors have been described, the impact of parasites on pollinator foraging decisions and plant-pollinator interactions have been largely overlooked. Growing evidence of the transmission of parasites through the shared-use of flowers by pollinators demonstrate the importance of behavioral immunity (altered behaviors that enhance parasite resistance) to pollinator health. During foraging bouts, pollinators can protect themselves against parasites through self-medication, disease avoidance, and grooming. Recent studies have documented immune behaviors in foraging pollinators, as well as the impacts of such behaviors on flower visitation. Because pollinator parasites can affect flower choice and pollen dispersal, they may ultimately impact flower fitness. Here, we discuss how pollinator immune behaviors and floral traits may affect the presence and transmission of pollinator parasites, as well as how pollinator parasites, through these immune behaviors, can impact plant-pollinator interactions. We further discuss how pollinator immune behaviors can impact plant fitness, and how floral traits may adapt to optimize plant fitness in response to pollinator parasites. We propose future research directions to assess the role of pollinator parasites in plant-pollinator interactions and evolution, and we propose better integration of the role of pollinator parasites into research related to pollinator optimal foraging theory, floral diversity and agricultural practices.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Kaira M. Wagoner
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| |
Collapse
|
8
|
Curtis V, de Barra M. The structure and function of pathogen disgust. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0208. [PMID: 29866921 DOI: 10.1098/rstb.2017.0208] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Researchers have long noted that many of the multiple elicitors of disgust have some relation to infectious disease. There is an emerging consensus that disgust evolved in Animalia to direct the behaviours that reduce risk of infection, so-called 'parasite avoidance theory'. If this is correct, then the disgust motive should be structured in a manner that reflects the ways in which infectious disease can be avoided. In this study, we generated a set of items based on the epidemiology of disease transmission. These were then rated for their capacity to elicit disgust by a large, predominantly North American/UK sample and subjected to factor analysis to identify latent variables. While a number of plausible factor solutions emerged, Velicer's MAP (minimum average partial) test suggested six domains: atypical appearance, lesions, sex, hygiene, food and animals. This structure did not exactly mirror the transmission routes of infections, as we initially predicted, but it may rather reflect distinct kinds of behavioural tasks involved in avoiding disease. This finding makes sense from the perspective of a cognitive system that evolved under selection for a behavioural response to threats from the social and biological environment. We suggest that regularly occurring types of infectious disease problems have produced regularities in the domain structure of pathogen disgust and discuss the implications of these results for understanding the structure, function and measurement of motives such as disgust in humans and other animals.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Val Curtis
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Mícheál de Barra
- Center for Culture and Evolution, Depatment of Life Sciences, Brunel University London, Uxbridge, Middelsex UB8 3PH, UK
| |
Collapse
|
9
|
Kellner K, Kardish MR, Seal JN, Linksvayer TA, Mueller UG. Symbiont-Mediated Host-Parasite Dynamics in a Fungus-Gardening Ant. MICROBIAL ECOLOGY 2018; 76:530-543. [PMID: 29285550 DOI: 10.1007/s00248-017-1124-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Group-living can promote the evolution of adaptive strategies to prevent and control disease. Fungus-gardening ants must cope with two sets of pathogens, those that afflict the ants themselves and those of their symbiotic fungal gardens. While much research has demonstrated the impact of specialized fungal pathogens that infect ant fungus gardens, most of these studies focused on the so-called higher attine ants, which are thought to coevolve diffusely with two clades of leucocoprinaceous fungi. Relatively few studies have addressed disease ecology of lower Attini, which are thought to occasionally recruit (domesticate) novel leucocoprinaceous fungi from free-living populations; coevolution between lower-attine ants and their fungi is therefore likely weaker (or even absent) than in the higher Attini, which generally have many derived modifications. Toward understanding the disease ecology of lower-attine ants, this study (a) describes the diversity in the microfungal genus Escovopsis that naturally infect fungus gardens of the lower-attine ant Mycocepurus smithii and (b) experimentally determines the relative contributions of Escovopsis strain (a possible garden disease), M. smithii ant genotype, and fungal cultivar lineage to disease susceptibility and colony fitness. In controlled in-vivo infection laboratory experiments, we demonstrate that the susceptibility to Escovopsis infection was an outcome of ant-cultivar-Escovopsis interaction, rather than solely due to ant genotype or fungal cultivar lineage. The role of complex ant-cultivar-Escovopsis interactions suggests that switching M. smithii farmers onto novel fungus types might be a strategy to generate novel ant-fungus combinations resistant to most, but perhaps not all, Escovopsis strains circulating in a local population of this and other lower-attine ants.
Collapse
Affiliation(s)
- Katrin Kellner
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA.
| | - M R Kardish
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Deptartment of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - J N Seal
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - T A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - U G Mueller
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Konrad M, Pull CD, Metzler S, Seif K, Naderlinger E, Grasse AV, Cremer S. Ants avoid superinfections by performing risk-adjusted sanitary care. Proc Natl Acad Sci U S A 2018; 115:2782-2787. [PMID: 29463746 PMCID: PMC5856517 DOI: 10.1073/pnas.1713501115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host's vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.
Collapse
Affiliation(s)
- Matthias Konrad
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Christopher D Pull
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Sina Metzler
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Katharina Seif
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Elisabeth Naderlinger
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Anna V Grasse
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Sylvia Cremer
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| |
Collapse
|
11
|
Cremer S, Pull CD, Fürst MA. Social Immunity: Emergence and Evolution of Colony-Level Disease Protection. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:105-123. [PMID: 28945976 DOI: 10.1146/annurev-ento-020117-043110] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.
Collapse
Affiliation(s)
- Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria; ,
| | - Christopher D Pull
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria; ,
- Current affiliation: School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom;
| | - Matthias A Fürst
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria; ,
| |
Collapse
|
12
|
Yanagawa A, Chabaud MA, Imai T, Marion-Poll F. Olfactory cues play a significant role in removing fungus from the body surface of Drosophila melanogaster. J Invertebr Pathol 2017; 151:144-150. [PMID: 29175531 DOI: 10.1016/j.jip.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Many insects and Dipterans in particular are known to spend considerable time grooming, but whether these behaviors actually are able to remove pathogenic fungal conidia is less clear. In this study, we examined whether grooming serves to protect flies by reducing the risk of fungal infection in Drosophila melanogaster. First, we confirmed that fungi were removed by grooming. Entomopathogenic, opportunistic, and plant pathogenic fungi were applied on the body surface of the flies. To estimate grooming efficiency, the number of removal conidia through grooming was quantified and we successfully demonstrated that flies remove fungal conidia from their body surfaces via grooming behavior. Second, the roles of gustatory and olfactory signals in fungus removal were examined. The wildtype fly Canton-S, the taste deficiency mutant poxn 70, and the olfactory deficiency mutant orco1 were used in the tests. Comparisons between Canton-S and poxn 70 flies indicated that gustatory signals do not have a significant role in fungal removal via grooming behavior in D. melanogaster. In contrast, the efficiency of conidia removal in orco1 flies was drastically decreased. Consequently, this study indicated that flies rely on mechanical stimulus for the induction of grooming and olfaction for more detailed removal.
Collapse
Affiliation(s)
- Aya Yanagawa
- RISH, Kyoto University, Uji City 611-0011, Japan.
| | - Marie-Ange Chabaud
- UMR Physiologie de l'Insecte: Signalisation et Communication, INRA Centre de Versailles, F-78026 Versailles Cedex, France
| | - Tomoya Imai
- RISH, Kyoto University, Uji City 611-0011, Japan
| | - Frédéric Marion-Poll
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France; AgroParisTech, F-75005 Paris, France
| |
Collapse
|
13
|
Keiser CN, Vojvodic S, Butler IO, Sartain E, Rudolf VHW, Saltz JB. Queen presence mediates the relationship between collective behaviour and disease susceptibility in ant colonies. J Anim Ecol 2017; 87:379-387. [PMID: 28518216 DOI: 10.1111/1365-2656.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
Abstract
The success of social living can be explained, in part, by a group's ability to execute collective behaviours unachievable by solitary individuals. However, groups vary in their ability to execute these complex behaviours, often because they vary in their phenotypic composition. Group membership changes over time due to mortality or emigration, potentially leaving groups vulnerable to ecological challenges in times of flux. In some societies, the loss of important individuals (e.g. leaders, elites and queens) may have an especially detrimental effect on groups' ability to deal with these challenges. Here, we test whether the removal of queens in colonies of the acorn ant Temnothorax curvispinosus alters their ability to execute important collective behaviours and survive outbreaks of a generalist entomopathogen. We employed a split-colony design where one half of a colony was maintained with its queen, while the other half was separated from the queen. We then tested these subcolonies' performance in a series of collective behaviour assays and finally exposed colonies to the entomopathogenic fungus Metarhizium robertsii by exposing two individuals from the colony and then sealing them back into the nest. We found that queenright subcolonies outperformed their queenless counterparts in nearly all collective behaviours. Queenless subcolonies were also more vulnerable to mortality from disease. However, queenless groups that displayed more interactions with brood experienced greater survivorship, a trend not present in queenright subcolonies. Queenless subcolonies that engage in more brood interactions may have had more resources available to cope with two physiological challenges (ovarian development after queen loss and immune activation after pathogen exposure). Our results indicate that queen presence can play an integral role in colony behaviour, survivorship and their relationship. They also suggest that interactions between workers and brood are integral to colonies survival. Overall, a social group's history of social reorganization may have strong consequences on their collective behaviours and their vulnerability to disease outbreaks.
Collapse
Affiliation(s)
- Carl N Keiser
- Rice University Academy of Fellows, Rice University, Houston, TX, USA.,Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Imani O Butler
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | | | - Julia B Saltz
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Loreto RG, Hughes DP. Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies. PLoS One 2016; 11:e0160820. [PMID: 27529548 PMCID: PMC4986943 DOI: 10.1371/journal.pone.0160820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested.
Collapse
Affiliation(s)
- Raquel G. Loreto
- Department of Entomology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, 16802 Pennsylvania, United States of America
- CAPES Foundation, Ministry of Education of Brazil, Brasília 70040–020 DF, Brazil
| | - David P. Hughes
- Department of Entomology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, 16802 Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, 16802 Pennsylvania, United States of America
| |
Collapse
|