2
|
Naug D, Tait C. Slow-Fast Cognitive Phenotypes and Their Significance for Social Behavior: What Can We Learn From Honeybees? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.766414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive variation is proposed to be the fundamental underlying factor that drives behavioral variation, yet it is still to be fully integrated with the observed variation at other phenotypic levels that has recently been unified under the common pace-of-life framework. This cognitive and the resulting behavioral diversity is especially significant in the context of a social group, the performance of which is a collective outcome of this diversity. In this review, we argue about the utility of classifying cognitive traits along a slow-fast continuum in the larger context of the pace-of-life framework. Using Tinbergen’s explanatory framework for different levels of analyses and drawing from the large body of knowledge about honeybee behavior, we discuss the observed interindividual variation in cognitive traits and slow-fast cognitive phenotypes from an adaptive, evolutionary, mechanistic and developmental perspective. We discuss the challenges in this endeavor and suggest possible next steps in terms of methodological, statistical and theoretical approaches to move the field forward for an integrative understanding of how slow-fast cognitive differences, by influencing collective behavior, impact social evolution.
Collapse
|
3
|
Schilcher F, Hilsmann L, Rauscher L, Değirmenci L, Krischke M, Krischke B, Ankenbrand M, Rutschmann B, Mueller MJ, Steffan-Dewenter I, Scheiner R. In Vitro Rearing Changes Social Task Performance and Physiology in Honeybees. INSECTS 2021; 13:insects13010004. [PMID: 35055848 PMCID: PMC8779213 DOI: 10.3390/insects13010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The rearing of honeybee larvae in the laboratory is an important tool for studying the effects of plant protection products or pathogens on developing and adult bees, yet how rearing under artificial conditions affects the later social behavior and physiology of the honeybees is mostly unknown. We, here, show that honeybees reared in the laboratory generally had a lower probability for performing nursing or foraging tasks compared to bees reared under natural conditions in bee colonies. Nursing behavior itself appeared normal in in vitro honeybees. In contrast, bees reared in the laboratory foraged for a shorter period in life and performed fewer trips compared to bees reared in colonies. In addition, in vitro honeybees did not display the typical increase in juvenile hormone titer, which goes hand-in-hand with the initiation of foraging in colony-reared bees. Abstract In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.
Collapse
Affiliation(s)
- Felix Schilcher
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
- Correspondence: ; Tel.: +49-931-31-85373
| | - Lioba Hilsmann
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| | - Lisa Rauscher
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| | - Laura Değirmenci
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; (M.K.); (M.J.M.)
| | - Beate Krischke
- Biocentre, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (B.K.); (B.R.); (I.S.-D.)
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology (CCTB), Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074 Würzburg, Germany;
| | - Benjamin Rutschmann
- Biocentre, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (B.K.); (B.R.); (I.S.-D.)
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; (M.K.); (M.J.M.)
| | - Ingolf Steffan-Dewenter
- Biocentre, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (B.K.); (B.R.); (I.S.-D.)
| | - Ricarda Scheiner
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| |
Collapse
|
4
|
Jack CJ, Ellis JD. Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6. [PMID: 34536080 PMCID: PMC8449538 DOI: 10.1093/jisesa/ieab058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 05/13/2023]
Abstract
Varroa destructor is among the greatest biological threats to western honey bee (Apis mellifera L.) health worldwide. Beekeepers routinely use chemical treatments to control this parasite, though overuse and mismanagement of these treatments have led to widespread resistance in Varroa populations. Integrated Pest Management (IPM) is an ecologically based, sustainable approach to pest management that relies on a combination of control tactics that minimize environmental impacts. Herein, we provide an in-depth review of the components of IPM in a Varroa control context. These include determining economic thresholds for the mite, identification of and monitoring for Varroa, prevention strategies, and risk conscious treatments. Furthermore, we provide a detailed review of cultural, mechanical, biological, and chemical control strategies, both longstanding and emerging, used against Varroa globally. For each control type, we describe all available treatments, their efficacies against Varroa as described in the primary scientific literature, and the obstacles to their adoption. Unfortunately, reliable IPM protocols do not exist for Varroa due to the complex biology of the mite and strong reliance on chemical control by beekeepers. To encourage beekeeper adoption, a successful IPM approach to Varroa control in managed colonies must be an improvement over conventional control methods and include cost-effective treatments that can be employed readily by beekeepers. It is our intention to provide the most thorough review of Varroa control options available, ultimately framing our discussion within the context of IPM. We hope this article is a call-to-arms against the most damaging pest managed honey bee colonies face worldwide.
Collapse
Affiliation(s)
- Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Jack CJ, Dai PL, van Santen E, Ellis JD. Comparing four methods of rearing Varroa destructor in vitro. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:463-476. [PMID: 32249394 DOI: 10.1007/s10493-020-00488-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The parasitic mite Varroa destructor Anderson and Trueman continues to devastate western honey bee (Apis mellifera L.) colonies throughout most of the world where they are managed. The development of a method to rear Varroa in vitro would allow for year-round Varroa research, rapidly advancing our progress towards controlling the mite. We created two separate experiments to address this objective. First, we determined which of four in vitro rearing methods yields the greatest number of Varroa offspring. Second, we attempted to improve the rearing rates achieved with that method. The four methods tested included (1) rearing Varroa on honey bee pupae in gelatin capsules, (2) rearing Varroa on in vitro-reared honey bees, (3) group rearing Varroa on honey bee pupae in Petri dishes, and (4) providing Varroa a bee-derived diet. The number of reproducing females and the number of fully mature offspring were significantly higher in the gelatin capsules maintained at 75% RH than in any other method. A 2 × 3 full factorial design was used to test combinations of gelatin capsule size (6 and 7 mm diameter) and relative humidity (65, 75, or 85%) on Varroa rearing success. Varroa reproduction and survival were significantly higher in 7-mm-diameter gelatin capsules maintained at 75% RH than in those maintained in 6-mm capsules and at the other humidities. By identifying factors that influence Varroa reproductive success in vitro, this work provides an important foundation for the development of future rearing protocols.
Collapse
Affiliation(s)
- Cameron J Jack
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611-0620, USA.
| | - Ping-Li Dai
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611-0620, USA
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Edzard van Santen
- Statistical Consulting Unit and Agronomy Department, Institute for Food and Agricultural Sciences, University of Florida, McCarty Hall, P.O. Box 110500, Gainesville, FL, 32611-0500, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611-0620, USA.
| |
Collapse
|
6
|
Rittschof CC, Rubin BER, Palmer JH. The transcriptomic signature of low aggression in honey bees resembles a response to infection. BMC Genomics 2019; 20:1029. [PMID: 31888487 PMCID: PMC6937707 DOI: 10.1186/s12864-019-6417-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. RESULTS Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. CONCLUSIONS Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.
Collapse
Affiliation(s)
- Clare C Rittschof
- University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA.
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Joseph H Palmer
- Kentucky State University, 400 E. Main St., Frankfort, KY, 40601, USA
| |
Collapse
|