1
|
Siewert V, Kaiser S, Sachser N, Richter SH. Optimism and pessimism: a concept for behavioural ecology. Biol Rev Camb Philos Soc 2024. [PMID: 39711313 DOI: 10.1111/brv.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Originating from human psychology, the concepts of "optimism" and "pessimism" were transferred to animal welfare science about 20 years ago to study emotional states in non-human animals. Over time, "optimism" and "pessimism" have developed into valuable welfare indicators, but little focus has been put on the ecological implications of this concept. Here, we aim to bridge this gap and underline the great potential for transferring it to behavioural ecology. We start by outlining why "optimism" and "pessimism" can be considered as aspects of animal personalities. Furthermore, we argue that considering "optimism"/"pessimism" in a behavioural ecology context can facilitate our understanding of individual adjustment to the environment. Specifically, we show how variation in "optimism"/"pessimism" can play a crucial role in adaptation processes to environmental heterogeneity, for example, niche choice and niche conformance. Building on these considerations, we hypothesise that "optimists" might be less plastic than "pessimists" in their behaviour, which could considerably affect the way they adjust to environmental change.
Collapse
Affiliation(s)
- Viktoria Siewert
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - Sylvia Kaiser
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - Norbert Sachser
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - S Helene Richter
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| |
Collapse
|
2
|
Lundgren KA, Løvlie H. Increased dietary 5-hydroxytryptophan reduces fearfulness in red junglefowl hens ( Gallus gallus). Front Physiol 2023; 14:1213986. [PMID: 37766752 PMCID: PMC10520959 DOI: 10.3389/fphys.2023.1213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Our production animals typically suffer poor welfare, which can be revealed by measuring the affective state these animals are in. Negative affective state is linked to poorer welfare, and can be measured as fearfulness. While continuing to research how to improve animal welfare, a compliment to reduce negative affective state could therefore be to reduce individuals' fearfulness, similar to how negative affective states are medicated in humans. A proposed mechanism for this is via the monoaminergic systems. This is based on previous studies across species that have linked the serotonergic system and fear-related behaviour. We here aimed to experimentally manipulate the serotonergic system in red junglefowl hens (Gallus gallus), the main ancestor of all domesticated chickens. We measured fearfulness as latency remaining immobile in a tonic immobility test, and did so both before and after our experimental manipulation. We set out to experimentally manipulate the serotonergic system via sub-chronic dietary treatment of 5-hydroxytryptophan (the precursor to serotonin). Our dietary manipulation of 5-hydroxytryptophan significantly reduced measured fearfulness in the manipulated hens, while latency in tonic immobility did not significantly change in our unmanipulated, control hens. This finding is promising since it indicates that increased tryptophan levels can be used to reduce fearfulness. Additionally, our result suggests that this can be done non-invasively via food (instead of injections), thus presenting a potentially feasible manipulation also for larger settings. Nevertheless, the serotonergic system is complex and its role in modulating behaviour in the fowl should be explored further to evaluate our findings, and more directly explored also in a production setting.
Collapse
Affiliation(s)
| | - Hanne Løvlie
- IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Daniel DK, Bhat A. Correlations begin at home: drivers of co-occurrence patterns in personality and cognitive ability in wild populations of zebrafish. Anim Cogn 2023:10.1007/s10071-023-01787-w. [PMID: 37248284 DOI: 10.1007/s10071-023-01787-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
Aquatic habitats are extremely dynamic, with constantly changing ecological factors, which has now been exacerbated due to human-induced rapid environmental change. In such variable environments, it becomes essential to understand how personality and cognition in organisms affect the adaptability of individuals to different habitat conditions. To test this, we studied how personality-related traits as well as cognitive ability differ between populations of wild-caught zebrafish (Danio rerio) from habitats that differed in various environmental factors. We measured emergence into a novel environment as an indicator of boldness, and performance in a spatial task inferred from feeding latencies in a maze over repeated trials to assess learning and memory, as an indicator of cognitive ability. We found that personality affects cognition and although bolder fish are better learners, they show poorer retention of memory across populations. Although personality and cognitive ability varied between habitats, the patterns of their correlations remained similar within each population. However, the individual traits (such as sex and size) that were drivers of personality and cognition differed between the habitats, suggesting that not only do behavioral traits vary between populations, but also the factors that are important in determining them. Personality and cognitive ability and the correlations between these traits determine how well an organism performs in its habitat, as well as how likely it is to find new habitats and adapt to them. Studying these across wild zebrafish populations helps predict performance efficiencies among individuals and also explains how fish adapt to extremely dynamic environments that can lead to variation in behavioral traits and correlations between them. This study not only sheds light on the drivers of interindividual variation and co-occurrence patterns of personality and cognition, but also individual and population factors that might have an effect on them.
Collapse
Affiliation(s)
- Danita K Daniel
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Anuradha Bhat
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
4
|
Lee VE, Arnott G, Turner SP. Social behavior in farm animals: Applying fundamental theory to improve animal welfare. Front Vet Sci 2022; 9:932217. [PMID: 36032304 PMCID: PMC9411962 DOI: 10.3389/fvets.2022.932217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A fundamental understanding of behavior is essential to improving the welfare of billions of farm animals around the world. Despite living in an environment managed by humans, farm animals are still capable of making important behavioral decisions that influence welfare. In this review, we focus on social interactions as perhaps the most dynamic and challenging aspects of the lives of farm animals. Social stress is a leading welfare concern in livestock, and substantial variation in social behavior is seen at the individual and group level. Here, we consider how a fundamental understanding of social behavior can be used to: (i) understand agonistic and affiliative interactions in farm animals; (ii) identify how artificial environments influence social behavior and impact welfare; and (iii) provide insights into the mechanisms and development of social behavior. We conclude by highlighting opportunities to build on previous work and suggest potential fundamental hypotheses of applied relevance. Key areas for further research could include identifying the welfare benefits of socio–positive interactions, the potential impacts of disrupting important social bonds, and the role of skill in allowing farm animals to navigate competitive and positive social interactions. Such studies should provide insights to improve the welfare of farm animals, while also being applicable to other contexts, such as zoos and laboratories.
Collapse
Affiliation(s)
- Victoria E. Lee
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
- *Correspondence: Victoria E. Lee
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, United Kingdom
| | - Simon P. Turner
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
5
|
Garnham LC, Clarke C, Løvlie H. How Inhibitory Control Relates to Positive and Negative Affective States in Red Junglefowl. Front Vet Sci 2022; 9:872487. [PMID: 35464350 PMCID: PMC9024352 DOI: 10.3389/fvets.2022.872487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Individual differences in inhibitory control, an aspect of cognition, are found in many species. How this variation links to affective states is not much explored, and could be relevant for welfare. As less fearful, more optimistic, individuals may act more impulsively, inhibitory control could link to less negative, more positive, affective states. Alternatively, poorer inhibitory control could associate with more negative, less positive, affective states, as poorer inhibitory control can result in individuals being less able to adapt to changing environments and more likely to show stereotypies. We here explored in three cohorts (N = 209) of captive red junglefowl, the ancestor of domestic chickens, how inhibitory control associated with affective states. Specifically, we measured inhibitory control with a detour task, and negative and positive affective states with a tonic immobility test and a cognitive judgement bias test, respectively. Cognition and behaviour can differ between ages and sexes. Therefore, we investigated how inhibitory control related to affective states in younger chicks (≈2.5 weeks old), older chicks (≈5 weeks old) and sexually mature adults (≈28 weeks old) of both sexes. In younger chicks, poorer inhibitory control associated with less negative, more positive, affective states. We found no relationship between inhibitory control and affective states in older chicks or adults, nor sex differences regarding how inhibitory control related to affective states. Overall, our results suggest that inhibitory control can link to affective states and that the nature of these links can change over ontogeny.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Charlie Clarke
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Hanne Løvlie
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- *Correspondence: Hanne Løvlie
| |
Collapse
|
6
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
7
|
Kwek BZW, Tan M, Yu L, Zhou W, Chang CC, Li D. Aggressive males are more attractive to females and more likely to win contests in jumping spiders. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Lecorps B, Weary DM, von Keyserlingk MAG. Negative expectations and vulnerability to stressors in animals. Neurosci Biobehav Rev 2021; 130:240-251. [PMID: 34454913 DOI: 10.1016/j.neubiorev.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023]
Abstract
Humans express stable differences in pessimism that render some individuals more vulnerable to stressors and mood disorders. We explored whether non-human animals express stable individual differences in expectations (assessed via judgment bias tests) and whether these differences relate to susceptibility to stressors. Judgment bias tests do not distinguish pessimism from sensitivity to reinforcers; negative expectations are likely driven by a combination of these two elements. The available evidence suggests that animals express stable individual differences in expectations such that some persistently perceive ambiguous situations in a more negative way. A lack of research prevents drawing firm conclusions on how negative expectations affect responses to stressors, but current evidence suggests a link between negative expectations and the adoption of avoidance coping strategies, stronger responses to uncontrollable stressors and risk of mood-related disorders. We explore implications for animals living in captivity and for research using animals as models for human disorders.
Collapse
Affiliation(s)
- Benjamin Lecorps
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada.
| |
Collapse
|
9
|
Ryding S, Garnham LC, Abbey-Lee RN, Petkova I, Kreshchenko A, Løvlie H. Impulsivity is affected by cognitive enrichment and links to brain gene expression in red junglefowl chicks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Esattore B, Šlipogor V, Saggiomo L, Seltmann MW. "How not to judge a deer by its cover": A personality assessment study on captive adult red deer males (Cervus elaphus). Behav Processes 2021; 186:104361. [PMID: 33639253 DOI: 10.1016/j.beproc.2021.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Personality is not a uniquely human characteristic and it has been documented in a wide range of organisms, from mammals to birds, reptiles, fish, and invertebrates. However, personality is still poorly understood in Cervids. Therefore, our study aimed to fill this gap by i) investigating personality and ii) exploring its links to dominance hierarchy, assessed by behavioral observations in 11 captive and tame male red deer (Cervus elaphus). Using questionnaires to assess personality, three trained volunteers rated these animals in 15 behaviorally composed adjectives with detailed descriptions, based on their overall impression at the end of the observation period. Behavioral data from animals were collected across three different situations, namely "feeding" (i.e., high competition for a scarce resource), "normal" (i.e., no external stimuli) in a group setting, and "handling" (i.e., stressful situation due to human manipulation) in an individual setting. We estimated dominance hierarchies between the individuals based on situations of average and high competition (i.e., "normal" and "feeding") via the Clutton-Brock Index (CBI). Using Fleiss' Kappa for inter-rater reliability, only five of our 15 behavioral adjectives showed acceptable reliability. Using principal component analysis, four of these adjectives formed one personality component labelled "Confidence/Aggressiveness". We found that although "Confidence/Aggressiveness" did not correlate with CBI, ratings of two adjectives loading onto this component, namely "Confident" and "Submissive", significantly correlated with the CBI, indicating that the questionnaire ratings reflect real behavioral variation in red deer males. Our study provides the first assessment of personality in male red deer and adds to the growing literature on Cervid personality, offering the basis for future personality research in ungulates.
Collapse
Affiliation(s)
- Bruno Esattore
- Department of Ethology, Institute of Animal Science, Přátelství 815, 104 00, Praha 10-Uhříněves, Czech Republic; Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| | - Vedrana Šlipogor
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, UZA I, 1090, Vienna, Austria; Department of Zoology, University of South Bohemia, Branišovská 1760, 370 05, Budweiss, Czech Republic
| | - Laura Saggiomo
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 - Suchdol, 165 00, Czech Republic
| | | |
Collapse
|
11
|
Favati A, Løvlie H, Leimar O. Effects of social experience, aggressiveness and comb size on contest success in male domestic fowl. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201213. [PMID: 33972851 PMCID: PMC8074635 DOI: 10.1098/rsos.201213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The ability to dominate conspecifics and thereby gain access to resources depends on a number of traits and skills. Experience of dominance relationships during development is a potential source of learning such skills. We here study the importance of social experience, aggressiveness and morphological traits for competitiveness in social interactions (contest success) in male domestic fowl (Gallus gallus domesticus). We let males grow up either as a single (dominant) male or as an intermediately ranked male in a group of males, and measured their success in duels against different opponents. We found that single-raised males had lower contest success than group-raised males, and that aggression and comb size correlated positively with contest success. This indicates that experience of dominance interactions with other males increases future success in duels. We similarly studied the consequences of growing up as a dominant or subordinate in a pair of males, finding no statistically significant effect of the dominance position on contest success. Finally, we found that males were consistent over time in contest success. We conclude that social experience increases contest success in male domestic fowl, but that certain behavioural and morphological characteristics have an equal or even stronger covariation with contest success.
Collapse
Affiliation(s)
- Anna Favati
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Olof Leimar
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Boddington R, Gómez Dunlop CA, Garnham LC, Ryding S, Abbey-Lee RN, Kreshchenko A, Løvlie H. The relationship between monoaminergic gene expression, learning, and optimism in red junglefowl chicks. Anim Cogn 2020; 23:901-911. [PMID: 32440792 PMCID: PMC7415762 DOI: 10.1007/s10071-020-01394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Intra-species cognitive variation is commonly observed, but explanations for why individuals within a species differ in cognition are still understudied and not yet clear. Cognitive processes are likely influenced by genetic differences, with genes in the monoaminergic systems predicted to be important. To explore the potential role of these genes in association with individual variation in cognition, we exposed red junglefowl (Gallus gallus) chicks to behavioural assays measuring variation in learning (discriminative learning, reversal learning, and cognitive flexibility) and optimism (measured in a cognitive judgement bias test). Following this, we analysed prefrontal cortex gene expression of several dopaminergic and serotonergic genes in these chicks. Of our explored genes, serotonin receptor genes 5HT2A and 5HT2B, and dopaminergic receptor gene DRD1 were associated with measured behaviour. Chicks that had higher 5HT2A were less flexible in the reversal learning task, and chicks with higher 5HT2B also tended to be less cognitively flexible. Additionally, chicks with higher DRD1 were more optimistic, whilst chicks with higher 5HT2A tended to be less optimistic. These results suggest that the serotonergic and dopaminergic systems are linked to observed cognitive variation, and, thus, individual differences in cognition can be partially explained by variation in brain gene expression.
Collapse
Affiliation(s)
- Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Clara A Gómez Dunlop
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Laura C Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Sara Ryding
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Robin N Abbey-Lee
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Anastasia Kreshchenko
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|