1
|
McGregor S, Uslu FE, Sakar MS, Keller L. Targeted worker removal reveals a lack of flexibility in brood transport specialisation with no compensatory gain in efficiency. Sci Rep 2024; 14:4850. [PMID: 38418542 PMCID: PMC10901836 DOI: 10.1038/s41598-024-55244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
Division of labour is widely thought to increase the task efficiency of eusocial insects. Workers can switch their task to compensate for sudden changes in demand, providing flexible task allocation. In combination with automated tracking technology, we developed a robotic system to precisely control and spatiotemporally manipulate floor temperature over days, which allowed us to predictably drive brood transport behaviour in colonies of the ant Camponotus floridanus. Our results indicate that a small number of workers, usually minors belonging to the nurse social group, are highly specialised for brood transport. There was no difference in the speed at which workers transported brood, suggesting that specialisation does not correlate with efficiency. Workers often started to transport the brood only after having identified a better location. There was no evidence that workers shared information about the presence of a better location. Notably, once brood transporters had been removed, none of the remaining workers performed this task, and the brood transport completely stopped. When brood transporters were returned to their colony, brood transport was immediately restored. Taken together, our study reveals that brood transport is an inflexible task, achieved through the synchronous actions of a few privately informed specialist workers.
Collapse
Affiliation(s)
- Sean McGregor
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Fazil E Uslu
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
2
|
Caminer MA, Libbrecht R, Majoe M, Ho DV, Baumann P, Foitzik S. Task-specific odorant receptor expression in worker antennae indicates that sensory filters regulate division of labor in ants. Commun Biol 2023; 6:1004. [PMID: 37783732 PMCID: PMC10545721 DOI: 10.1038/s42003-023-05273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Division of labor (DOL) is a characteristic trait of insect societies, where tasks are generally performed by specialized individuals. Inside workers focus on brood or nest care, while others take risks by foraging outside. Theory proposes that workers have different thresholds to perform certain tasks when confronted with task-related stimuli, leading to specialization and consequently DOL. Workers are presumed to vary in their response to task-related cues rather than in how they perceive such information. Here, we test the hypothesis that DOL instead stems from workers varying in their efficiency to detect stimuli of specific tasks. We use transcriptomics to measure mRNA expression levels in the antennae and brain of nurses and foragers of the ant Temnothorax longispinosus. We find seven times as many genes to be differentially expressed between behavioral phenotypes in the antennae compared to the brain. Moreover, half of all odorant receptors are differentially expressed, with an overrepresentation of the 9-exon gene family upregulated in the antennae of nurses. Nurses and foragers thus apparently differ in the perception of their olfactory environment and task-related signals. Our study supports the hypothesis that antennal sensory filters predispose workers to specialize in specific tasks.
Collapse
Affiliation(s)
- Marcel A Caminer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David V Ho
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Baumann
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Wójcik Ł, Chęć M, Skowronek P, Grabowski M, Persona K, Strachecka A. Do the different life history strategies of ants and honeybees determine fat body morphology? ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 69:101186. [PMID: 35696737 DOI: 10.1016/j.asd.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The separation of two sister groups such as ants and bees in the Cretaceous involved the development of distinctive characteristics to occupy separate ecological niches. From the point of view of biology and ecology, it is important to see how different life history strategies affect the physiology of these insects. The fat body is the most metabolically important tissue in the organism of each insect. Therefore, we conducted a comparative analysis of the morphological image of the subcuticular fat body in different localisation/segments in Formica (Seviformica) cinerea and Apis mellifera mellifera foragers, because of the similarity of their functions in colonies. We observed that the fat bodies of ants and bees were composed of the same cell types: trophocytes and oenocytes. However, in each of the segments, the fat body cells in ants were bigger and there were fewer of them in comparison with bees. The dorsal part of the fat body of ants had a bilayer structure, where the outer layer was formed by binucleated oenocytes. Binucleated oenocytes were also found in the inner layer near the heart and tracheole. In bees, the fat body was unilayered and the trophocytes and oenocytes were present side by side. The similarities and, in particular, the differences in the structure of the fat body are the adaptation of these sister groups to life in a diverse environment.
Collapse
Affiliation(s)
- Łukasz Wójcik
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Magdalena Chęć
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Marcin Grabowski
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Kamil Persona
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
4
|
Tanaka Y, Hojo MK, Shimoji H. Individual experience influences reconstruction of division of labour under colony disturbance in a queenless ant species. Front Zool 2022; 19:20. [PMID: 35706054 PMCID: PMC9202139 DOI: 10.1186/s12983-022-00466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Division of labour (DOL) is ubiquitous across biological hierarchies. In eusocial insects, DOL is often characterized by age-related task allocation, but workers can flexibly change their tasks, allowing for DOL reconstruction in fluctuating environments. Behavioural change driven by individual experience is regarded as a key to understanding this task flexibility. However, experimental evidence for the influence of individual experience is remains sparse. Here we tested the effect of individual experience on task choice in the queenless ponerine ant, Diacamma cf. indicum from Japan. RESULTS We confirmed that both nurses and foragers shifted to vacant tasks when the colony composition was biased to one or the other. We also found that nurses which are induced to forage readily revert to nursing when reintroduced into balanced colonies. In contrast, foragers which are induced to revert to nursing very rarely return to a foraging role, even 19 days post reintroduction to their original colony. CONCLUSIONS Taken together, our results suggest that individual experience decreases the response threshold of original foragers, as they continue to be specialist nurses in a disturbed colony. However, original nurses do not appear strongly affected by having forager experience and revert to being nurses. Therefore, while individual experience does have an effect, other factors, such as reproductive ability, are clearly required to understand DOL maintenance in fluctuating environments.
Collapse
Affiliation(s)
- Yasunari Tanaka
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Masaru K Hojo
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Hiroyuki Shimoji
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
5
|
Shimoji H, Itoh H, Matsuura Y, Yamashita R, Hori T, Hojo MK, Kikuchi Y. Worker-dependent gut symbiosis in an ant. ISME COMMUNICATIONS 2021; 1:60. [PMID: 37938661 PMCID: PMC9723695 DOI: 10.1038/s43705-021-00061-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 04/27/2023]
Abstract
The hallmark of eusocial insects, honeybees, ants, and termites, is division of labor between reproductive and non-reproductive worker castes. In addition, environmental adaption and ecological dominance are also underpinned by symbiotic associations with beneficial microorganisms. Microbial symbionts are generally considered to be maintained in an insect colony in two alternative ways: shared among all colony members or inherited only by a specific caste. Especially in ants, the reproductive caste plays a crucial role in transmission of the symbionts shared among colony members over generations. Here, we report an exceptional case, the worker-dependent microbiota in an ant, Diacamma cf. indicum from Japan. By collecting almost all the individuals from 22 colonies in the field, we revealed that microbiota of workers is characterized by a single dominant bacterium localized at the hindgut. The bacterium belonging to an unclassified member within the phylum Firmicutes, which is scarce or mostly absent in the reproductive castes. Furthermore, we show that the gut symbiont is acquired at the adult stage. Collectively, our findings strongly suggest that the specific symbiont is maintained by only workers, demonstrating a novel pattern of ant-associated bacterial symbiosis, and thus further our understanding of host-microbe interactions in the light of sociobiology.
Collapse
Affiliation(s)
- Hiroyuki Shimoji
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, 062-8517, Japan.
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Rio Yamashita
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced IndustrialScience and Technology (AIST) Tsukuba West, Tsukuba, Ibaraki, 305-8569, Japan
| | - Masaru K Hojo
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
6
|
Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, Reinberg D, Liebig J. Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant ( Harpegnathos saltator). Proc Biol Sci 2021; 288:20210141. [PMID: 33849311 DOI: 10.1098/rspb.2021.0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kevin L Haight
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Fujioka H, Abe MS, Okada Y. Individual Ants Do Not Show Activity-Rest Rhythms in Nest Conditions. J Biol Rhythms 2021; 36:297-310. [PMID: 33818189 DOI: 10.1177/07487304211002934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms, which respond to the day-night cycle on the earth, arise from the endogenous timekeeping system within organisms, called the "biological clock." For accurate circadian rhythms, daily fluctuations in light and temperature are considered one of the important time cues. In social insects, both abiotic and biotic factors (i.e., social interactions) play a significant role in activity-rest rhythm regulation. However, it is challenging to monitor individual activity-rest rhythms in a colony because of the large group size and small body size. Therefore, it is unclear whether individuals in a colony exhibit activity-rest rhythms and how social interactions regulate their activity-rest rhythms in the colony. This study developed an image-based tracking system using 2D barcodes for Diacamma cf. indicum from Japan (a monomorphic ant) and measured the locomotor activities of all colony members under laboratory colony conditions. We also investigated the effect of broods on activity-rest rhythms by removing all broods under colony conditions. Activity-rest rhythms appeared only in isolated ants, not under colony conditions. In addition, workers showed arrhythmic activities after brood removal. These results suggested that a mixture of social interactions, and not light and temperature, induces the loss of activity-rest rhythms. These results contribute to the knowledge of a diverse pattern of circadian activity rhythms in social insects.
Collapse
Affiliation(s)
- Haruna Fujioka
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Science, Osaka City University, Osaka, Japan.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Masato S Abe
- Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Yasukazu Okada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
8
|
Miyazaki S, Shimoji H, Suzuki R, Chinushi I, Takayanagi H, Yaguchi H, Miura T, Maekawa K. Expressions of conventional vitellogenin and vitellogenin-like A in worker brains are associated with a nursing task in a ponerine ant. INSECT MOLECULAR BIOLOGY 2021; 30:113-121. [PMID: 33150669 DOI: 10.1111/imb.12682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
In eusocial insect colonies, non-reproductive workers often perform different tasks. Tasks of an individual worker are shifted depending on various factors, e.g., age and colony demography. Although a vitellogenin (Vg) gene play regulatory roles in both reproductive and non-reproductive division of labours in a honeybee, it has been shown that the insect Vg underwent multiple gene duplications and sub-functionalisation, especially in apical ant lineages. The regulatory roles of duplicated Vgs were suggested to change evolutionarily among ants, whereas such roles in phylogenetically basal ants remain unclear. Here, we examined the expression patterns of conventional Vg (CVg), Vg-like A, Vg-like B and Vg-like C, as well as Vg receptor, during the task shift in an age-dependent manner and under experimental manipulation of colony demography in a primitive ant Diacamma sp. Expressions of CVg and Vg-like A in a brain were associated with a nursing task. It is suggested that associations of brain expressions of these Vgs with worker tasks were acquired in the basal ant lineage, and that such Vg functions could have sub-functionalised in the derived ant lineage.
Collapse
Affiliation(s)
- S Miyazaki
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - H Shimoji
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - I Chinushi
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - H Takayanagi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - H Yaguchi
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - T Miura
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| | - K Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|