1
|
Ivimey-Cook ER, Pick JL, Bairos-Novak KR, Culina A, Gould E, Grainger M, Marshall BM, Moreau D, Paquet M, Royauté R, Sánchez-Tójar A, Silva I, Windecker SM. Implementing code review in the scientific workflow: Insights from ecology and evolutionary biology. J Evol Biol 2023; 36:1347-1356. [PMID: 37812156 DOI: 10.1111/jeb.14230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Code review increases reliability and improves reproducibility of research. As such, code review is an inevitable step in software development and is common in fields such as computer science. However, despite its importance, code review is noticeably lacking in ecology and evolutionary biology. This is problematic as it facilitates the propagation of coding errors and a reduction in reproducibility and reliability of published results. To address this, we provide a detailed commentary on how to effectively review code, how to set up your project to enable this form of review and detail its possible implementation at several stages throughout the research process. This guide serves as a primer for code review, and adoption of the principles and advice here will go a long way in promoting more open, reliable, and transparent ecology and evolutionary biology.
Collapse
Affiliation(s)
- Edward R Ivimey-Cook
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Joel L Pick
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Kevin R Bairos-Novak
- Australian Research Council Centre of Excellence for Coral Reef Studies & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Antica Culina
- Rudjer Boskovic Institute, Zagreb, Croatia
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, the Netherlands
| | - Elliot Gould
- School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Benjamin M Marshall
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - David Moreau
- School of Psychology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Matthieu Paquet
- Institute of Mathematics of Bordeaux, University of Bordeaux, CNRS, Bordeaux INP, Talence, France
| | - Raphaël Royauté
- Université ParisSaclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France
| | | | - Inês Silva
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Görlitz, Germany
| | - Saras M Windecker
- School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Chen RS, Berthelsen AL, Lamartinière EB, Spangenberg MC, Schmoll T. Recognizing and marshalling the pre-publication error correction potential of open data for more reproducible science. Nat Ecol Evol 2023; 7:1597-1599. [PMID: 37524795 DOI: 10.1038/s41559-023-02152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Affiliation(s)
| | - Ane Liv Berthelsen
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany.
| | | | | | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Berberi I, Roche DG. Reply to: Recognizing and marshalling the pre-publication error correction potential of open data for more reproducible science. Nat Ecol Evol 2023; 7:1595-1596. [PMID: 37524794 DOI: 10.1038/s41559-023-02142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Affiliation(s)
- Ilias Berberi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Dominique G Roche
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Gomes DGE, Pottier P, Crystal-Ornelas R, Hudgins EJ, Foroughirad V, Sánchez-Reyes LL, Turba R, Martinez PA, Moreau D, Bertram MG, Smout CA, Gaynor KM. Why don't we share data and code? Perceived barriers and benefits to public archiving practices. Proc Biol Sci 2022; 289:20221113. [PMID: 36416041 PMCID: PMC9682438 DOI: 10.1098/rspb.2022.1113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
The biological sciences community is increasingly recognizing the value of open, reproducible and transparent research practices for science and society at large. Despite this recognition, many researchers fail to share their data and code publicly. This pattern may arise from knowledge barriers about how to archive data and code, concerns about its reuse, and misaligned career incentives. Here, we define, categorize and discuss barriers to data and code sharing that are relevant to many research fields. We explore how real and perceived barriers might be overcome or reframed in the light of the benefits relative to costs. By elucidating these barriers and the contexts in which they arise, we can take steps to mitigate them and align our actions with the goals of open science, both as individual scientists and as a scientific community.
Collapse
Affiliation(s)
- Dylan G. E. Gomes
- NRC Research Associate, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
- Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert Crystal-Ornelas
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emma J. Hudgins
- Department of Biology, Carleton University, Ottawa, Canada, K1S 5B6
| | | | | | - Rachel Turba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7239, USA
| | - Paula Andrea Martinez
- Australian Research Data Commons, The University of Queensland, Brisbane 4072, Australia
| | - David Moreau
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-907 36, Sweden
| | - Cooper A. Smout
- Institute for Globally Distributed Open Research and Education (IGDORE), Brisbane 4001, Australia
| | - Kaitlyn M. Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA 93101, USA
| |
Collapse
|
5
|
Cadwallader L, Hrynaszkiewicz I. A survey of researchers' code sharing and code reuse practices, and assessment of interactive notebook prototypes. PeerJ 2022; 10:e13933. [PMID: 36032954 PMCID: PMC9406794 DOI: 10.7717/peerj.13933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
This research aimed to understand the needs and habits of researchers in relation to code sharing and reuse; gather feedback on prototype code notebooks created by NeuroLibre; and help determine strategies that publishers could use to increase code sharing. We surveyed 188 researchers in computational biology. Respondents were asked about how often and why they look at code, which methods of accessing code they find useful and why, what aspects of code sharing are important to them, and how satisfied they are with their ability to complete these tasks. Respondents were asked to look at a prototype code notebook and give feedback on its features. Respondents were also asked how much time they spent preparing code and if they would be willing to increase this to use a code sharing tool, such as a notebook. As a reader of research articles the most common reason (70%) for looking at code was to gain a better understanding of the article. The most commonly encountered method for code sharing-linking articles to a code repository-was also the most useful method of accessing code from the reader's perspective. As authors, the respondents were largely satisfied with their ability to carry out tasks related to code sharing. The most important of these tasks were ensuring that the code was running in the correct environment, and sharing code with good documentation. The average researcher, according to our results, is unwilling to incur additional costs (in time, effort or expenditure) that are currently needed to use code sharing tools alongside a publication. We infer this means we need different models for funding and producing interactive or executable research outputs if they are to reach a large number of researchers. For the purpose of increasing the amount of code shared by authors, PLOS Computational Biology is, as a result, focusing on policy rather than tools.
Collapse
|
6
|
Roche DG, Raby GD, Norin T, Ern R, Scheuffele H, Skeeles M, Morgan R, Andreassen AH, Clements JC, Louissaint S, Jutfelt F, Clark TD, Binning SA. Paths towards greater consensus building in experimental biology. J Exp Biol 2022; 225:274263. [PMID: 35258604 DOI: 10.1242/jeb.243559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a recent editorial, the Editors-in-Chief of Journal of Experimental Biology argued that consensus building, data sharing, and better integration across disciplines are needed to address the urgent scientific challenges posed by climate change. We agree and expand on the importance of cross-disciplinary integration and transparency to improve consensus building and advance climate change research in experimental biology. We investigated reproducible research practices in experimental biology through a review of open data and analysis code associated with empirical studies on three debated paradigms and for unrelated studies published in leading journals in comparative physiology and behavioural ecology over the last 10 years. Nineteen per cent of studies on the three paradigms had open data, and 3.2% had open code. Similarly, 12.1% of studies in the journals we examined had open data, and 3.1% had open code. Previous research indicates that only 50% of shared datasets are complete and re-usable, suggesting that fewer than 10% of studies in experimental biology have usable open data. Encouragingly, our results indicate that reproducible research practices are increasing over time, with data sharing rates in some journals reaching 75% in recent years. Rigorous empirical research in experimental biology is key to understanding the mechanisms by which climate change affects organisms, and ultimately promotes evidence-based conservation policy and practice. We argue that a greater adoption of open science practices, with a particular focus on FAIR (Findable, Accessible, Interoperable, Re-usable) data and code, represents a much-needed paradigm shift towards improved transparency, cross-disciplinary integration, and consensus building to maximize the contributions of experimental biologists in addressing the impacts of environmental change on living organisms.
Collapse
Affiliation(s)
- Dominique G Roche
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada, K1S 5B6.,Institut de Biologie, Université de Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Rasmus Ern
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Michael Skeeles
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Rachael Morgan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Anna H Andreassen
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jeff C Clements
- Aquaculture and Coastal Ecosystems, Fisheries and Oceans Canada Gulf Region, Moncton, NB, Canada, E1C 9B6
| | - Sarahdghyn Louissaint
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| |
Collapse
|