1
|
Mendes RG, do Valle Junior RF, Feitosa THS, de Melo Silva MMAP, Fernandes LFS, Pacheco FAL, Pissarra TCT, Lana RMQ, de Melo MC, Valera CA. Carbon footprints of tailings dams' disasters: A study in the Brumadinho region (Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175026. [PMID: 39097022 DOI: 10.1016/j.scitotenv.2024.175026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Tailings dams' breaks are environmental disasters with direct and intense degradation of soil. This study analyzed the impacts of B1 tailings dam rupture occurred in the Ribeirão Ferro-Carvão watershed (Brumadinho, Brazil) in January 25, 2019. Soil organic carbon (SOC) approached environmental degradation. The analysis encompassed wetlands (high-SOC pools) located in the so-called Zones of Decreasing Destructive Capacity (DCZ5 to DCZ1) defined along the Ferro-Carvão's stream bed and banks after the disaster. Remote sensed water indices were extracted from Landsat 8 and Sentinel-2 satellite images spanning the 2017-2021 period and used to distinguish the wetlands from other land covers. The annual SOC was extracted from the MapBiomas repository inside and outside the DCZs in the same period, and assessed in the field in 2023. Before the dam collapse, the DCZs maintained stable levels of SOC, while afterwards they decreased substantially reaching minimum values in 2023. The reductions were abrupt: for example, in the DCZ3 the decrease was from 51.28 ton/ha in 2017 to 4.19 ton/ha in 2023. Besides, the SOC increased from DCZs located near to DCZs located farther from the dam site, a result attributed to differences in the percentages of clay and silt in the tailings, which also increased in the same direction. The Ferro-Carvão stream watershed as whole also experienced a slight reduction in the average SOC levels after the dam collapse, from nearly 43 ton/ha in 2017 to 38 ton/ha in 2021. This result was attributed to land use changes related with the management of tailings, namely opening of accesses to remove them from the stream valley, creation of spaces for temporary deposits, among others. Overall, the study highlighted the footprints of tailings dams' accidents on SOC, which affect not only the areas impacted with the mudflow but systemically the surrounding watersheds. This is noteworthy.
Collapse
Affiliation(s)
- Rafaella Gouveia Mendes
- Federal Institute of Triângulo Mineiro (IFTM), Uberaba Campus, Geoprocessing Laboratory, Uberaba, MG 38064-790, Brazil
| | - Renato Farias do Valle Junior
- Federal Institute of Triângulo Mineiro (IFTM), Uberaba Campus, Geoprocessing Laboratory, Uberaba, MG 38064-790, Brazil.
| | | | | | - Luís Filipe Sanches Fernandes
- Center for Research and Agro-environmental and Biological Technologies (CITAB), University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Fernando António Leal Pacheco
- Center of Chemistry of Vila Real (CQVR), University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Regina Maria Quintão Lana
- Programa de Pós Graduação Agronomia, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Marília Carvalho de Melo
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143, Bairro Serra Verde - Belo Horizonte, Minas Gerais, Brazil.
| | - Carlos Alberto Valera
- Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba, MG 38061-150, Brazil.
| |
Collapse
|
2
|
Jefanova O, Baužienė I, Lujanienė G, Švedienė J, Raudonienė V, Bridžiuvienė D, Paškevičius A, Levinskaitė L, Žvirgždas J, Petrošius R, Skuratovič Ž, Mažeika J. Initiation of radioecological monitoring of forest soils and plants at the Lithuanian border region before the start of the Belarusian nuclear power plant operation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:666. [PMID: 33001295 DOI: 10.1007/s10661-020-08638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the background activity concentrations of anthropogenic radionuclides before the start of operation of the new nuclear power plant in Belarus, BelNPP, is an issue of great importance for neighbouring countries. In this study, we provide the pilot characterisation of the Lithuanian part of the 30-km zone of the BelNPP, emphasising the forest plants, terrestrial mosses, forest organic and mineral topsoil to describe the preoperational radioecological state of the pine forest ecosystem. Key anthropogenic radionuclides (14C, 3H, 137Cs and 239,240Pu) were analysed. The 14C specific activity varied from 97.80 ± 1.30 to 102.40 ± 0.79 pMC. The 3H specific activity in the tissue-free water tritium form varied from 13.2 ± 2.2 TU to 20.8 ± 2.3 TU, which corresponded to the 3H level of precipitation in this region. The activity concentrations of 239,240Pu in soil and moss samples did not exceed 1 Bq/kg and were mainly due to global fallout after nuclear tests. The 137Cs inventory in the pine forest soils of the Lithuanian part of the BelNPP 30-km zone varied from 930 ± 70 to 1650 ± 430 Bq/m2. High variation of the inventory and uneven distribution in the soil profile conditioned a wide range of 137Сs activity in terrestrial plants from 1.0 ± 0.5 to 40.5 ± 1.8 Bq/kg dry weight. The abundance of microorganisms in different seasons and soil depths do not exceed the natural levels. According to PCA loads, the number of microorganisms and variability of 137Cs specific activity is determined by soil abiotic parameters.
Collapse
Affiliation(s)
- Olga Jefanova
- Laboratory of Nuclear Geophysics and Radioecology, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Ieva Baužienė
- Laboratory of Geoenvironmental Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania.
| | - Galina Lujanienė
- Department of Environmental Research, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, 10257, Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Vita Raudonienė
- Laboratory of Biodeterioration Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Danguolė Bridžiuvienė
- Laboratory of Biodeterioration Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Loreta Levinskaitė
- Laboratory of Biodeterioration Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Jonas Žvirgždas
- Laboratory of Biodeterioration Research, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Rimantas Petrošius
- Laboratory of Nuclear Geophysics and Radioecology, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Žana Skuratovič
- Laboratory of Nuclear Geophysics and Radioecology, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Jonas Mažeika
- Laboratory of Nuclear Geophysics and Radioecology, State Institute Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| |
Collapse
|
3
|
Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun 2019; 10:1332. [PMID: 30902971 PMCID: PMC6430801 DOI: 10.1038/s41467-019-09258-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/01/2019] [Indexed: 11/18/2022] Open
Abstract
Soil microorganisms are key to biological diversity and many ecosystem processes in terrestrial ecosystems. Despite the current alarming loss of plant diversity, it is unclear how plant species diversity affects soil microorganisms. By conducting a global meta-analysis with paired observations of plant mixtures and monocultures from 106 studies, we show that microbial biomass, bacterial biomass, fungal biomass, fungi:bacteria ratio, and microbial respiration increase, while Gram-positive to Gram-negative bacteria ratio decrease in response to plant mixtures. The increases in microbial biomass and respiration are more pronounced in older and more diverse mixtures. The effects of plant mixtures on all microbial attributes are consistent across ecosystem types including natural forests, planted forests, planted grasslands, croplands, and planted containers. Our study underlines strong relationships between plant diversity and soil microorganisms across global terrestrial ecosystems and suggests the importance of plant diversity in maintaining belowground ecosystem functioning. The effect of plant biodiversity on microbial function has been tested in limited studies and is likely to be context-dependent. In this meta-analysis of 106 prior studies comparing plant monocultures to mixtures, the authors find that plant diversity increases microbial biomass and respiration rates, an effect moderated by stand age.
Collapse
|