1
|
Kalbfleisch TS, McKay SD, Murdoch BM, Adelson DL, Almansa-Villa D, Becker G, Beckett LM, Benítez-Galeano MJ, Biase F, Casey T, Chuong E, Clark E, Clarke S, Cockett N, Couldrey C, Davis BW, Elsik CG, Faraut T, Gao Y, Genet C, Grady P, Green J, Green R, Guan D, Hagen D, Hartley GA, Heaton M, Hoyt SJ, Huang W, Jarvis E, Kalleberg J, Khatib H, Koepfi KP, Koltes J, Koren S, Kuehn C, Leeb T, Leonard A, Liu GE, Low WY, McConnell H, McRae K, Miga K, Mousel M, Neibergs H, Olagunju T, Pennell M, Petry B, Pewsner M, Phillippy AM, Pickett BD, Pineda P, Potapova T, Rachagani S, Rhie A, Rijnkels M, Robic A, Rodriguez Osorio N, Safonova Y, Schettini G, Schnabel RD, Sirpu Natesh N, Stegemiller M, Storer J, Stothard P, Stull C, Tosser-Klopp G, Traglia GM, Tuggle CK, Van Tassell CP, Watson C, Weikard R, Wimmers K, Xie S, Yang L, Smith TPL, O'Neill RJ, Rosen BD. The Ruminant Telomere-to-Telomere (RT2T) Consortium. Nat Genet 2024:10.1038/s41588-024-01835-2. [PMID: 39103649 DOI: 10.1038/s41588-024-01835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.
Collapse
Affiliation(s)
| | - Stephanie D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - David L Adelson
- School of Biological Sciences, the University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Diego Almansa-Villa
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Gabrielle Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Linda M Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - María José Benítez-Galeano
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Fernando Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Edward Chuong
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Shannon Clarke
- Invermay Agricultural Centre, AgResearch Ltd, Mosgiel, New Zealand
| | - Noelle Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | - Brian W Davis
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| | - Carine Genet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Patrick Grady
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jonathan Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Richard Green
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Darren Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Mike Heaton
- U.S. Meat Animal Research Center, USDA ARS, Clay Center, NE, USA
| | - Savannah J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Erich Jarvis
- Vertebrate Genome Laboratory, the Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jenna Kalleberg
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, the University of Wisconsin-Madison, Madison, WI, USA
| | - Klaus-Peter Koepfi
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - James Koltes
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christa Kuehn
- Friedrich-Loeffler-Institute (German Federal Research Institute for Animal Health), Greifswald-Insel Riems, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Hunter McConnell
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kathryn McRae
- Invermay Agricultural Centre, AgResearch Ltd, Mosgiel, New Zealand
| | - Karen Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Michelle Mousel
- Animal Disease Research Unit, USDA ARS, Pullman, WA, USA
- School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Holly Neibergs
- Department of Animal Science, Washington State University, Pullman, WA, USA
| | - Temitayo Olagunju
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Bruna Petry
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Mirjam Pewsner
- Institute of Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paulene Pineda
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Satyanarayana Rachagani
- Veterinary Medicine and Surgery, NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Annie Robic
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Nelida Rodriguez Osorio
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Gustavo Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Morgan Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica Storer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caleb Stull
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Germán M Traglia
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | | | | | - Corey Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Rosemarie Weikard
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Shangqian Xie
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| | | | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA.
| |
Collapse
|
5
|
Oppenheimer J, Rosen BD, Heaton MP, Vander Ley BL, Shafer WR, Schuetze FT, Stroud B, Kuehn LA, McClure JC, Barfield JP, Blackburn HD, Kalbfleisch TS, Bickhart DM, Davenport KM, Kuhn KL, Green RE, Shapiro B, Smith TPL. A Reference Genome Assembly of American Bison, Bison bison bison. J Hered 2021; 112:174-183. [PMID: 33595645 PMCID: PMC8006816 DOI: 10.1093/jhered/esab003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 11/14/2022] Open
Abstract
Bison are an icon of the American West and an ecologically, commercially, and culturally important species. Despite numbering in the hundreds of thousands today, conservation concerns remain for the species, including the impact on genetic diversity of a severe bottleneck around the turn of the 20th century and genetic introgression from domestic cattle. Genetic diversity and admixture are best evaluated at genome-wide scale, for which a high-quality reference is necessary. Here, we use trio binning of long reads from a bison-Simmental cattle (Bos taurus taurus) male F1 hybrid to sequence and assemble the genome of the American plains bison (Bison bison bison). The male haplotype genome is chromosome-scale, with a total length of 2.65 Gb across 775 scaffolds (839 contigs) and a scaffold N50 of 87.8 Mb. Our bison genome is ~13× more contiguous overall and ~3400× more contiguous at the contig level than the current bison reference genome. The bison genome sequence presented here (ARS-UCSC_bison1.0) will enable new research into the evolutionary history of this iconic megafauna species and provide a new tool for the management of bison populations in federal and commercial herds.
Collapse
Affiliation(s)
- Jonas Oppenheimer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Benjamin D Rosen
- USDA, ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Michael P Heaton
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Brian L Vander Ley
- Great Plains Veterinary Educational Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | - Brad Stroud
- Stroud Veterinary Embryo Services, Weatherford, TE, USA
| | - Larry A Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | | | - Jennifer P Barfield
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | - Kimberly M Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, USA
| | - Kristen L Kuhn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
8
|
Benham HM, McCollum MP, Nol P, Frey RK, Clarke PR, Rhyan JC, Barfield JP. Production of embryos and a live offspring using post mortem reproductive material from bison (Bison bison bison) originating in Yellowstone National Park, USA. Theriogenology 2020; 160:33-39. [PMID: 33171350 DOI: 10.1016/j.theriogenology.2020.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022]
Abstract
Bison from Yellowstone National Park (YNP) have an important genetic history. As one of the few wild herds of bison with no evidence of cattle DNA introgression and a large enough population to maintain genetic diversity, they are considered a conservation priority for the species. Unfortunately, there is a high prevalence of the zoonotic disease brucellosis in the herd. Part of the management strategy for controlling the disease and herd size in YNP is to remove bison from the population during the winter migration out of the park. This interagency management cull provides an opportunity to collect a large number of oocytes from a wild bison population for genetic banking and research purposes. During the winters of 2014-2018, which is the nonbreeding season for bison, oocytes were collected post mortem and used to determine the effects of donor reproductive maturity and pregnancy status on oocyte quality and in vitro fertilization (IVF) outcomes, and to demonstrate the feasibility of producing healthy offspring. Cumulus oocyte complexes (COCs) were placed into an in vitro embryo production (IVP) system, and on days 7, 7.5, and 8 of in vitro culture (Day 0 = day of in vitro fertilization) embryos were assessed for developmental stage and quality prior to vitrification. Embryos were then stored in liquid nitrogen until the breeding season when a subset were warmed, cultured for 6 h, evaluated for survival, and transferred to healthy bison recipients. There were no significant differences in the ability of recovered COCs to support blastocyst development based on female reproductive maturity or pregnancy status (juvenile 79/959 (8.2%) vs sexually mature 547/6544 (8.4%); non-pregnant 188/2302 (8.2%) vs pregnant 556/6122 (9.1%)). Following the transfer of 15 embryos to 10 recipients, one healthy female calf was born. This work demonstrates that live offspring can be generated from COCs collected from YNP bison post mortem in the non-breeding season, and that gamete recovery can be a valuable tool for conservation of valuable genetics for this species while mitigating diseases like brucellosis.
Collapse
Affiliation(s)
- Hayley M Benham
- Colorado State University, Department of Biomedical Science, 1683 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Matthew P McCollum
- United States Department of Agriculture, Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS), National Wildlife Research Center, 4101 Laporte Avenue, Fort Collins, CO, 80521, USA
| | - Pauline Nol
- United States Department of Agriculture, Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS), National Wildlife Research Center, 4101 Laporte Avenue, Fort Collins, CO, 80521, USA
| | - Rebecca K Frey
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS), Montana, USA
| | - P Ryan Clarke
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS), Montana, USA
| | - Jack C Rhyan
- United States Department of Agriculture, Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS), National Wildlife Research Center, 4101 Laporte Avenue, Fort Collins, CO, 80521, USA
| | - Jennifer P Barfield
- Colorado State University, Department of Biomedical Science, 1683 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|