1
|
A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomed Pharmacother 2021; 138:111355. [DOI: 10.1016/j.biopha.2021.111355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
|
2
|
Ding S, Zhang H, Zhao X, Dang J, Li G. UNC5A, an epigenetically silenced gene, functions as a tumor suppressor in non-small cell lung cancer. Saudi J Biol Sci 2020; 27:3009-3017. [PMID: 33100860 PMCID: PMC7569136 DOI: 10.1016/j.sjbs.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/01/2022] Open
Abstract
UNC5A has been reported to be related with human cancers. However, the function and mechanism in non-small cell lung carcinoma (NSCLC) remains unknown. We analyzed two NSCLC cell lines (A549 and H157), one normal human bronchial epithelial cell line (BEAS-2B) and the tissues of NSCLC. We used quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) staining to examine the expression of UNC5A. Methylation status of the UNC5A promoter was analyzed using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). We used western blot to analyzed protein levels of PI3K/Akt pathway. We found that the mRNA expression of UNCA5 was significantly downregulated in NSCLC cells and tissues. The promoter of UNC5A was hypermethylated in NSCLC cells compared to normal control cells. The expression of UNC5A could be reversed by demethylation agent in NSCLC cells. The expression of UNC5A was decreased in NSCLC samples and significantly associated with the advanced types of NSCLC. Functionally, knockdown of UNC5A promoted cell proliferation, migration, invasion and induced apoptosis in NSCLC, overexpression of UNC5A yielded the opposite result. Moreover, we found that UNC5A negatively regulated PI3K/Akt signaling pathway in NSCLC. UNC5A is a novel epigenetically silenced gene in NSCLC and consequent under-expression of UNC5A may contribute to NSCLC tumorigenesis through regulating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Silu Ding
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Hongwei Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xinyu Zhao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
3
|
A potential prognostic model based on miRNA expression profile in The Cancer Genome Atlas for bladder cancer patients. ACTA ACUST UNITED AC 2020; 27:6. [PMID: 32477968 PMCID: PMC7236498 DOI: 10.1186/s40709-020-00116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/24/2020] [Indexed: 01/24/2023]
Abstract
Background This study aimed to construct prognostic model by screening prognostic miRNA signature of bladder cancer. Methods The miRNA expression profile data of bladder cancer (BC) in The Cancer Genome Atlas (TCGA) were obtained and randomly divided into the training set and the validation set. Differentially expressed miRNAs (DEMs) between BC and normal control samples in the training set were firstly identified, and DEMs related to prognosis were screened by Cox Regression analysis. Then, the MiR Score system was constructed using X-Tile based cutoff points and verified in the validation set. The prognostic clinical factors are selected out by univariate and multivariate Cox Regression analysis. Finally, the mRNAs related to prognosis were screened and the biological pathway analysis was carried out. Results We identified the 7-miRNA signature was significantly associated with the patient’s Overall Survival (OS). A prognostic model was constructed based on the prognostic 7-miRNA signature, and possessed a relative satisfying predicted ability both in the training set and validation set. In addition, univariate and multivariate Cox Regression analysis showed that age, lymphovascular invasion and MiR Score were considered as independent prognostic factors in BC patients. Furthermore, based on MiR Score prognostic model, several differentially expressed genes (DEGs), such as WISP3 and UNC5C, as well as their related biological pathway(s), including cell–cell adhesion and neuroactive ligand-receptor interaction, were considered to be related to BC prognosis. Conclusion The prognostic model which was constructed based on the prognostic 7-miRNA signature presented a high predictive ability for BC.
Collapse
|
4
|
Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, Yuan L, Ye J. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol 2020; 56:139-150. [PMID: 31789389 PMCID: PMC6910211 DOI: 10.3892/ijo.2019.4931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Unc‑5 Netrin Receptor C (UNC5C) is a netrin‑1 dependence receptor that mediates the induction of apoptosis in the absence of netrin‑1. The present study found that UNC5C is heterogeneously expressed in breast cancer cell lines. By knocking down UNC5C in SK‑BR‑3 and ZR‑75‑30 cells and overexpressing UNC5c in MDA‑MB‑231 cells, it was demonstrated that UNC5C exerts an inhibitory effect on the growth and metastasis of breast cancer cells. The mechanism involved a UNC5C‑knockdown‑induced enhancement of matrix metalloproteinase (MMP)3, MMP7, MMP9 and MMP10 expression via activation of the PI3K/AKT, ERK and p38 MAPK signaling pathways. Notably, UNC5C directly interacted with integrin α6, which is involved in the growth and metastasis of breast cancer cells. Additionally, UNC5C‑knockdown enhanced the phosphorylation of FAK and SRC, which are key kinases in the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. This suggests that netrin‑1 functions as an integrator for both the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. UNC5C‑knockdown potentiated netrin‑1/integrin α6/β4 signaling. Given that UNC5C‑knockdown inhibited integrin‑liked protein kinase phosphorylation at Thr‑173, at least in SK‑BR‑3 cells, this may be an inhibitory phosphorylation site rather than activating phosphorylation site for relaying integrin signaling.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102
| | - Xianyuan Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Kai Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361102
| | - Shihui Zhang
- School of Life Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| |
Collapse
|
5
|
Negulescu A, Mehlen P. Dependence receptors – the dark side awakens. FEBS J 2018; 285:3909-3924. [DOI: 10.1111/febs.14507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ana‐Maria Negulescu
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| |
Collapse
|
6
|
Guroo SA, Malik AA, Afroze D, Ali S, Pandith AA, Yusuf A. Significant Pattern of Promoter Hypermethylation of UNC5C Gene in Colorectal Cancer and Its Implication in Late Stage
Disease. Asian Pac J Cancer Prev 2018; 19:1185-1188. [PMID: 29801399 PMCID: PMC6031814 DOI: 10.22034/apjcp.2018.19.5.1185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/14/2018] [Indexed: 01/15/2023] Open
Abstract
Background:The development of Colorectal Cancer (CRC) is a complex multistep process involving an accumulation of multiple genetic and epigenetic alterations. Epigenetic modifications, particularly DNA methylation in selected gene are recognized as common molecular alterations in human tumors. Netrin-1 receptors are aberrantly methylated in primary colorectal cancer. Epigenetic alterations in the netrin-1 receptors have been found to be related with the malignant potential of CRC. Purpose: In the present study, we evaluated the role of promoter hypermethylation of UNC5C gene (one of the netrin-1 receptors) in colorectal cancer patients of Kashmiri population (North India). Hypermethylation in tumour tissue was detected by Methylation- Specific Polymerase Chain Reaction (MS-PCR). Results: UNC5C promoter hypermethylation was significantly found to be associated with colorectal cancer cases where frequency was 62% (31 of 50) and 38% (19 of 50) patients were unmethylated (p<0.0001).UNC5C methylation was significantly higher in CRCs with a frequency of 62% than 10% in corresponding normal mucosa of (p<0.0001). Further, UNC5C hypermethylation was found to be significantly associated with stage-III/IV as compared to stage I/II with a frequency of 75.8% and 42.8% respectively(p>0.05). Conclusion: We conclude that UNC5C hypermethylation is implicated in CRC which plays a role in its tumorigenesis and may predict the late stage disease.
Collapse
Affiliation(s)
- Sartaj A Guroo
- Department of General And Minimal Invasive Surgery, Sher-I-Kashmir Institute of Medical Sciences (SKIMS) Srinagar, Kashmir, India. Emai:
| | | | | | | | | | | |
Collapse
|
7
|
Freitas M, Ferreira F, Carvalho S, Silva F, Lopes P, Antunes L, Salta S, Diniz F, Santos LL, Videira JF, Henrique R, Jerónimo C. A novel DNA methylation panel accurately detects colorectal cancer independently of molecular pathway. J Transl Med 2018; 16:45. [PMID: 29486770 PMCID: PMC6389195 DOI: 10.1186/s12967-018-1415-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most incident cancers, associated with significant morbidity and mortality, and usually classified into three main molecular pathways: chromosomal instability, microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Currently, available screening methods are either costly or of limited specificity, impairing global implementation. More cost-effective strategies, including DNA methylation-based tests, might prove advantageous. Although some are already available, its performance is suboptimal, entailing the need for better candidate biomarkers. Herein, we tested whether combined use of APC, IGF2, MGMT, RASSF1A, and SEPT9 promoter methylation might accurately detect CRC irrespective of molecular subtype. Methods Selected genes were validated using formalin-fixed paraffin-embedded tissues from 214 CRC and 50 non-malignant colorectal mucosae (CRN). Promoter methylation levels were assessed using real-time quantitative methylation-specific PCR. MSI and CIMP status were determined. Molecular data were correlated with standard clinicopathological features. Diagnostic and prognostic performances were evaluated by receiver operator characteristics curve and survival analyses, respectively. Results Except for IGF2, promoter methylation levels were significantly higher in CRC compared to CRN. A three-gene panel (MGMT, RASSF1A, SEPT9) identified malignancy with 96.6% sensitivity, 74.0% specificity and 91.5 positive predictive value (area under the curve: 0.97), independently of tumor location, stage, and molecular pathway. Conclusions Combined promoter methylation analysis of MGMT/RASSF1A/SEPT9 displays a better performance than currently available epigenetic-based biomarkers for CRC, providing the basis for the development of a non-invasive assay to detect CRC irrespective of the molecular pathway. Electronic supplementary material The online version of this article (10.1186/s12967-018-1415-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micaela Freitas
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Fábio Ferreira
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sónia Carvalho
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Fernanda Silva
- Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Antunes
- Departments of Epidemiology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Francisca Diniz
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Lúcio Lara Santos
- Departments of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - José Flávio Videira
- Departments of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Zhang MM, Sun F, Cui B, Zhang LL, Fang Y, Li Y, Zhang RJ, Ye XP, Ma YR, Han B, Song HD. Tumor-suppressive function of UNC5D in papillary thyroid cancer. Oncotarget 2017; 8:96126-96138. [PMID: 29221192 PMCID: PMC5707086 DOI: 10.18632/oncotarget.21759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
Background Studies have shown an association of the UNC5D gene with kidney and bladder cancer and neuroblastoma. We investigated whether UNC5D acts as a tumor suppressor in papillary thyroid carcinoma (PTC). Methods Primary PTC tumors and matched normal thyroid tissues were obtained from 112 patients to detect UNC5D mRNA by real-time PCR. Genomic DNA sequencing was performed to detect BRAF mutation in PTC tumors. The association between UNC5D expression and clinicopathological data from PTC patients was reviewed retrospectively. PTC-derived cancer cell lines TPC-1 and K1 with stable transfection of UNC5D were used to investigate the functions of UNC5D. Flow cytometry, CCK-8, Transwell assay and scratch tests were used to examine cell cycle distribution, proliferation and migration. Results The expression of UNC5D was significantly decreased in PTC compared with adjacent normal thyroid tissues. Lower UNC5D expression was significantly associated with aggressive tumor behaviors, such as lymph node metastasis and BRAF mutation. Overexpression of UNC5D significantly suppressed malignant cell behaviors, including cell proliferation and migration, as well as tumor growth in vivo. Conclusions These findings suggest a potential tumor suppressor role of UNC5D in PTC progression; and provide insight into potential clinical relevance for the prognosis of PTC.
Collapse
Affiliation(s)
- Man-Man Zhang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Feng Sun
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bing Cui
- Department of Transfusion, The Hospital Affiliated to Jiangsu University, Zhenjiang 212001, China
| | - Le-Le Zhang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ya Fang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yan Li
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Xiao-Ping Ye
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yu-Ru Ma
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bing Han
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Huai-Dong Song
- The Core Laboratory in Medicine Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
9
|
Wu J, Wang G, He B, Chen X, An Y. Methylation of the UNC5C gene and its protein expression in colorectal cancer. Tumour Biol 2017; 39:1010428317697564. [PMID: 28378635 DOI: 10.1177/1010428317697564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNC5C is a member of the UNC5H family of transmembrane receptors and functions as a dependence receptor. The expression of UNC5C is lost or markedly reduced in a large proportion of cancers at the messenger RNA level. However, there is little information available regarding the protein expression of UNC5C, the relationship between UNC5C protein expression and UNC5C methylation, and the correlation between patient clinical features and UNC5C protein expression in colorectal cancer. In this study, the methylation and protein expression of UNC5C were examined in 36 adenomatous polyps, 73 colorectal cancers, and 28 corresponding normal mucosa, and the correlation between the methylation, as well as protein expression status, and the clinicopathologic features was evaluated. Furthermore, the relationship between the methylation and protein expression of UNC5C, and correlation between UNC5C protein expression and overall survival were analyzed. The results showed that aberrant methylation of UNC5C was observed in colorectal cancers (78%) and adenomatous polyps (64%). The methylation-specific polymerase chain reaction results were confirmed by bisulfite sequencing of UNC5C promoter region. UNC5C methylation was significantly higher in early tumor, node, metastasis stage (I + II) of colorectal cancers. Compared with the corresponding normal tissues, protein expression of UNC5C was significantly lower in colorectal cancers (42%) and adenomatous polyps (81%). Protein expression of UNC5C was significantly higher in early tumor, node, metastasis stage (I + II) of colorectal cancers compared with advanced tumor, node, metastasis stage. Furthermore, patients with UNC5C-negative expression had a poorer prognosis than those with UNC5C-positive expression through Kaplan-Meier survival analysis ( p = 0.038), univariate ( p = 0.044) and multivariate analysis ( p = 0.045). According to Spearman rank correlation analysis, UNC5C methylation and protein expression were negatively correlated ( r = -0.461, p < 0.001). Together, these results suggest that UNC5C methylation may be an earlier event in the development of colorectal cancer, which was negatively correlated with protein expression. UNC5C may have a critical role in the pathogenesis of colorectal cancers and be a valuable prognostic factor of colorectal cancers patients. UNC5C may be identified as an attractive therapeutic target for the treatment of colorectal cancers in the further studies.
Collapse
Affiliation(s)
- Jie Wu
- 1 Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guangchuan Wang
- 2 Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Baojun He
- 3 Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xuejun Chen
- 4 Department of Pathology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Yuzhi An
- 1 Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
|
11
|
Schulten HJ, Hussein D, Al-Adwani F, Karim S, Al-Maghrabi J, Al-Sharif M, Jamal A, Al-Ghamdi F, Baeesa SS, Bangash M, Chaudhary A, Al-Qahtani M. Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression. PLoS One 2016; 11:e0153681. [PMID: 27096627 PMCID: PMC4838307 DOI: 10.1371/journal.pone.0153681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/01/2016] [Indexed: 12/23/2022] Open
Abstract
Meningiomas are the most common primary brain tumors bearing in a minority of cases an aggressive phenotype. Although meningiomas are stratified according to their histology and clinical behavior, the underlying molecular genetics predicting aggressiveness are not thoroughly understood. We performed whole transcript expression profiling in 10 grade I and four grade II meningiomas, three of which invaded the brain. Microarray expression analysis identified deleted in colorectal cancer (DCC) as a differentially expressed gene (DEG) enabling us to cluster meningiomas into DCC low expression (3 grade I and 3 grade II tumors), DCC medium expression (2 grade I and 1 grade II tumors), and DCC high expression (5 grade I tumors) groups. Comparison between the DCC low expression and DCC high expression groups resulted in 416 DEGs (p-value < 0.05; fold change > 2). The most significantly downregulated genes in the DCC low expression group comprised DCC, phosphodiesterase 1C (PDE1C), calmodulin-dependent 70kDa olfactomedin 2 (OLFM2), glutathione S-transferase mu 5 (GSTM5), phosphotyrosine interaction domain containing 1 (PID1), sema domain, transmembrane domain (TM) and cytoplasmic domain, (semaphorin) 6D (SEMA6D), and indolethylamine N-methyltransferase (INMT). The most significantly upregulated genes comprised chromosome 5 open reading frame 63 (C5orf63), homeodomain interacting protein kinase 2 (HIPK2), and basic helix-loop-helix family, member e40 (BHLHE40). Biofunctional analysis identified as predicted top upstream regulators beta-estradiol, TGFB1, Tgf beta complex, LY294002, and dexamethasone and as predicted top regulator effectors NFkB, PIK3R1, and CREBBP. The microarray expression data served also for a comparison between meningiomas from female and male patients and for a comparison between brain invasive and non-invasive meningiomas resulting in a number of significant DEGs and related biofunctions. In conclusion, based on its expression levels, DCC may constitute a valid biomarker to identify those benign meningiomas at risk for progression.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| | - Deema Hussein
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Al-Adwani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mona Al-Sharif
- Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awatif Jamal
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Fahad Al-Ghamdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Saleh S. Baeesa
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Mur P, Sánchez-Cuartielles E, Aussó S, Aiza G, Valdés-Mas R, Pineda M, Navarro M, Brunet J, Urioste M, Lázaro C, Moreno V, Capellá G, Puente XS, Valle L. Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis. Sci Rep 2016; 6:20697. [PMID: 26852919 PMCID: PMC4745060 DOI: 10.1038/srep20697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Germline mutations in UNC5C have been suggested to increase colorectal cancer (CRC) risk, thus causing hereditary CRC. However, the evidence gathered thus far is insufficient to include the study of the UNC5C gene in the routine genetic testing of familial CRC. Here we aim at providing a more conclusive answer about the contribution of germline UNC5C mutations to genetically unexplained hereditary CRC and/or polyposis cases. To achieve this goal we sequenced the coding region and exon-intron boundaries of UNC5C in 544 familial CRC or polyposis patients (529 families), using a technique that combines pooled DNA amplification and massively parallel sequencing. A total of eight novel or rare variants, all missense, were identified in eight families. Co-segregation data in the families and association results in case-control series are not consistent with a causal effect for 7 of the 8 identified variants, including c.1882_1883delinsAA (p.A628K), previously described as a disease-causing mutation. One variant, c.2210G > A (p.S737N), remained unclassified. In conclusion, our results suggest that the contribution of germline mutations in UNC5C to hereditary colorectal cancer and to polyposis cases is negligible.
Collapse
Affiliation(s)
- Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Elena Sánchez-Cuartielles
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Susanna Aussó
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL and CIBERESP, 08908 Hospitalet de Llobregat, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Rafael Valdés-Mas
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO) and Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL and CIBERESP, 08908 Hospitalet de Llobregat, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907 Hospitalet de Llobregat, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
13
|
Abstract
The research on colorectal cancer (CRC) biology has been leading the oncology field since the early 1990s. The search for genetic alterations has allowed the identification of the main tumour suppressors or oncogenes. Recent work obtained in CRC has unexpectedly proposed the existence of novel category of tumour suppressors, the so-called 'dependence receptors'. These transmembrane receptors behave as Dr Jekyll and Mr Hyde with two opposite sides: they induce a positive signalling (survival, proliferation, differentiation) in presence of their ligand, but are not inactive in the absence of their ligand and rather trigger apoptosis when unbound. This trait confers them a conditional tumour suppressor activity: they eliminate cells that grow abnormally in an environment offering a limited quantity of ligand. This review will describe how receptors such as deleted in colorectal carcinoma (DCC), uncoordinated 5 (UNC5), rearranged during transfection (RET) or TrkC constrain CRC progression and how this dependence receptor paradigm may open up therapeutical perspectives.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Servane Tauszig-Delamasure
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
14
|
Yap KL, Kiyotani K, Tamura K, Antic T, Jang M, Montoya M, Campanile A, Yew PY, Ganshert C, Fujioka T, Steinberg GD, O'Donnell PH, Nakamura Y. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival. Clin Cancer Res 2014; 20:6605-17. [PMID: 25316812 DOI: 10.1158/1078-0432.ccr-14-0257] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. EXPERIMENTAL DESIGN Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. RESULTS We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. CONCLUSION Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted.
Collapse
Affiliation(s)
- Kai Lee Yap
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Kazuma Kiyotani
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Kenji Tamura
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Tatjana Antic
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Miran Jang
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Magdeline Montoya
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Alexa Campanile
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Poh Yin Yew
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Cory Ganshert
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University, Morioka, Japan
| | - Gary D Steinberg
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois
| | - Peter H O'Donnell
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois.
| | - Yusuke Nakamura
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois. Department of Surgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Harter PN, Zinke J, Scholz A, Tichy J, Zachskorn C, Kvasnicka HM, Goeppert B, Delloye-Bourgeois C, Hattingen E, Senft C, Steinbach JP, Plate KH, Mehlen P, Schulte D, Mittelbronn M. Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases. PLoS One 2014; 9:e92311. [PMID: 24647424 PMCID: PMC3960244 DOI: 10.1371/journal.pone.0092311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
The multifunctional molecule netrin-1 is upregulated in various malignancies and has recently been presented as a major general player in tumorigenesis leading to tumor progression and maintenance in various animal models. However, there is still a lack of clinico-epidemiological data related to netrin-1 expression. Therefore, the aim of our study was to elucidate the association of netrin-1 expression and patient survival in brain metastases since those constitute one of the most limiting factors for patient prognosis. We investigated 104 brain metastases cases for netrin-1 expression using in-situ hybridization and immunohistochemistry with regard to clinical parameters such as patient survival and MRI data. Our data show that netrin-1 is strongly upregulated in most cancer subtypes. Univariate analyses revealed netrin-1 expression as a significant factor associated with poor patient survival in the total cohort of brain metastasis patients and in sub-entities such as non-small cell lung carcinomas. Interestingly, many cancer samples showed a strong nuclear netrin-1 signal which was recently linked to a truncated netrin-1 variant that enhances tumor growth. Nuclear netrin-1 expression was associated with poor patient survival in univariate as well as in multivariate analyses. Our data indicate both total and nuclear netrin-1 expression as prognostic factors in brain metastases patients in contrast to other prognostic markers in oncology such as patient age, number of brain metastases or Ki67 proliferation index. Therefore, nuclear netrin-1 expression constitutes one of the first reported molecular biomarkers for patient survival in brain metastases. Furthermore, netrin-1 may constitute a promising target for future anti-cancer treatment approaches in brain metastases.
Collapse
Affiliation(s)
- Patrick N. Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Zinke
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Scholz
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Julia Tichy
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Cornelia Zachskorn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans M. Kvasnicka
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Senckenberg Institute of Pathology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Benjamin Goeppert
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Céline Delloye-Bourgeois
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Elke Hattingen
- Institute of Neuroradiology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Karl H. Plate
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Dorothea Schulte
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
16
|
Abstract
Whereas the classic dogma postulates that transmembrane receptors remain inactive at the plasma membrane unless bound by their specific ligand, it was suggested that some receptors may actually be active not only in the presence of their ligand, but also in their absence. In this latter case, the signaling downstream of these unbound receptors leads to apoptosis. These receptors were consequently named dependence receptors, as their cell expression renders the survival of the cell dependent on the presence in the cell environment of its respective ligand. This dual function - positive in the presence of ligand, negative in the absence of ligand - is hypothesized to lead these receptors to have key roles both during embryonic development and in the regulation of tumorigenesis. In the context of cancer, the hypothesis is that these receptors are tumor suppressors that would limit tumor progression by inducing apoptosis of tumor cells outside of settings of ligand accessibility/availability. This was recently formally demonstrated for the prototypical dependence receptors that bind netrin-1- i.e., DCC and UNC5H. Because expression of DCC and UNC5H is a constraint for tumor progression, their expression is often lost in many aggressive cancers. However, a loss of dependence receptors is not always the selective advantage used by tumor cells to escape this survival dependence on the presence of the ligand. Indeed, it was shown that in many cancers, tumor cells acquire the preferred autocrine expression of ligands of dependence receptor. This selective advantage for the tumor is much more appealing in terms of therapeutic opportunities. Drugs based on the interference on the interaction between dependence receptors and their ligands allow tumor cell death in vitro and trigger tumor growth and metastases inhibition in mice. This review describes how a basic cell biology concept has provided in a near future new tools to fight cancer.
Collapse
|
17
|
Küry S, Garrec C, Airaud F, Breheret F, Guibert V, Frenard C, Jiao S, Bonneau D, Berthet P, Bossard C, Ingster O, Cauchin E, Bezieau S. Evaluation of the colorectal cancer risk conferred by rare UNC5C alleles. World J Gastroenterol 2014; 20:204-213. [PMID: 24415873 PMCID: PMC3886009 DOI: 10.3748/wjg.v20.i1.204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/07/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the risk associated with variants of the UNC5C gene recently suspected to predispose to familial colorectal cancer (CRC).
METHODS: We screened patients with familial CRC forms as well as patients with sporadic CRCs. In a first time, we analyzed exon 11 of the UNC5C gene in 120 unrelated patients with suspected hereditary CRC, 58 patients with suspected Lynch-associated cancer or polyposis, and 132 index cases of Lynch syndrome families with a characterized mutation in a DNA mismatch repair (MMR). Next, 1023 patients with sporadic CRC and 1121 healthy individuals were screened for the variants identified in patients with familial cancer.
RESULTS: Of 120 patients with familial CRC of unknown etiology, one carried the previously reported mis-sense mutation p.Arg603Cys (R603C) and another exhibited the unreported variant of unknown significance p.Thr617Ile (T617I). The p.Ala628Lys (A628K) mutation previously described as the main UNC5C risk variant for familial CRC was not detected in any cases of familial CRC of unknown etiology, but was present in a patient with familial gastric cancer and in two Lynch syndrome patients in co-occurrence with MMR mutations. A statistically non-significant increase in cancer risk was identified in familial CRC and/or other Lynch-associated cancers (1/178 patients vs 2/1121 healthy controls, OR = 3.2, 95%CI: 0.29-35.05, P = 0.348) and in sporadic CRCs (4/1023 patients vs 2/1121 healthy controls, OR = 2.2, 95%CI: 0.40-12.02, P = 0.364).
CONCLUSION: We confirm that UNC5C mutations are very rare in familial and sporadic CRCs, but further investigations are needed to justify routine UNC5C testing for diagnostic purposes.
Collapse
|
18
|
Ashktorab H, Rahi H, Wansley D, Varma S, Shokrani B, Lee E, Daremipouran M, Laiyemo A, Goel A, Carethers JM, Brim H. Toward a comprehensive and systematic methylome signature in colorectal cancers. Epigenetics 2013; 8:807-15. [PMID: 23975090 DOI: 10.4161/epi.25497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center; Department of Pathology; Howard University College of Medicine; Washington, D.C. USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hypermethylation and prognostic implication of Syk gene in human colorectal cancer. Med Oncol 2013; 30:586. [PMID: 23609194 DOI: 10.1007/s12032-013-0586-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/13/2013] [Indexed: 12/11/2022]
Abstract
The study was aimed to investigate the relationship between hypermethylation of Syk gene and clinicopathological characteristics and long-term outcomes in colorectal cancer. The effect of Syk on cell proliferation and invasion ability was also assessed. Methylation and expression status of Syk were explored in CRC tissues and cell lines by MSP, qRT-PCR and western blot assay. The effects of Syk overexpression on tumorigenesis were studied by in vitro assay. The correlation between Syk methylation and clinical relevance in CRC patients was also analyzed. Syk methylation was found 48.6 % in CRC tissue samples and 57.1 % in cell lines, respectively. The loss of Syk expression could be restored by demethylation agent. Overexpression of Syk in CRC cell inhibited cell proliferation (p < 0.01) and invasion (p < 0.01). The methylation of Syk was significantly associated with histological grade (p = 0.002), lymph node status (p < 0.001) and TNM stage (p < 0.001). Five-year overall survival in methylated Syk group was significantly lower than that in unmethylated Syk group (59 vs. 80 %, p < 0.001). Multivariate analysis demonstrated that Syk methylation was an independent prognostic factor for overall survival. Syk is identified as a potential tumor suppressor in CRC progression. Syk methylation is correlated with poor overall survival, which acts as an independent prognostic indicator of CRC.
Collapse
|
20
|
Lu D, Dong D, Zhou Y, Lu M, Pang XW, Li Y, Tian XJ, Zhang Y, Zhang J. The tumor-suppressive function of UNC5D and its repressed expression in renal cell carcinoma. Clin Cancer Res 2013; 19:2883-92. [PMID: 23589179 DOI: 10.1158/1078-0432.ccr-12-2978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE As a newly added member of the UNC5H receptors, the function of UNC5D/H4 in tumorigenesis remains poorly defined. The aim of this study was to examine the expression of UNC5D in primary renal cell carcinomas (RCC), analyze the mechanisms responsible for its downregulation in RCC, and assess its functional relevance to tumor growth and migration. EXPERIMENTAL DESIGN Forty-four paired primary RCCs and corresponding adjacent noncancerous tissues were collected. The mRNA and protein expression level of UNC5D was assessed by reverse transcriptase-PCR, real-time PCR, or immunohistochemistry. Epigenetic alterations in UNC5D promoter and LOH in the UNC5D locus were also analyzed. Ectopic expression of UNC5D in renal cancer cells with silenced expression of UNC5D was used for analysis of the biologic functions of UNC5D. RESULTS UNC5D expression was attenuated in multiple carcinoma cell lines including renal cancer cells. Similar reduction was also observed in primary RCC tissues as compared with paired adjacent noncancerous tissues. Methylation-specific PCR showed hypermethylation in UNC5D promoter in a significant proportion (18 of 44) of tumor tissue (40.9%). LOH of UNC5D was observed in 13 of 44 patients with RCCs (29.5%). Restoration of UNC5D expression in renal cancer cells significantly inhibited cell proliferation, anchorage-dependent and -independent growth, as well as migration and invasion, whereas knockdown of UNC5D promoted cell growth. Furthermore, ectopic expression of UNC5D induced G2-M cell-cycle arrest. CONCLUSIONS UNC5D is a functional tumor suppressor that is frequently downregulated in RCCs due to promoter hypermethylation and LOH.
Collapse
Affiliation(s)
- Dan Lu
- Department of Immunology, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
22
|
Wu X, Li Y, Wan X, Kayira TM, Cao R, Ju X, Zhu X, Zhao G. Down-regulation of neogenin accelerated glioma progression through promoter Methylation and its overexpression in SHG-44 Induced Apoptosis. PLoS One 2012; 7:e38074. [PMID: 22666451 PMCID: PMC3362578 DOI: 10.1371/journal.pone.0038074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/30/2012] [Indexed: 12/11/2022] Open
Abstract
Background Dependence receptors have been proved to act as tumor suppressors in tumorigenesis. Neogenin, a DCC homologue, well known for its fundamental role in axon guidance and cellular differentiation, is also a dependence receptor functioning to control apoptosis. However, loss of neogenin has been reported in several kinds of cancers, but its role in glioma remains to be further investigated. Methodology/Principal Findings Western blot analysis showed that neogenin level was lower in glioma tissues than in their matching surrounding non-neoplastic tissues (n = 13, p<0.01). By immunohistochemical analysis of 69 primary and 16 paired initial and recurrent glioma sections, we found that the loss of neogenin did not only correlate negatively with glioma malignancy (n = 69, p<0.01), but also glioma recurrence (n = 16, p<0.05). Kaplan-Meier plot and Cox proportional hazards modelling showed that over-expressive neogenin could prolong the tumor latency (n = 69, p<0.001, 1187.6±162.6 days versus 687.4±254.2 days) and restrain high-grade glioma development (n = 69, p<0.01, HR: 0.264, 95% CI: 0.102 to 0.687). By Methylation specific polymerase chain reaction (MSP), we reported that neogenin promoter was methylated in 31.0% (9/29) gliomas, but absent in 3 kinds of glioma cell lines. Interestingly, the prevalence of methylation in high-grade gliomas was higher than low-grade gliomas and non-neoplastic brain tissues (n = 33, p<0.05) and overall methylation rate increased as glioma malignancy advanced. Furthermore, when cells were over-expressed by neogenin, the apoptotic rate in SHG-44 was increased to 39.7% compared with 8.1% in the blank control (p<0.01) and 9.3% in the negative control (p<0.01). Conclusions/Significance These observations recapitulated the proposed role of neogenin as a tumor suppressor in gliomas and we suggest its down-regulation owing to promoter methylation is a selective advantage for glioma genesis, progression and recurrence. Furthermore, the induction of apoptosis in SHG-44 cells after overexpression of neogenin, indicated that neogenin could be a novel target for glioma therapy.
Collapse
Affiliation(s)
- Xinmin Wu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Xilin Wan
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Tabitha Mlowoka Kayira
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Rangjuan Cao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xingda Ju
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
- * E-mail: (XZ); (GZ)
| | - Gang Zhao
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
- * E-mail: (XZ); (GZ)
| |
Collapse
|
23
|
Wu F, Shirahata A, Sakuraba K, Kitamura Y, Goto T, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y, Hibi K. Downregulation of Mus81 as a novel prognostic biomarker for patients with colorectal carcinoma. Cancer Sci 2010; 102:472-7. [DOI: 10.1111/j.1349-7006.2010.01790.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Abstract
Colorectal cancer (CRC) arises as a consequence of the accumulation of genetic and epigenetic alterations in colonic epithelial cells during neoplastic transformation. Epigenetic modifications, particularly DNA methylation in selected gene promoters, are recognized as common molecular alterations in human tumors. Substantial efforts have been made to determine the cause and role of aberrant DNA methylation ("epigenomic instability") in colon carcinogenesis. In the colon, aberrant DNA methylation arises in tumor-adjacent, normal-appearing mucosa. Aberrant methylation also contributes to later stages of colon carcinogenesis through simultaneous methylation in key specific genes that alter specific oncogenic pathways. Hypermethylation of several gene clusters has been termed CpG island methylator phenotype and appears to define a subgroup of colon cancer distinctly characterized by pathological, clinical, and molecular features. DNA methylation of multiple promoters may serve as a biomarker for early detection in stool and blood DNA and as a tool for monitoring patients with CRC. DNA methylation patterns may also be predictors of metastatic or aggressive CRC. Therefore, the aim of this review is to understand DNA methylation as a driving force in colorectal neoplasia and its emerging value as a molecular marker in the clinic.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II-5M, Baltimore, MD, 21231, USA
| | | | | |
Collapse
|