1
|
Iderdar Y, Arraji M, Wachami NA, Guennouni M, Boumendil K, Mourajid Y, Elkhoudri N, Saad E, Chahboune M. Predictors of outcomes 3 to 12 months after traumatic brain injury: a systematic review and meta-analysis. Osong Public Health Res Perspect 2024; 15:3-17. [PMID: 38481046 PMCID: PMC10982655 DOI: 10.24171/j.phrp.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 04/04/2024] Open
Abstract
The exact factors predicting outcomes following traumatic brain injury (TBI) remain elusive. In this systematic review and meta-analysis, we examined factors influencing outcomes in adult patients with TBI, from 3 months to 1 year after injury. A search of four electronic databases-PubMed, Scopus, Web of Science, and ScienceDirect-yielded 29 studies for review and 16 for meta-analysis, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. In patients with TBI of any severity, mean differences were observed in age (8.72 years; 95% confidence interval [CI], 4.77-12.66 years), lymphocyte count (-0.15 109/L; 95% CI, -0.18 to -0.11), glucose levels (1.20 mmol/L; 95% CI, 0.73-1.68), and haemoglobin levels (-0.91 g/dL; 95% CI, -1.49 to -0.33) between those with favourable and unfavourable outcomes. The prevalence rates of unfavourable outcomes were as follows: abnormal cisterns, 65.7%; intracranial pressure above 20 mmHg, 52.9%; midline shift of 5 mm or more, 63%; hypotension, 71%; hypoxia, 86.8%; blood transfusion, 70.3%; and mechanical ventilation, 90%. Several predictors were strongly associated with outcome. Specifically, age, lymphocyte count, glucose level, haemoglobin level, severity of TBI, pupillary reaction, and type of injury were identified as potential predictors of long-term outcomes.
Collapse
Affiliation(s)
- Younes Iderdar
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Maryem Arraji
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Nadia Al Wachami
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Morad Guennouni
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University of El Jadida, El Jadida, Morocco
| | - Karima Boumendil
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Yassmine Mourajid
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Noureddine Elkhoudri
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Elmadani Saad
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mohamed Chahboune
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
2
|
Lin X, Li Q, Sun X, Shi Q, Dan W, Zhan Y, Deng B, Xia Y, Xie Y, Jiang L. Effects of apolipoprotein E polymorphism on cerebral oxygen saturation, cerebral perfusion, and early prognosis after traumatic brain injury. Ann Clin Transl Neurol 2023; 10:1002-1011. [PMID: 37186447 PMCID: PMC10270252 DOI: 10.1002/acn3.51783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE To investigate the effects of the apolipoprotein E (APOE) gene on oxygen saturation and cerebral perfusion in the early stages of traumatic brain injury (TBI). METHODS This study included 136 consecutive TBI patients and 51 healthy individuals. The APOE genotypes of all subjects were determined using quantitative fluorescence polymerase chain reaction (QF-PCR). Regional cerebral oxygen saturation (rScO2) of patients with TBI and normal subjects was monitored using near-infrared spectroscopy (NIRS). Computed tomography (CT) perfusion was used to obtain cerebral perfusion in patients with TBI and normal subjects. RESULTS In the TBI group, the rScO2 of APOEε4 carriers (53.06 ± 6.87%) was significantly lower than that of non-carriers (58.19 ± 5.83%, p < 0.05). Meanwhile, the MTT of APOEε4 carriers (6.75 ± 1.30 s) was significantly longer than that of non-carriers (5.87 ± 1.00 s, p < 0.05). Furthermore, correlation analysis showed a negative correlation between rSCO2 and MTT in patients with TBI. Both the univariate and multifactorial logistic regression analyses revealed that APOE ε4, hypoxia, MTT >5.75 s, Marshall CT Class, and GCS were independent risk factors for early poor prognosis in patients with TBI. CONCLUSION Both cerebral perfusion and cerebral oxygen were significantly impaired after TBI, and low cerebral perfusion and hypoxia were related to poor prognosis of patients with TBI. Compared with APOE ε4 non-carriers, APOE ε4 carriers not only had poorer cerebral perfusion and cerebral oxygen metabolism but also worse prognosis in the early stages of TBI. Furthermore, a negative correlation was observed between the rSCO2 and MTT levels. In addition, both CT perfusion scanning (CTP) and NIRS are reliable for monitoring the condition of patients with TBI in the neurological intensive care unit (NICU).
Collapse
Affiliation(s)
- Xun Lin
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Qilin Li
- Department of NeurosurgeryYouyang HospitalChongqingPR China
| | - Xiaochuan Sun
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Quanhong Shi
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Wei Dan
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Yan Zhan
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Bo Deng
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Yulong Xia
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Yanfeng Xie
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Li Jiang
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| |
Collapse
|
3
|
Maegawa T, Sasahara A, Ohbuchi H, Chernov M, Kasuya H. Cerebral vasospasm and hypoperfusion after traumatic brain injury: Combined CT angiography and CT perfusion imaging study. Surg Neurol Int 2021; 12:361. [PMID: 34345501 PMCID: PMC8326138 DOI: 10.25259/sni_859_2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Timely identification of the cerebral perfusion abnormalities after traumatic brain injury (TBI) is highly important. The objective of this study was the evaluation of the post traumatic vasospasm and cerebral hypoperfusion with the serial combined CT angiography (CTA) and CT perfusion (CTP) imaging examinations. Methods: The case series comprised 25 adult patients with closed TBI accompanied by various types of intracranial hematoma. Emergency surgery was done in 15 cases (60%). Combined CTA and CTP were performed on days 0 (D0) and 7 ± 1 (D7) after trauma. Results: CTA on D0 did not demonstrate vasospasm in any case but revealed it on D7 in 9 patients (36%). In the multivariate analysis, only the presence of subarachnoid hemorrhage (SAH) on D7 had confirmed a significant association with the development of vasospasm (P = 0.0201). Cerebral hypoperfusion at least in one evaluated brain region was noted on D0 and D7 in 76% and 60% of patients, respectively, and showed highly variable spatial distribution and temporal development. Treatment results were not associated with the presence of vasospasm (P = 0.7337) or the number of brain regions affected by hypoperfusion on D0 (P = 0.2285), but the number of brain regions affected by hypoperfusion on D7 was significantly greater in cases of unfavorable outcome (P = 0.0187). Conclusion: Vasospasm is merely related to SAH sustained at the subacute stage of TBI, but its spatial and temporary interrelationships with the post traumatic cerebral hypoperfusion are complex. Serial combined CTA and CTP examinations may facilitate monitoring of perfusion abnormalities and treatment guidance.
Collapse
Affiliation(s)
- Tatsuya Maegawa
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Atsushi Sasahara
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Hidenori Ohbuchi
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Mikhail Chernov
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| |
Collapse
|
4
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Avsenik J, Bajrović FF, Gradišek P, Kejžar N, Šurlan Popović K. Prognostic value of CT perfusion and permeability imaging in traumatic brain injury. J Trauma Acute Care Surg 2021; 90:484-491. [PMID: 33009337 DOI: 10.1097/ta.0000000000002964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently established prognostic models in traumatic brain injury (TBI) include noncontrast computed tomography (CT) which is insensitive to early perfusion alterations associated with secondary brain injury. Perfusion CT (PCT) on the other hand offers insight into early perfusion abnormalities. We hypothesized that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model. METHODS A prospective cohort study of consecutive 50 adult patients with head injury and Glasgow Coma Scale score of 12 or less was performed at a single Level 1 Trauma Centre. Perfusion CT was added to routine control CT 12 hours to 24 hours after admission. Region of interest analysis was performed in six major vascular territories on perfusion and permeability parametric maps. Glasgow Outcome Scale (GOS) was used 6 months later to categorize patients' functional outcomes to favorable (GOS score > 3) or unfavorable (GOS score ≤ 3). We defined core prognostic model, consisting of age, motor Glasgow Coma Scale score, pupillary reactivity, and CT Rotterdam Score. Next, we added perfusion and permeability data as predictors and compared updated models to the core model using cross-validated areas under the receiver operator curves (cv-AUC). RESULTS Significant advantage over core model was shown by the model, containing both mean cerebral extravascular-extracellular volume per unit of tissue volume and cerebral blood volume of the least perfused arterial territory in addition to core predictors (cv-AUC, 0.75; 95% confidence interval, 0.51-0.84 vs. 0.6; 95% confidence interval, 0.37-0.74). CONCLUSION The development of cerebral ischemia and traumatic cerebral edema constitutes the secondary brain injury and represents the target for therapeutic interventions. Our results suggest that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model in the setting of moderate and severe TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jernej Avsenik
- From the Clinical Institute of Radiology (J.A., K.Š.P.), University Medical Centre Ljubljana; Department of Radiology (J.A., K.Š.P.), Faculty of Medicine, University of Ljubljana; Division of Neurology (F.F.B.), University Medical Centre Ljubljana; Institute of Pathophysiology (F.F.B.), Faculty of Medicine, University of Ljubljana; Clinical Department of Anaesthesiology and Intensive Therapy (P.G.), Centre for Intensive Therapy, University Medical Centre Ljubljana; Department of Anaesthesiology with Reanimatology (P.G.), Faculty of Medicine, University of Ljubljana and Institute for Biostatistics and Medical Informatics (N.K.), Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
6
|
The effects of baseline length in Computed Tomography perfusion of liver. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Cooper S, Bendinelli C, Bivard A, Parsons M, Balogh ZJ. Abnormalities on Perfusion CT and Intervention for Intracranial Hypertension in Severe Traumatic Brain Injury. J Clin Med 2020; 9:E2000. [PMID: 32630511 PMCID: PMC7356931 DOI: 10.3390/jcm9062000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
The role of invasive intracranial pressure (ICP) monitoring in patients with severe traumatic brain injury (STBI) remain unclear. Perfusion computed tomography (CTP) provides crucial information about the cerebral perfusion status in these patients. We hypothesised that CTP abnormalities would be associated with the severity of intracranial hypertension (ICH). To investigate this hypothesis, twenty-eight patients with STBI and ICP monitors were investigated with CTP within 48 h from admission. Treating teams were blind to these results. Patients were divided into five groups based on increasing intervention required to control ICH and were compared. Group I required no intervention above routine sedation, group II required a single first tier intervention, group III required multiple different first-tier interventions, group IV required second-tier medical therapy and group V required second-tier surgical therapy. Analysis of the results showed demographics and injury severity did not differ among groups. In group I no patients showed CTP abnormality, while patients in all other groups had abnormal CTP (p = 0.003). Severe ischaemia observed on CTP was associated with increasing intervention for ICH. This study, although limited by small sample size, suggests that CTP abnormalities are associated with the need to intervene for ICH. Larger scale assessment of our results is warranted to potentially avoid unnecessary invasive procedures in head injury patients.
Collapse
Affiliation(s)
- Shannon Cooper
- Department of Traumatology, John Hunter Hospital Newcastle, Newcastle, NSW 2305, Australia; (S.C.); (C.B.)
| | - Cino Bendinelli
- Department of Traumatology, John Hunter Hospital Newcastle, Newcastle, NSW 2305, Australia; (S.C.); (C.B.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
| | - Andrew Bivard
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
- Department of Neurology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Mark Parsons
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
- Department of Neurology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Zsolt J. Balogh
- Department of Traumatology, John Hunter Hospital Newcastle, Newcastle, NSW 2305, Australia; (S.C.); (C.B.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
| |
Collapse
|
8
|
van der Kleij LA, De Vis JB, Restivo MC, Turtzo LC, Hendrikse J, Latour LL. Subarachnoid Hemorrhage and Cerebral Perfusion Are Associated with Brain Volume Decrease in a Cohort of Predominantly Mild Traumatic Brain Injury Patients. J Neurotrauma 2020; 37:600-607. [PMID: 31642407 PMCID: PMC7045349 DOI: 10.1089/neu.2019.6514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biomarkers are needed to identify traumatic brain injury (TBI) patients at risk for accelerated brain volume loss and its associated functional impairment. Subarachnoid hemorrhage (SAH) has been shown to affect cerebral volume and perfusion, possibly by induction of inflammation and vasospasm. The purpose of this study was to assess the impact of SAH due to trauma on cerebral perfusion and brain volume. For this, magnetic resonance imaging (MRI) was performed <48 h and at 90 days after TBI. The <48-h scan was used to assess SAH presence and perfusion. Brain volume changes were assessed quantitatively over time. Differences in brain volume change and perfusion were compared between SAH and non-SAH patients. A linear regression analysis with clinical and imaging variables was used to identify predictors of brain volume change. All patients had a relatively good status on admission, and 83% presented with the maximum Glasgow Coma Scale (GCS) score. Brain volume decrease was greater in the 11 SAH patients (-3.2%, interquartile range [IQR] -4.8 to -1.3%) compared with the 46 non-SAH patients (-0.4%, IQR -1.8 to 0.9%; p < 0.001). Brain perfusion was not affected by SAH, but it was correlated with brain volume change (ρ = 0.39; p < 0.01). Forty-three percent of brain volume change was explained by SAH (β -0.40, p = 0.001), loss of consciousness (β -0.24, p = 0.035), and peak perfusion curve signal intensity height (0.27, p = 0.012). SAH and lower perfusion in the acute phase may identity TBI patients at increased risk for accelerated brain volume loss, in addition to loss of consciousness occurrence. Future studies should determine whether the findings apply to TBI patients with worse clinical status on admission. SAH predicts brain volume decrease independent of brain perfusion. This indicates the adverse effects of SAH extend beyond vasoconstriction, and that hypoperfusion also occurs separately from SAH.
Collapse
Affiliation(s)
- Lisa A. van der Kleij
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jill B. De Vis
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Matthew C. Restivo
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - L. Christine Turtzo
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Acute Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lawrence L. Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Acute Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| |
Collapse
|
9
|
Smith LGF, Milliron E, Ho ML, Hu HH, Rusin J, Leonard J, Sribnick EA. Advanced neuroimaging in traumatic brain injury: an overview. Neurosurg Focus 2019; 47:E17. [PMID: 32364704 DOI: 10.3171/2019.9.focus19652] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a common condition with many potential acute and chronic neurological consequences. Standard initial radiographic evaluation includes noncontrast head CT scanning to rapidly evaluate for pathology that might require intervention. The availability of fast, relatively inexpensive CT imaging has fundamentally changed the clinician's ability to noninvasively visualize neuroanatomy. However, in the context of TBI, limitations of head CT without contrast include poor prognostic ability, inability to analyze cerebral perfusion status, and poor visualization of underlying posttraumatic changes to brain parenchyma. Here, the authors review emerging advanced imaging for evaluation of both acute and chronic TBI and include QuickBrain MRI as an initial imaging modality. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI, MR arterial spin labeling, and perfusion CT are reviewed as methods for examining cerebral blood flow following TBI. The authors evaluate MR-based diffusion tensor imaging and functional MRI for prognostication of recovery post-TBI. Finally, MR elastography, MR spectroscopy, and convolutional neural networks are examined as future tools in TBI management. Many imaging technologies are being developed and studied in TBI, and some of these may hold promise in improving the understanding and management of TBI. ABBREVIATIONS ASL = arterial spin labeling; CNN = convolutional neural network; CTP = perfusion CT; DAI = diffuse axonal injury; DMN = default mode network; DOC = disorders of consciousness; DTI = diffusion tensor imaging; FA = fractional anisotropy; fMRI = functional MRI; GCS = Glasgow Coma Scale; MD = mean diffusivity; MRE = MR elastography; MRS = MR spectroscopy; mTBI = mild TBI; NAA = N-acetylaspartate; SWI = susceptibility-weighted imaging; TBI = traumatic brain injury; UHF = ultra-high field.
Collapse
Affiliation(s)
| | - Eric Milliron
- 2The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus; and
| | | | | | | | - Jeffrey Leonard
- 1Department of Neurological Surgery and.,4Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Eric A Sribnick
- 1Department of Neurological Surgery and.,4Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
10
|
Cooper S, Bendinelli C, Bivard A, Parsons M, Balogh ZJ. When a Slice Is Not Enough! Comparison of Whole-Brain versus Standard Limited-Slice Perfusion Computed Tomography in Patients with Severe Traumatic Brain Injury. J Clin Med 2019; 8:jcm8050701. [PMID: 31108945 PMCID: PMC6571909 DOI: 10.3390/jcm8050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
Introduction: Cerebral perfusion computed tomography (PCT) provides crucial information in acute stroke and has an increasing role in traumatic brain injury (TBI) management. Most studies on TBI patients utilize 64-slice scanners, which are limited to four brain slices (limited-brain PCT, LBPCT). Newer 320-slice scanners depict the whole brain perfusion status (WBPCT). We aimed to identify the additional information gained with WBPCT when compared to LBPCT. Patients and methods: Forty-nine patients with severe TBI were investigated within 48 h from admission with WBPCT. Findings from LBPCT were compared with findings from WBPCT. Results: A perfusion abnormality was identified in 39 (80%) and 37 (76%) patients by WBPCT and LBPCT, respectively (p = 0.8). There were 90 and 68 perfusion abnormalities identified by WBPCT and LBPCT, respectively (p < 0.001). In the 39 patients with a perfusion abnormality detected by WBPCT, 15 (38%) had further perfusion abnormalities outside the LBPCT area of coverage. Thirty-six (92%) patients had a larger perfusion abnormality upon WBPCT compared with LBPCT. Additional information gained showed some statistically significant correlation with clinical outcome. Conclusions: In severe TBI patients, WBPCT provides extra information compared to LBPC. The limitations of LBPCT should be considered when evaluating studies reporting on PCT findings and their association with outcomes.
Collapse
Affiliation(s)
- Shannon Cooper
- Department of Traumatology, John Hunter Hospital, Newcastle 2300, Australia.
| | - Cino Bendinelli
- Department of Traumatology, John Hunter Hospital, Newcastle 2300, Australia.
- Faculty of Medicine, University of Newcastle, Newcastle 2300, Australia.
| | - Andrew Bivard
- Department of Neurology, Royal Melbourne Hospital, Victoria 3050, Australia.
- Faculty of Medicine, University of Melbourne, Melbourne 3050, Australia.
| | - Mark Parsons
- Department of Neurology, Royal Melbourne Hospital, Victoria 3050, Australia.
- Faculty of Medicine, University of Melbourne, Melbourne 3050, Australia.
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, Newcastle 2300, Australia.
- Faculty of Medicine, University of Newcastle, Newcastle 2300, Australia.
| |
Collapse
|
11
|
Douglas DB, Ro T, Toffoli T, Krawchuk B, Muldermans J, Gullo J, Dulberger A, Anderson AE, Douglas PK, Wintermark M. Neuroimaging of Traumatic Brain Injury. Med Sci (Basel) 2018; 7:E2. [PMID: 30577545 PMCID: PMC6358760 DOI: 10.3390/medsci7010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
The purpose of this article is to review conventional and advanced neuroimaging techniques performed in the setting of traumatic brain injury (TBI). The primary goal for the treatment of patients with suspected TBI is to prevent secondary injury. In the setting of a moderate to severe TBI, the most appropriate initial neuroimaging examination is a noncontrast head computed tomography (CT), which can reveal life-threatening injuries and direct emergent neurosurgical intervention. We will focus much of the article on advanced neuroimaging techniques including perfusion imaging and diffusion tensor imaging and discuss their potentials and challenges. We believe that advanced neuroimaging techniques may improve the accuracy of diagnosis of TBI and improve management of TBI.
Collapse
Affiliation(s)
- David B Douglas
- Department of Neuroradiology, Stanford University, Palo Alto, CA 94301, USA.
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Tae Ro
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Thomas Toffoli
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Bennet Krawchuk
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Jonathan Muldermans
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - James Gullo
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Adam Dulberger
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Ariana E Anderson
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA.
| | - Pamela K Douglas
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA.
- Institute for Simulation and Training, University of Central Florida, Orlando, FL 32816, USA.
| | - Max Wintermark
- Department of Neuroradiology, Stanford University, Palo Alto, CA 94301, USA.
| |
Collapse
|
12
|
|