1
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
2
|
Talaie R, Torkian P, Amili O, Aboufirass Y, Rostambeigi N, Jalaeian H, Golzarian J. Particle Distribution in Embolotherapy, How Do They Get There? A Critical Review of the Factors Affecting Arterial Distribution of Embolic Particles. Ann Biomed Eng 2022; 50:885-897. [PMID: 35524027 DOI: 10.1007/s10439-022-02965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Embolization has tremendously evolved in recent years and has expanded to treatment of a variety of pathologic processes. There has been emerging evidence that the level of arterial occlusion and the distribution of embolic particles may play an important role in the clinical outcome. This is a comprehensive literature review to identify variables that play important role in determination of level of occlusion of blood vessels and distribution of embolic particles. The literature searches between 1996 to 2020 through PubMed and Ovid-MEDLINE yielded over 1030 articles of which 30 studies providing details on the level of occlusion are reviewed here. We divided the playing factors into characteristics of the particles, solution/injection and vascular bed. Accordingly, particle size, type and aggregation, compressibility/deformability, and biodegradability are categorized as the factors involving particles' behavioral nature. Infusion rate and concentration/dilution of the medium are related to the carrying solution. Hemodynamics and the arterial resistance are characteristics of the vascular bed that also play an important role in the distribution of embolic particles. Understanding and predicting the level of embolization is a complex multi-factor problem that requires more evidence, warranting further randomized controlled trials, and powered human and animal studies.
Collapse
Affiliation(s)
- Reza Talaie
- Department of Vascular and Interventional Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Pooya Torkian
- Department of Vascular and Interventional Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Omid Amili
- Department of Mechanical, Industrial and Manufacturing Engineering (MIME), University of Toledo, Toledo, OH, USA
| | | | - Nassir Rostambeigi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hamed Jalaeian
- Department of Interventional Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jafar Golzarian
- Department of Vascular and Interventional Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Kettenbach J, Ittrich H, Gaubert JY, Gebauer B, Vos JA. CIRSE Standards of Practice on Bronchial Artery Embolisation. Cardiovasc Intervent Radiol 2022; 45:721-732. [PMID: 35396612 PMCID: PMC9117352 DOI: 10.1007/s00270-022-03127-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/24/2022] [Indexed: 01/21/2023]
Abstract
This CIRSE Standards of Practice document is aimed at interventional radiologists and provides best practices for performing bronchial artery embolisation to effectively treat haemoptysis. It has been developed by an expert writing group established by the CIRSE Standards of Practice Committee.
Collapse
Affiliation(s)
- Joachim Kettenbach
- Landesklinikum Wiener Neustadt, Institute of Diagnostics, Interventional Radiology and Nuclear Medicine, Wiener Neustadt, Austria.
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology, Schoen Clinic Hamburg Eilbek, Hamburg, Germany
| | - Jean Yves Gaubert
- Department of Radiology, Timone University Hospital, Marseille, France.,Laboratory of Experimental Interventional Imaging, Aix-Marseille University, Marseille, France
| | - Bernhard Gebauer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Albert Vos
- Department of Interventional Radiology, St Antonius Hospital, Nieuwegein, Utrecht, The Netherlands
| |
Collapse
|
4
|
Kenny AG, Pellerin O, Moussa N, Del Giudice C, Déan C, Sapoval M. Repeat Prostatic Artery Embolization. J Vasc Interv Radiol 2020; 31:1090-1095.e1. [DOI: 10.1016/j.jvir.2020.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
|
5
|
Tian X, Kong T, Zhu P, Kang Z, Lei L, Tang X, Wang L. Engineering embolic microparticles from a periodically-pulsating charged liquid meniscus. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Rong JJ, Liang M, Xuan FQ, Sun JY, Zhao LJ, Zheng HZ, Tian XX, Liu D, Zhang QY, Peng CF, Li F, Wang XZ, Han YL, Yu WT. Thrombin-loaded alginate-calcium microspheres: A novel hemostatic embolic material for transcatheter arterial embolization. Int J Biol Macromol 2017; 104:1302-1312. [DOI: 10.1016/j.ijbiomac.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 11/27/2022]
|
7
|
In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy. Int J Pharm 2016; 503:150-62. [DOI: 10.1016/j.ijpharm.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022]
|
8
|
Spatiotemporal dynamics of doxorubicin elution from embolic beads within a microfluidic network. J Control Release 2015; 214:62-75. [DOI: 10.1016/j.jconrel.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/25/2023]
|
9
|
Wang Y, Benzina A, Molin DG, Akker NVD, Gagliardi M, Koole LH. Preparation and structure of drug-carrying biodegradable microspheres designed for transarterial chemoembolization therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 26:77-91. [DOI: 10.1080/09205063.2014.982242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Zhao H, Zheng C, Feng G, Zhao Y, Liang H, Wu H, Zhou G, Liang B, Wang Y, Xia X. Temperature-sensitive poly(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits. AJNR Am J Neuroradiol 2013; 34:169-76. [PMID: 22859278 DOI: 10.3174/ajnr.a3177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE We have developed a new thermosensitive liquid embolic agent, PIB nanogel, that can be solidified at body temperature. We thus further investigated the distribution, durability of vascular occlusion, and inflammatory reactions of PIB in embolization of the renal artery of rabbits. MATERIALS AND METHODS The bilateral renal arteries of 9 rabbits were first embolized with PIB at different injection rates. The distribution pattern of PIB was investigated by contact radiography and histology 1 hour after embolization. The right renal arteries of 20 rabbits were then embolized with PIB at the proper injection rate. Angiography and pathologic examination of the kidneys were performed at 1 week and 1, 2, and 3 months after embolization to evaluate the long-term outcomes. RESULTS With the injection rate increasing, PIB could reach the more distal branch of the renal artery. The proper injection rate was chosen as 0.10 mL/s due to the homogeneous distribution of PIB from the main renal artery to the precapillary level at this rate. During a 3-month follow-up observation period, no angiographic recanalization was observed. Histologically, we found no disruption of the vessel wall or subintimal bleeding, no extravasation of PIB, and no evidence of neovascularization. Moreover, there was only a mild inflammatory response, manifested by few lymphocytic and monocellular infiltration, without foreign body granuloma formation. CONCLUSIONS Embolization of the renal artery with PIB was easy and controllable, which could lead to a homogeneous and persistent occlusion without severe inflammatory changes. PIB might be a suitable material for intravascular embolization.
Collapse
Affiliation(s)
- H Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ozbek O, Acar K, Koc O, Saritas K, Toy H, Solak Y, Ozbek S, Kucukapan A, Guler I, Gaipov A, Turk S, Haznedaroglu IC. Short-Term Effects of Ankaferd Hemostat for Renal Artery Embolization: An Experimental Study. Cardiovasc Intervent Radiol 2012; 36:498-504. [DOI: 10.1007/s00270-012-0419-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/29/2012] [Indexed: 11/24/2022]
|
12
|
Owen RJ, Nation PN, Polakowski R, Biliske JA, Tiege PB, Griffith IJ. A Preclinical Study of the Safety and Efficacy of Occlusin™ 500 Artificial Embolization Device in Sheep. Cardiovasc Intervent Radiol 2011; 35:636-44. [DOI: 10.1007/s00270-011-0218-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
|
13
|
First Multimodal Embolization Particles Visible on X-ray/Computed Tomography and Magnetic Resonance Imaging. Invest Radiol 2011; 46:178-86. [DOI: 10.1097/rli.0b013e318205af53] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|