1
|
Zeng RW, Ong CEY, Ong EYH, Chung CH, Lim WH, Xiao J, Danpanichkul P, Law JH, Syn N, Chee D, Kow AWC, Lee SW, Takahashi H, Kawaguchi T, Tamaki N, Dan YY, Nakajima A, Wijarnpreecha K, Muthiah MD, Noureddin M, Loomba R, Ioannou GN, Tan DJH, Ng CH, Huang DQ. Global Prevalence, Clinical Characteristics, Surveillance, Treatment Allocation, and Outcomes of Alcohol-Associated Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2024; 22:2394-2402.e15. [PMID: 38987014 DOI: 10.1016/j.cgh.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Although the burden of alcohol-associated hepatocellular carcinoma (HCC) is increasing with rising alcohol consumption, clinical presentation and outcomes of alcohol-associated HCC have not been systematically assessed. We aimed to determine the prevalence, clinical characteristics, surveillance rates, treatment allocation, and outcomes of alcohol-associated HCC. METHODS Medline and Embase were searched from inception to January 2023. Proportional data were analyzed using a generalized linear mixed model. The odds ratio (OR) or mean difference comparing alcohol-associated HCC and other causes was obtained with pairwise meta-analysis. Survival outcomes were evaluated using a pooled analysis of hazard ratios. RESULTS Of 4824 records identified, 55 articles (86,345 patients) were included. Overall, 30.4% (95% confidence interval [CI], 24.0%-37.7%) of HCC was alcohol associated, with the highest proportion in Europe and the lowest in the Americas. People with alcohol-associated HCC were more likely male but were similar in age and comorbidities compared with other causes. A total of 20.8% (95% CI, 11.4%-34.9%) of people with alcohol-associated HCC underwent surveillance compared with 35.0%, 31.6%, and 21.4% in hepatitis B virus, hepatitis C virus, and metabolic dysfunction-associated HCC, respectively (all P < .05). Alcohol-associated HCC had a lower likelihood of Barcelona Clínic Liver Cancer C stage (0/A) (OR, 0.7; 95% CI, 0.6-0.9; P = .018) and curative therapy (24.5% vs 33.9%; OR, 0.7; 95% CI, 0.5-0.9; P = .003), and higher mortality (HR, 1.3; 95% CI, 1.1-1.5; P = .012) when compared with other causes. CONCLUSIONS Alcohol-associated HCC is associated with lower surveillance rates, more advanced BCLC stage, lower likelihood of receiving curative therapy, and poorer survival. These data call for measures to reduce heavy alcohol consumption and improve strategies for effective HCC surveillance in high-risk individuals.
Collapse
Affiliation(s)
| | - Christen En Ya Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elden Yen Hng Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charlotte Hui Chung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Jia Hao Law
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, National University Hospital, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Biostatistics & Modelling Domain, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Douglas Chee
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
| | - Alfred Wei Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, National University Hospital, Singapore; Division of Surgical Oncology, National University Cancer Institute, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Sung Won Lee
- Division of Hepatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | | | - Takumi Kawaguchi
- Department of Digestive Disease Information & Research, School of Medicine, Kurume University, Fukuoka, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Atsushi Nakajima
- Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Banner University Medical Center, Phoenix, Arizona
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | | | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Digestive Disease Information & Research, School of Medicine, Kurume University, Fukuoka, Japan
| | - Daniel Q Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore.
| |
Collapse
|
2
|
Hendriks P, Rietbergen DDD, van Erkel AR, Coenraad MJ, Arntz MJ, Bennink RJ, Braat AE, Crobach S, van Delden OM, Dibbets-Schneider P, van der Hulle T, Klümpen HJ, van der Meer RW, Nijsen JFW, van Rijswijk CSP, Roosen J, Ruijter BN, Smit F, Stam MK, Takkenberg RB, Tushuizen ME, van Velden FHP, de Geus-Oei LF, Burgmans MC. Adjuvant holmium-166 radioembolization after radiofrequency ablation in early-stage hepatocellular carcinoma patients: a dose-finding study (HORA EST HCC trial). Eur J Nucl Med Mol Imaging 2024; 51:2085-2097. [PMID: 38329507 PMCID: PMC11139702 DOI: 10.1007/s00259-024-06630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE The aim of this study was to investigate the biodistribution of (super-)selective trans-arterial radioembolization (TARE) with holmium-166 microspheres (166Ho-MS), when administered as adjuvant therapy after RFA of HCC 2-5 cm. The objective was to establish a treatment volume absorbed dose that results in an absorbed dose of ≥ 120 Gy on the hyperemic zone around the ablation necrosis (i.e., target volume). METHODS In this multicenter, prospective dose-escalation study in BCLC early stage HCC patients with lesions 2-5 cm, RFA was followed by (super-)selective infusion of 166Ho-MS on day 5-10 after RFA. Dose distribution within the treatment volume was based on SPECT-CT. Cohorts of up to 10 patients were treated with an incremental dose (60 Gy, 90 Gy, 120 Gy) of 166Ho-MS to the treatment volume. The primary endpoint was to obtain a target volume dose of ≥ 120 Gy in 9/10 patients within a cohort. RESULTS Twelve patients were treated (male 10; median age, 66.5 years (IQR, [64.3-71.7])) with a median tumor diameter of 2.7 cm (IQR, [2.1-4.0]). At a treatment volume absorbed dose of 90 Gy, the primary endpoint was met with a median absorbed target volume dose of 138 Gy (IQR, [127-145]). No local recurrences were found within 1-year follow-up. CONCLUSION Adjuvant (super-)selective infusion of 166Ho-MS after RFA for the treatment of HCC can be administered safely at a dose of 90 Gy to the treatment volume while reaching a dose of ≥ 120 Gy to the target volume and may be a favorable adjuvant therapy for HCC lesions 2-5 cm. TRIAL REGISTRATION Clinicaltrials.gov NCT03437382 . (registered: 19-02-2018).
Collapse
Affiliation(s)
- Pim Hendriks
- Interventional Radiology Research (IR2) Group, Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Daphne D D Rietbergen
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arian R van Erkel
- Interventional Radiology Research (IR2) Group, Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Minneke J Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark J Arntz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roel J Bennink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Andries E Braat
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Otto M van Delden
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Petra Dibbets-Schneider
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van der Hulle
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rutger W van der Meer
- Interventional Radiology Research (IR2) Group, Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina S P van Rijswijk
- Interventional Radiology Research (IR2) Group, Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Joey Roosen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastian N Ruijter
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Smit
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mette K Stam
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - R Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris H P van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands
- Department of Radiation Sciences & Technology, Delft University of Technology, Delft, The Netherlands
| | - Mark C Burgmans
- Interventional Radiology Research (IR2) Group, Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
3
|
Hendriks P, van Dijk KM, Boekestijn B, Broersen A, van Duijn-de Vreugd JJ, Coenraad MJ, Tushuizen ME, van Erkel AR, van der Meer RW, van Rijswijk CS, Dijkstra J, de Geus-Oei LF, Burgmans MC. Intraprocedural assessment of ablation margins using computed tomography co-registration in hepatocellular carcinoma treatment with percutaneous ablation: IAMCOMPLETE study. Diagn Interv Imaging 2024; 105:57-64. [PMID: 37517969 DOI: 10.1016/j.diii.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The primary objective of this study was to determine the feasibility of ablation margin quantification using a standardized scanning protocol during thermal ablation (TA) of hepatocellular carcinoma (HCC), and a rigid registration algorithm. Secondary objectives were to determine the inter- and intra-observer variability of tumor segmentation and quantification of the minimal ablation margin (MAM). MATERIALS AND METHODS Twenty patients who underwent thermal ablation for HCC were included. There were thirteen men and seven women with a mean age of 67.1 ± 10.8 (standard deviation [SD]) years (age range: 49.1-81.1 years). All patients underwent contrast-enhanced computed tomography examination under general anesthesia directly before and after TA, with preoxygenated breath hold. Contrast-enhanced computed tomography examinations were analyzed by radiologists using rigid registration software. Registration was deemed feasible when accurate rigid co-registration could be obtained. Inter- and intra-observer rates of tumor segmentation and MAM quantification were calculated. MAM values were correlated with local tumor progression (LTP) after one year of follow-up. RESULTS Co-registration of pre- and post-ablation images was feasible in 16 out of 20 patients (80%) and 26 out of 31 tumors (84%). Mean Dice similarity coefficient for inter- and intra-observer variability of tumor segmentation were 0.815 and 0.830, respectively. Mean MAM was 0.63 ± 3.589 (SD) mm (range: -6.26-6.65 mm). LTP occurred in four out of 20 patients (20%). The mean MAM value for patients who developed LTP was -4.00 mm, as compared to 0.727 mm for patients who did not develop LTP. CONCLUSION Ablation margin quantification is feasible using a standardized contrast-enhanced computed tomography protocol. Interpretation of MAM was hampered by the occurrence of tissue shrinkage during TA. Further validation in a larger cohort should lead to meaningful cut-off values for technical success of TA.
Collapse
Affiliation(s)
- Pim Hendriks
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands.
| | - Kiki M van Dijk
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Bas Boekestijn
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Alexander Broersen
- LKEB Laboratory of Clinical and Experimental Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | | | - Minneke J Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Arian R van Erkel
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Rutger W van der Meer
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | | | - Jouke Dijkstra
- LKEB Laboratory of Clinical and Experimental Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands; Biomedical Photonic Imaging Group, TechMed Centre, University of Twente, 7522 NB, Enschede, the Netherlands; Department of Radiation Science & Technology, Delft University of Technology, 2628 CD, Delft, the Netherlands
| | - Mark C Burgmans
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
4
|
Meershoek P, van den Berg NS, Lutjeboer J, Burgmans MC, van der Meer RW, van Rijswijk CSP, van Oosterom MN, van Erkel AR, van Leeuwen FWB. Assessing the value of volume navigation during ultrasound-guided radiofrequency- and microwave-ablations of liver lesions. Eur J Radiol Open 2021; 8:100367. [PMID: 34286051 PMCID: PMC8273361 DOI: 10.1016/j.ejro.2021.100367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose The goal of our study was to determine the influence of ultrasound (US)-coupled volume navigation on the use of computed tomography (CT) during minimally-invasive radiofrequency and microwave ablation procedures of liver lesions. Method Twenty-five patients with 40 liver lesions of different histological origin were retrospectively analysed. Lesions were ablated following standard protocol, using 1) conventional US-guidance, 2) manual registered volume navigation (mVNav), 3) automatic registered (aVNav) or 4) CT-guidance. In case of ultrasonographically inconspicuous lesions, conventional US-guidance was abandoned and mVNav was used. If mVNav was also unsuccessful, the procedure was either continued with aVNav or CT-guidance. The number, size and location of the lesions targeted using the different approaches were documented. Results Of the 40 lesions, sixteen (40.0 %) could be targeted with conventional US-guidance only, sixteen (40.0 %) with mVNav, three (7.5 %) with aVNav and five (12.5 %) only through the use of CT-guidance. Of the three alternatives (mVNav, aVNav and CT only) the mean size of the lesions targeted using mVNav (9.1 ± 4.6 mm) was significantly smaller from those targeted using US-guidance only (20.4 ± 9.4 mm; p < 0.001). The location of the lesions did not influence the selection of the modality used to guide the ablation. Conclusions In our cohort, mVNav allowed the ablation procedure to become less dependent on the use of CT. mVNav supported the ablation of lesions smaller than those that could be ablated with US only and doubled the application of minimally-invasive US-guided ablations.
Collapse
Affiliation(s)
- Philippa Meershoek
- Interventional Radiology Section, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands.,Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Nynke S van den Berg
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Jacob Lutjeboer
- Interventional Radiology Section, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Mark C Burgmans
- Interventional Radiology Section, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Rutger W van der Meer
- Interventional Radiology Section, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Catharina S P van Rijswijk
- Interventional Radiology Section, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Arian R van Erkel
- Interventional Radiology Section, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| |
Collapse
|