1
|
Haddad A, Khavandi MM, Lendoire M, Acidi B, Chiang YJ, Gupta S, Tam A, Odisio BC, Mahvash A, Abdelsalam ME, Lin E, Kuban J, Newhook TE, Tran Cao HS, Tzeng CWD, Huang SY, Vauthey JN, Habibollahi P. Propensity Score-Matched Analysis of Liver Venous Deprivation and Portal Vein Embolization Before Planned Hepatectomy in Patients with Extensive Colorectal Liver Metastases and High-Risk Factors for Inadequate Regeneration. Ann Surg Oncol 2025; 32:1752-1761. [PMID: 39633174 DOI: 10.1245/s10434-024-16558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Liver venous deprivation (LVD) is known to induce better future liver remnant (FLR) hypertrophy than portal vein embolization (PVE). The role of LVD, compared with PVE, in inducing FLR hypertrophy and allowing safe hepatectomy for patients with extensive colorectal liver metastases (CLM) and high-risk factors for inadequate hypertrophy remains unclear. METHODS Patients undergoing LVD (n = 22) were matched to patients undergoing PVE (n = 279) in a 1:3 ratio based on propensity scores, prior to planned hepatectomy for CLM at a single center (1998-2023). The propensity scores accounted for high-risk factors for inadequate hypertrophy, namely pre-procedure standardized FLR (sFLR), body mass index, number of systemic therapy cycles, an extension of PVE to segment IV portal vein branches, prior resection, and chemotherapy-associated liver injury. RESULTS The matched cohort included 78 patients (LVD, n = 22; PVE, n = 56). Baseline characteristics were comparable. The number of tumors in the whole liver was similar but more LVD patients had five or more tumors in the left liver (32% vs. 11%; p = 0.024). Post-procedure sFLR was similar but LVD patients had a significantly higher degree of hypertrophy (16% vs. 11%; p = 0.017) and kinetic growth rate (3.9 vs. 2.4% per week; p = 0.006). More LVD patients underwent extended right hepatectomy (93% vs. 55%; p = 0.008). Only one patient had postoperative hepatic insufficiency after PVE, and no patients died within 90 days of hepatectomy. CONCLUSION In patients with extensive CLM and high-risk factors, LVD is associated with better FLR hypertrophy compared with PVE and allows for safely performing curative-intent extended major hepatectomy.
Collapse
Affiliation(s)
- Antony Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammad Mahdi Khavandi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mateo Lendoire
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Belkacem Acidi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi-Ju Chiang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjay Gupta
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alda Tam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Armeen Mahvash
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed E Abdelsalam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan Lin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua Kuban
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy E Newhook
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hop S Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Y Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Peiman Habibollahi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Yang L, Yang M, Wang T, Qiu Y, Yang Y, Wang W. Comparison of liver venous deprivation with portal vein embolization alone in patients undergoing major liver resection: a systematic review and meta-analysis. HPB (Oxford) 2024; 26:1329-1338. [PMID: 39054212 DOI: 10.1016/j.hpb.2024.07.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The clinical efficacy and safety between liver venous deprivation (LVD) and portal vein embolization (PVE) prior to major hepatectomy is still unclear. METHODS Studies comparing LVD and PVE were obtained by systemically searching PubMed, Embase, and Cochrane Library Central databases through 22 December 2023. RESULTS Ten studies including 588 patients were reviewed. Compared with PVE group, LVD group exhibited an increased liver resection rate (OR, 1.89; 95% CI, 1.13-3.15; P = 0.01), a faster KGR (MD, 1.37; 95% CI, 0.31-2.42; P = 0.01), and a shorter time to hepatectomy (MD, -6.66; 95% CI, -8.03 to -5.30; P < 0.0001). The pooled results showed that post-embolization complications (OR, 1.35; 95% CI, 0.66-2.74), overall postoperative complications (OR, 1.09; 95% CI, 0.68-1.75), severe complications (Clavien-Dindo ≥ III) (OR, 0.70; 95% CI, 0.43-1.14), and 90-day mortality (OR, 0.38; 95% CI, 0.13-1.09) were not significantly different in both groups. LVD group had significantly lower post-hepatectomy liver failure (PHLF) than PVE group (OR, 0.45; 95% CI, 0.22-0.91; P = 0.03). CONCLUSION LVD outperforms PVE regarding liver resection rate and future liver remnant (FLR) hypertrophy and shows comparable safety to PVE. In addition, LVD allowed for major hepatectomy with lower incidence of PHLF.
Collapse
Affiliation(s)
- Lingpeng Yang
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Yang
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Wang
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yiwen Qiu
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Yang
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wentao Wang
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Pal K, Mahdi Khavandi M, Habibollahi P, Patel M, Ahmed Metwalli Z. Liver Venous Deprivation. ADVANCES IN CLINICAL RADIOLOGY 2024; 6:77-88. [DOI: 10.1016/j.yacr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Bilhim T, Böning G, Guiu B, Luz JH, Denys A. CIRSE Standards of Practice on Portal Vein Embolization and Double Vein Embolization/Liver Venous Deprivation. Cardiovasc Intervent Radiol 2024; 47:1025-1036. [PMID: 38884781 PMCID: PMC11303578 DOI: 10.1007/s00270-024-03743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/20/2024] [Indexed: 06/18/2024]
Abstract
This CIRSE Standards of Practice document is aimed at interventional radiologists and provides best practices for performing liver regeneration therapies prior to major hepatectomies, including portal vein embolization, double vein embolization and liver venous deprivation. It has been developed by an expert writing group under the guidance of the CIRSE Standards of Practice Committee. It encompasses all clinical and technical details required to perform liver regeneration therapies, revising the indications, contra-indications, outcome measures assessed, technique and expected outcomes.
Collapse
Affiliation(s)
- Tiago Bilhim
- Interventional Radiology Unit, Curry Cabral Hospital, Unidade Local de Saúde São José; Centro Clínico Académico de Lisboa, SAMS Hospital, Lisbon, Portugal.
| | - Georg Böning
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Boris Guiu
- Department of Radiology, St-Eloi University Hospital, Montpellier, France
| | - José Hugo Luz
- Department of Interventional Radiology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Centre Hospitalier Universitaire Vaudois CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Smits J, Chau S, James S, Korenblik R, Tschögl M, Arntz P, Bednarsch J, Abreu de Carvalho L, Detry O, Erdmann J, Gruenberger T, Hermie L, Neumann U, Sandström P, Sutcliffe R, Denys A, Melloul E, Dewulf M, van der Leij C, van Dam RM. Combined portal and hepatic vein embolisation in perihilar cholangiocarcinoma. HPB (Oxford) 2024:S1365-182X(24)02219-6. [PMID: 39277435 DOI: 10.1016/j.hpb.2024.07.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Major hepatectomy in perihilar cholangiocarcinoma (pCCA) patients with a small future liver remnant (FLR) risks posthepatectomy liver failure (PHLF). This study examines combined portal and hepatic vein embolisation (PVE/HVE) to increase preoperative FLR volume and potentially decrease PHLF rates. METHODS In this retrospective, multicentre, observational study, data was collected from centres affiliated with the DRAGON Trials Collaborative and the EuroLVD registry. The study included pCCA patients who underwent PVE/HVE between July 2016 and January 2023. RESULTS Following PVE/HVE, 28% of patients (9/32) experienced complications, with 22% (7/32) necessitating biliary interventions for cholangitis. The median degree of hypertrophy after a median of 16 days was 16% with a kinetic growth rate of 6.8% per week. 69% of patients (22/32) ultimately underwent surgical resection. Cholangitis after PVE/HVE was associated with unresectability. After resection, 55% of patients (12/22) experienced complications, of which 23% (5/22) were Clavien-Dindo grade III or higher. The 90-day mortality after resection was 0%. CONCLUSION PVE/HVE quickly enhances the kinetic growth rate in pCCA patients. Cholangitis impairs chances on resection significantly. Resection after PVE/HVE is associated with low levels of 90-day mortality. The study highlights the potential of PVE/HVE in improving safety and outcomes in pCCA undergoing resection.
Collapse
Affiliation(s)
- Jens Smits
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Steven Chau
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands
| | - Sinéad James
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Remon Korenblik
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Madita Tschögl
- Department of Surgery, HPB Centre Vienna Health Network, Clinic Favoriten, Wienerbergstraße 13, 1100, Vienna, Austria
| | - Pieter Arntz
- Department of Surgery, Amsterdam University Medical Centre Location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Jan Bednarsch
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Luis Abreu de Carvalho
- Department of HPB Surgery and Liver Transplantation, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, CHU Liege, University of Liege, Avenue de l'Hôpital 1, 4000, Liège, Belgium
| | - Joris Erdmann
- Department of Surgery, Amsterdam University Medical Centre Location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Thomas Gruenberger
- Department of Surgery, HPB Centre Vienna Health Network, Clinic Favoriten, Wienerbergstraße 13, 1100, Vienna, Austria
| | - Laurens Hermie
- Department of Vascular and Interventional Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ulf Neumann
- Department of General, Visceral and Transplantation Surgery, Essen University Hospital, Hufelandstraße 55, 45147, Essen, Germany
| | - Per Sandström
- Department of Surgery in Linköping and Biomedical and Clinical Sciences, Linköping University, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Robert Sutcliffe
- Department of Surgery, Queen Elizabeth Hospital Birmingham NHS, Mindelsohn Way, Birmingham, B15 2GW, United Kingdom
| | - Alban Denys
- Department of Radiology and Interventional Radiology, CHUV University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, CHUV, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Maxime Dewulf
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands.
| | - Christiaan van der Leij
- GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands
| | - Ronald M van Dam
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229, HX, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands; Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Oweira H, Krimi B, Gouader A, Seiller I, Chaouch MA. Comment on: Portal vein embolization versus dual vein embolization for management of the future liver remnant in patients undergoing major hepatectomy: meta-analysis. BJS Open 2024; 8:zrae057. [PMID: 38962835 PMCID: PMC11222706 DOI: 10.1093/bjsopen/zrae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/21/2024] [Indexed: 07/05/2024] Open
Affiliation(s)
- Hani Oweira
- Department of Surgery, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Bassem Krimi
- Department of General Surgery, Perpignan Hospital, Perpignan, France
| | - Amine Gouader
- Department of General Surgery, Perpignan Hospital, Perpignan, France
| | - Ian Seiller
- Department of Radiology, Perpignan Hospital, Perpignan, France
| | - Mohamed Ali Chaouch
- Department of Visceral and Digestive Surgery, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Chan SM, Cornman-Homonoff J, Lucatelli P, Madoff DC. Image-guided percutaneous strategies to improve the resectability of HCC: Portal vein embolization, liver venous deprivation, or radiation lobectomy? Clin Imaging 2024; 111:110185. [PMID: 38781614 DOI: 10.1016/j.clinimag.2024.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Despite considerable advances in surgical technique, many patients with hepatic malignancies are not operative candidates due to projected inadequate hepatic function following resection. Consequently, the size of the future liver remnant (FLR) is an essential consideration when predicting a patient's likelihood of liver insufficiency following hepatectomy. Since its initial description 30 years ago, portal vein embolization has become the standard of care for augmenting the size and function of the FLR preoperatively. However, new minimally invasive techniques have been developed to improve surgical candidacy, chief among them liver venous deprivation and radiation lobectomy. The purpose of this review is to discuss the status of preoperative liver augmentation prior to resection of hepatocellular carcinoma with a focus on these three techniques, highlighting the distinctions between them and suggesting directions for future investigation.
Collapse
Affiliation(s)
- Shin Mei Chan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Cornman-Homonoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierleone Lucatelli
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA; Department of Surgery, Section of Surgical Oncology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Haddad A, Lendoire M, Maki H, Kang HC, Habibollahi P, Odisio BC, Huang SY, Vauthey JN. Liver volumetry and liver-regenerative interventions: history, rationale, and emerging tools. J Gastrointest Surg 2024; 28:766-775. [PMID: 38519362 DOI: 10.1016/j.gassur.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Postoperative hepatic insufficiency (PHI) is the most feared complication after hepatectomy. Volume of the future liver remnant (FLR) is one objectively measurable indicator to identify patients at risk of PHI. In this review, we summarized the development and rationale for the use of liver volumetry and liver-regenerative interventions and highlighted emerging tools that could yield new advancements in liver volumetry. METHODS A review of MEDLINE/PubMed, Embase, and Cochrane Library databases was conducted to identify literature related to liver volumetry. The references of relevant articles were reviewed to identify additional publications. RESULTS Liver volumetry based on radiologic imaging was developed in the 1980s to identify patients at risk of PHI and later used in the 1990s to evaluate grafts for living donor living transplantation. The field evolved in the 2000s by the introduction of standardized FLR based on the hepatic metabolic demands and in the 2010s by the introduction of the degree of hypertrophy and kinetic growth rate as measures of the FLR regenerative and functional capacity. Several liver-regenerative interventions, most notably portal vein embolization, are used to increase resectability and reduce the risk of PHI. In parallel with the increase in automation and machine assistance to physicians, many semi- and fully automated tools are being developed to facilitate liver volumetry. CONCLUSION Liver volumetry is the most reliable tool to detect patients at risk of PHI. Advances in imaging analysis technologies, newly developed functional measures, and liver-regenerative interventions have been improving our ability to perform safe hepatectomy.
Collapse
Affiliation(s)
- Antony Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Mateo Lendoire
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Harufumi Maki
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Hyunseon Christine Kang
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Peiman Habibollahi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Steven Y Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States.
| |
Collapse
|
9
|
Bozkurt E, Sijberden JP, Kasai M, Abu Hilal M. Efficacy and perioperative safety of different future liver remnant modulation techniques: a systematic review and network meta-analysis. HPB (Oxford) 2024; 26:465-475. [PMID: 38245490 DOI: 10.1016/j.hpb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND In daily clinical practice, different future liver remnant (FLR) modulation techniques are increasingly used to allow a liver resection in patients with insufficient FLR volume. This systematic review and network meta-analysis aims to compare the efficacy and perioperative safety of portal vein ligation (PVL), portal vein embolization (PVE), liver venous deprivation (LVD) and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). METHODS A literature search for studies comparing liver resections following different FLR modulation techniques was performed in MEDLINE, Embase and Cochrane Central, and pairwise and network meta-analyses were conducted. RESULTS Overall, 23 studies comprising 1557 patients were included. LVD achieved the greatest increase in FLR (17.32 %, 95% CI 2.49-32.15), while ALPPS was most effective in preventing dropout before the completion hepatectomy (OR 0.29, 95% CI 0.15-0.55). PVL tended to be associated with a longer time to completion hepatectomy (MD 5.78 days, 95% CI -0.67-12.23). Liver failure occurred less frequently after LVD, compared to PVE (OR 0.35, 95% CI 0.14-0.87) and ALPPS (OR 0.28, 95% CI 0.09-0.85). DISCUSSION ALPPS and LVD seem superior to PVE and PVL in terms of achieved FLR increase and subsequent treatment completion. LVD was associated with lower rates of post hepatectomy liver failure, compared to both PVE and ALPPS. A summary of the protocol has been prospectively registered in the PROSPERO database (CRD42022321474).
Collapse
Affiliation(s)
- Emre Bozkurt
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Department of Surgery, Hepatopancreatobiliary Surgery Division, Koç University Hospital, Istanbul, Turkey
| | - Jasper P Sijberden
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Meidai Kasai
- Department of Surgery, Meiwa Hospital, Hyogo, Japan
| | - Mohammad Abu Hilal
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
10
|
Chaouch MA, Mazzotta A, da Costa AC, Hussain MI, Gouader A, Krimi B, Panaro F, Guiu B, Soubrane O, Oweira H. A systematic review and meta-analysis of liver venous deprivation versus portal vein embolization before hepatectomy: future liver volume, postoperative outcomes, and oncological safety. Front Med (Lausanne) 2024; 10:1334661. [PMID: 38269320 PMCID: PMC10806199 DOI: 10.3389/fmed.2023.1334661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction This systematic review aimed to compare liver venous deprivation (LVD) with portal vein embolization (PVE) in terms of future liver volume, postoperative outcomes, and oncological safety before major hepatectomy. Methods We conducted this systematic review and meta-analysis following the PRISMA guidelines 2020 and AMSTAR 2 guidelines. Comparative articles published before November 2022 were retained. Results The literature search identified nine eligible comparative studies. They included 557 patients, 207 in the LVD group and 350 in the PVE group. This systematic review and meta-analysis concluded that LVD was associated with higher future liver remnant (FLR) volume after embolization, percentage of FLR hypertrophy, lower failure of resection due to low FLR, faster kinetic growth, higher day 5 prothrombin time, and higher 3 years' disease-free survival. This study did not find any difference between the LVD and PVE groups in terms of complications related to embolization, FLR percentage of hypertrophy after embolization, failure of resection, 3-month mortality, overall morbidity, major complications, operative time, blood loss, bile leak, ascites, post hepatectomy liver failure, day 5 bilirubin level, hospital stay, and three years' overall survival. Conclusion LVD is as feasible and safe as PVE with encouraging results making some selected patients more suitable for surgery, even with a small FLR. Systematic review registration The review protocol was registered in PROSPERO before conducting the study (CRD42021287628).
Collapse
Affiliation(s)
- Mohamed Ali Chaouch
- Department of Visceral and Digestive Surgery, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - Alessandro Mazzotta
- Department of Visceral and Digestive Surgery, Institute Mutualist of Montsouris, University of Paris, Paris, France
| | - Adriano Carneiro da Costa
- Department of Visceral and Digestive Surgery, Institute Mutualist of Montsouris, University of Paris, Paris, France
| | - Mohammad Iqbal Hussain
- Department of General Surgery, Great Western Hospitals NHS Foundation Trust, Swindon, United Kingdom
| | - Amine Gouader
- Department of Surgery, Perpignan Hospital Center, Perpignan, France
| | - Bassem Krimi
- Department of Surgery, Perpignan Hospital Center, Perpignan, France
| | - Fabrizio Panaro
- Department of HPB Surgery and Transplantation, St-Eloi University Hospital, Montpellier, France
| | - Boris Guiu
- Department of Radiology, St-Eloi University Hospital, Montpellier, France
| | - Olivier Soubrane
- Department of Visceral and Digestive Surgery, Institute Mutualist of Montsouris, University of Paris, Paris, France
| | - Hani Oweira
- Department of Surgery, Universitäts Medizin Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Du S, Wang Z, Lin D. A bibliometric and visualized analysis of preoperative future liver remnant augmentation techniques from 1997 to 2022. Front Oncol 2023; 13:1185885. [PMID: 37333827 PMCID: PMC10272555 DOI: 10.3389/fonc.2023.1185885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background The size and function of the future liver remnant (FLR) is an essential consideration for both eligibility for treatment and postoperative prognosis when planning surgical hepatectomy. Over time, a variety of preoperative FLR augmentation techniques have been investigated, from the earliest portal vein embolization (PVE) to the more recent Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) and liver venous deprivation (LVD) procedures. Despite numerous publications on this topic, no bibliometric analysis has yet been conducted. Methods Web of Science Core Collection (WoSCC) database was searched to identify studies related to preoperative FLR augmentation techniques published from 1997 to 2022. The analysis was performed using the CiteSpace [version 6.1.R6 (64-bit)] and VOSviewer [version 1.6.19]. Results A total of 973 academic studies were published by 4431 authors from 920 institutions in 51 countries/regions. The University of Zurich was the most published institution while Japan was the most productive country. Eduardo de Santibanes had the most published articles, and Masato Nagino was the most frequently co-cited author. The most frequently published journal was HPB, and the most cited journal was Ann Surg, with 8088 citations. The main aspects of preoperative FLR augmentation technique is to enhance surgical technology, expand clinical indications, prevent and treat postoperative complications, ensure long-term survival, and evaluate the growth rate of FLR. Recently, hot keywords in this field include ALPPS, LVD, and Hepatobiliary Scintigraphy. Conclusion This bibliometric analysis provides a comprehensive overview of preoperative FLR augmentation techniques, offering valuable insights and ideas for scholars in this field.
Collapse
|
12
|
Patrono D, Colli F, Colangelo M, De Stefano N, Apostu AL, Mazza E, Catalano S, Rizza G, Mirabella S, Romagnoli R. How Can Machine Perfusion Change the Paradigm of Liver Transplantation for Patients with Perihilar Cholangiocarcinoma? J Clin Med 2023; 12:jcm12052026. [PMID: 36902813 PMCID: PMC10004136 DOI: 10.3390/jcm12052026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Perihilar cholangiocarcinomas (pCCA) are rare yet aggressive tumors originating from the bile ducts. While surgery remains the mainstay of treatment, only a minority of patients are amenable to curative resection, and the prognosis of unresectable patients is dismal. The introduction of liver transplantation (LT) after neoadjuvant chemoradiation for unresectable pCCA in 1993 represented a major breakthrough, and it has been associated with 5-year survival rates consistently >50%. Despite these encouraging results, pCCA has remained a niche indication for LT, which is most likely due to the need for stringent candidate selection and the challenges in preoperative and surgical management. Machine perfusion (MP) has recently been reintroduced as an alternative to static cold storage to improve liver preservation from extended criteria donors. Aside from being associated with superior graft preservation, MP technology allows for the safe extension of preservation time and the testing of liver viability prior to implantation, which are characteristics that may be especially useful in the setting of LT for pCCA. This review summarizes current surgical strategies for pCCA treatment, with a focus on unmet needs that have contributed to the limited spread of LT for pCCA and how MP could be used in this setting, with a particular emphasis on the possibility of expanding the donor pool and improving transplant logistics.
Collapse
|
13
|
Chang X, Korenblik R, Olij B, Knapen RRMM, van der Leij C, Heise D, den Dulk M, Neumann UP, Schaap FG, van Dam RM, Olde Damink SWM. Influence of cholestasis on portal vein embolization-induced hypertrophy of the future liver remnant. Langenbecks Arch Surg 2023; 408:54. [PMID: 36680689 PMCID: PMC9867667 DOI: 10.1007/s00423-023-02784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE In the pre-clinical setting, hepatocellular bile salt accumulation impairs liver regeneration following partial hepatectomy. Here, we study the impact of cholestasis on portal vein embolization (PVE)-induced hypertrophy of the future liver remnant (FLR). METHODS Patients were enrolled with perihilar cholangiocarcinoma (pCCA) or colorectal liver metastases (CRLM) undergoing PVE before a (extended) right hemihepatectomy. Volume of segments II/III was considered FLR and assessed on pre-embolization and post-embolization CT scans. The degree of hypertrophy (DH, percentual increase) and kinetic growth rate (KGR, percentage/week) were used to assess PVE-induced hypertrophy. RESULTS A total of 50 patients (31 CRLM, 19 pCCA) were included. After PVE, the DH and KGR were similar in patients with CRLM and pCCA (5.2 [3.3-6.9] versus 5.7 [3.2-7.4] %, respectively, p = 0.960 for DH; 1.4 [0.9-2.5] versus 1.9 [1.0-2.4] %/week, respectively, p = 0.742 for KGR). Moreover, pCCA patients with or without hyperbilirubinemia had comparable DH (5.6 [3.0-7.5] versus 5.7 [2.4-7.0] %, respectively, p = 0.806) and KGR (1.7 [1.0-2.4] versus 1.9 [0.8-2.4] %/week, respectively, p = 1.000). For patients with pCCA, unilateral drainage in FLR induced a higher DH than bilateral drainage (6.7 [4.9-7.9] versus 2.7 [1.5-4.2] %, p = 0.012). C-reactive protein before PVE was negatively correlated with DH (ρ = - 0.539, p = 0.038) and KGR (ρ = - 0.532, p = 0.041) in patients with pCCA. CONCLUSIONS There was no influence of cholestasis on FLR hypertrophy in patients undergoing PVE. Bilateral drainage and inflammation appeared to be negatively associated with FLR hypertrophy. Further prospective studies with larger and more homogenous patient cohorts are desirable.
Collapse
Affiliation(s)
- Xinwei Chang
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Remon Korenblik
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Bram Olij
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Robrecht R. M. M. Knapen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christiaan van der Leij
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Heise
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Marcel den Dulk
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Ronald M. van Dam
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - Steven W. M. Olde Damink
- Department of Surgery, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
14
|
Sparrelid E, Olthof PB, Dasari BVM, Erdmann JI, Santol J, Starlinger P, Gilg S. Current evidence on posthepatectomy liver failure: comprehensive review. BJS Open 2022; 6:6840812. [PMID: 36415029 PMCID: PMC9681670 DOI: 10.1093/bjsopen/zrac142] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Despite important advances in many areas of hepatobiliary surgical practice during the past decades, posthepatectomy liver failure (PHLF) still represents an important clinical challenge for the hepatobiliary surgeon. The aim of this review is to present the current body of evidence regarding different aspects of PHLF. METHODS A literature review was conducted to identify relevant articles for each topic of PHLF covered in this review. The literature search was performed using Medical Subject Heading terms on PubMed for articles on PHLF in English until May 2022. RESULTS Uniform reporting on PHLF is lacking due to the use of various definitions in the literature. There is no consensus on optimal preoperative assessment before major hepatectomy to avoid PHLF, although many try to estimate future liver remnant function. Once PHLF occurs, there is still no effective treatment, except liver transplantation, where the reported experience is limited. DISCUSSION Strict adherence to one definition is advised when reporting data on PHLF. The use of the International Study Group of Liver Surgery criteria of PHLF is recommended. There is still no widespread established method for future liver remnant function assessment. Liver transplantation is currently the only effective way to treat severe, intractable PHLF, but for many indications, this treatment is not available in most countries.
Collapse
Affiliation(s)
- Ernesto Sparrelid
- Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pim B Olthof
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bobby V M Dasari
- Department of HPB Surgery and Liver Transplantation, Queen Elizabeth Hospital, Birmingham, UK.,University of Birmingham, Birmingham, UK
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonas Santol
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria.,Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Division of General Surgery, Department of Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria.,Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, New York, USA
| | - Stefan Gilg
- Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Bell RJ, Hakeem AR, Pandanaboyana S, Davidson BR, Prasad RK, Dasari BVM. Portal vein embolization versus dual vein embolization for management of the future liver remnant in patients undergoing major hepatectomy: meta-analysis. BJS Open 2022; 6:zrac131. [PMID: 36398754 PMCID: PMC9673134 DOI: 10.1093/bjsopen/zrac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This meta-analysis aimed to compare progression to surgery, extent of liver hypertrophy, and postoperative outcomes in patients planned for major hepatectomy following either portal vein embolization (PVE) or dual vein embolization (DVE) for management of an inadequate future liver remnant (FLR). METHODS An electronic search was performed of MEDLINE, Embase, and PubMed databases using both medical subject headings (MeSH) and truncated word searches. Articles comparing PVE with DVE up to January 2022 were included. Articles comparing sequential DVE were excluded. ORs, risk ratios, and mean difference (MD) were calculated using fixed and random-effects models for meta-analysis. RESULTS Eight retrospective studies including 523 patients were included in the study. Baseline characteristics between the groups, specifically, age, sex, BMI, indication for resection, and baseline FLR (ml and per cent) were comparable. The percentage increase in hypertrophy was larger in the DVE group, 66 per cent in the DVE group versus 27 per cent in the PVE group, MD 39.07 (9.09, 69.05) (P = 0.010). Significantly fewer patients failed to progress to surgery in the DVE group than the PVE group, 13 per cent versus 25 per cent respectively OR 0.53 (0.31, 0.90) (P = 0.020). Rates of post-hepatectomy liver failure 13 per cent versus 22 per cent (P = 0.130) and major complications 20 per cent versus 28 per cent (Clavien-Dindo more than IIIa) (P = 0.280) were lower. Perioperative mortality was lower with DVE, 1 per cent versus 10 per cent (P = 0.010). CONCLUSION DVE seems to produce a greater degree of hypertrophy of the FLR than PVE alone which translates into more patients progressing to surgery. Higher quality studies are needed to confirm these results.
Collapse
Affiliation(s)
- Richard J Bell
- Department of Hepatobiliary and Transplant Surgery, St James’s University Hospital, Leeds, UK
| | - Abdul R Hakeem
- Department of Hepatobiliary and Transplant Surgery, St James’s University Hospital, Leeds, UK
| | - Sanjay Pandanaboyana
- Department of Hepato-Pancreato-Biliary (HPB) and Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK
| | - Brian R Davidson
- Department of Hepato-Pancreato-Biliary (HPB) and Transplant Surgery, Royal Free Hospital, London, UK
| | - Raj K Prasad
- Department of Hepatobiliary and Transplant Surgery, St James’s University Hospital, Leeds, UK
| | - Bobby V M Dasari
- Department of Hepato-Pancreato-Biliary (HPB) and Transplant Surgery, University Hospital Birmingham, Birmingham, UK
- School of Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Simultaneous portal and hepatic vein embolization is better than portal embolization or ALPPS for hypertrophy of future liver remnant before major hepatectomy: A systematic review and network meta-analysis. Hepatobiliary Pancreat Dis Int 2022; 22:221-227. [PMID: 36100542 DOI: 10.1016/j.hbpd.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/24/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) is the Achilles' heel of hepatic resection for colorectal liver metastases. The most commonly used procedure to generate hypertrophy of the functional liver remnant (FLR) is portal vein embolization (PVE), which does not always lead to successful hypertrophy. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) has been proposed to overcome the limitations of PVE. Liver venous deprivation (LVD), a technique that includes simultaneous portal and hepatic vein embolization, has also been proposed as an alternative to ALPPS. The present study aimed to conduct a systematic review as the first network meta-analysis to compare the efficacy, effectiveness, and safety of the three regenerative techniques. DATA SOURCES A systematic search for literature was conducted using the electronic databases Embase, PubMed (MEDLINE), Google Scholar and Cochrane. RESULTS The time to operation was significantly shorter in the ALPPS cohort than in the PVE and LVD cohorts by 27 and 22 days, respectively. Intraoperative parameters of blood loss and the Pringle maneuver demonstrated non-significant differences between the PVE and LVD cohorts. There was evidence of a significantly higher FLR hypertrophy rate in the ALPPS cohort when compared to the PVE cohort, but non-significant differences were observed when compared to the LVD cohort. Notably, the LVD cohort demonstrated a significantly better FLR/body weight (BW) ratio compared to both the ALPPS and PVE cohorts. Both the PVE and LVD cohorts demonstrated significantly lower major morbidity rates compared to the ALPPS cohort. The LVD cohort also demonstrated a significantly lower 90-day mortality rate compared to both the PVE and ALPPS cohorts. CONCLUSIONS LVD in adequately selected patients may induce adequate and profound FLR hypertrophy before major hepatectomy. Present evidence demonstrated significantly lower major morbidity and mortality rates in the LVD cohort than in the ALPPS and PVE cohorts.
Collapse
|
17
|
Korenblik R, Olij B, Aldrighetti LA, Hilal MA, Ahle M, Arslan B, van Baardewijk LJ, Baclija I, Bent C, Bertrand CL, Björnsson B, de Boer MT, de Boer SW, Bokkers RPH, Rinkes IHMB, Breitenstein S, Bruijnen RCG, Bruners P, Büchler MW, Camacho JC, Cappelli A, Carling U, Chan BKY, Chang DH, Choi J, Font JC, Crawford M, Croagh D, Cugat E, Davis R, De Boo DW, De Cobelli F, De Wispelaere JF, van Delden OM, Delle M, Detry O, Díaz-Nieto R, Dili A, Erdmann JI, Fisher O, Fondevila C, Fretland Å, Borobia FG, Gelabert A, Gérard L, Giuliante F, Gobardhan PD, Gómez F, Grünberger T, Grünhagen DJ, Guitart J, Hagendoorn J, Heil J, Heise D, Herrero E, Hess GF, Hoffmann MH, Iezzi R, Imani F, Nguyen J, Jovine E, Kalff JC, Kazemier G, Kingham TP, Kleeff J, Kollmar O, Leclercq WKG, Ben SL, Lucidi V, MacDonald A, Madoff DC, Manekeller S, Martel G, Mehrabi A, Mehrzad H, Meijerink MR, Menon K, Metrakos P, Meyer C, Moelker A, Modi S, Montanari N, Navines J, Neumann UP, Peddu P, Primrose JN, Qu X, Raptis D, Ratti F, Ridouani F, Rogan C, Ronellenfitsch U, Ryan S, Sallemi C, Moragues JS, Sandström P, Sarriá L, Schnitzbauer A, Serenari M, Serrablo A, Smits MLJ, Sparrelid E, Spüntrup E, Stavrou GA, Sutcliffe RP, Tancredi I, Tasse JC, Udupa V, Valenti D, Fundora Y, Vogl TJ, Wang X, White SA, Wohlgemuth WA, Yu D, Zijlstra IAJ, Binkert CA, Bemelmans MHA, van der Leij C, Schadde E, van Dam RM. Dragon 1 Protocol Manuscript: Training, Accreditation, Implementation and Safety Evaluation of Portal and Hepatic Vein Embolization (PVE/HVE) to Accelerate Future Liver Remnant (FLR) Hypertrophy. Cardiovasc Intervent Radiol 2022; 45:1391-1398. [PMID: 35790566 PMCID: PMC9458562 DOI: 10.1007/s00270-022-03176-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/08/2022] [Indexed: 12/02/2022]
Abstract
STUDY PURPOSE The DRAGON 1 trial aims to assess training, implementation, safety and feasibility of combined portal- and hepatic-vein embolization (PVE/HVE) to accelerate future liver remnant (FLR) hypertrophy in patients with borderline resectable colorectal cancer liver metastases. METHODS The DRAGON 1 trial is a worldwide multicenter prospective single arm trial. The primary endpoint is a composite of the safety of PVE/HVE, 90-day mortality, and one year accrual monitoring of each participating center. Secondary endpoints include: feasibility of resection, the used PVE and HVE techniques, FLR-hypertrophy, liver function (subset of centers), overall survival, and disease-free survival. All complications after the PVE/HVE procedure are documented. Liver volumes will be measured at week 1 and if applicable at week 3 and 6 after PVE/HVE and follow-up visits will be held at 1, 3, 6, and 12 months after the resection. RESULTS Not applicable. CONCLUSION DRAGON 1 is a prospective trial to assess the safety and feasibility of PVE/HVE. Participating study centers will be trained, and procedures standardized using Work Instructions (WI) to prepare for the DRAGON 2 randomized controlled trial. Outcomes should reveal the accrual potential of centers, safety profile of combined PVE/HVE and the effect of FLR-hypertrophy induction by PVE/HVE in patients with CRLM and a small FLR. TRIAL REGISTRATION Clinicaltrials.gov: NCT04272931 (February 17, 2020). Toestingonline.nl: NL71535.068.19 (September 20, 2019).
Collapse
Affiliation(s)
- R Korenblik
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht Universiteitssingel 40 room 5.452, 6229 ET, Maastricht, The Netherlands.
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - B Olij
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht Universiteitssingel 40 room 5.452, 6229 ET, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - M Abu Hilal
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy
| | - M Ahle
- Deparment of Radiology, University Hospital, Linköping, Sweden
| | - B Arslan
- Department of Radiology, Rush University Medical Center, Chicago, USA
| | - L J van Baardewijk
- Department of Radiology, Maxima Medisch Centrum, Eindhoven, The Netherlands
| | - I Baclija
- Department of Radiology, Clinic Favoriten, Vienna, Austria
| | - C Bent
- Department of Radiology, Bournemouth and Christuchurch, The Royal Bournemouth and Christchurch Hospitals, Bournemouth and Christuchurch, UK
| | - C L Bertrand
- Department of Surgery, CHU UCLouvain Namur, Namur, Belgium
| | - B Björnsson
- Department of Surgery, Biomedical and Clinical Sciences, Linköping University Hospital, Linköping, Sweden
| | - M T de Boer
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - S W de Boer
- Deparment of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - R P H Bokkers
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - I H M Borel Rinkes
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Breitenstein
- Department of General and Visceral Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - R C G Bruijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Bruners
- Department of Radiology, University Hospital Aachen, Aachen, Germany
| | - M W Büchler
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - J C Camacho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A Cappelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - U Carling
- Department of Radiology, University Hospital Oslo, Oslo, Norway
| | - B K Y Chan
- Department of Surgery, Aintree University Hospitals NHS, Liverpool, UK
| | - D H Chang
- Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Choi
- Department of Surgery, Western Health Footscray, Footscray, Australia
| | - J Codina Font
- Department of Radiology, University Hospital Dr. Josep Trueta de Girona, Girona, Spain
| | - M Crawford
- Department of Surgery, Royal Prince Alfred Hospital, Camperdown, Australia
| | - D Croagh
- Department of Surgery, Monash Health, Clayton, Australia
| | - E Cugat
- Department of Surgery, University Hospital Germans Trias I Pujol, Badalona, Spain
| | - R Davis
- Department of Radiology, Aintree University Hospitals NHS, Liverpool, UK
| | - D W De Boo
- Department of Radiology, Monash Health, Clayton, Australia
| | - F De Cobelli
- Department of Radiology, Ospedale San Raffaele, Milan, Italy
| | | | - O M van Delden
- Department of Radiology, Amsterdam University Medical Centers Location AMC, Amsterdam, The Netherlands
| | - M Delle
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - O Detry
- Department of Surgery, CHU de Liège, Liège, Belgium
| | - R Díaz-Nieto
- Department of Surgery, Aintree University Hospitals NHS, Liverpool, UK
| | - A Dili
- Department of Surgery, CHU UCLouvain Namur, Namur, Belgium
| | - J I Erdmann
- Department of Surgery, Amsterdam University Medical Centers Location AMC, Amsterdam, The Netherlands
| | - O Fisher
- Department of Surgery, Royal Prince Alfred Hospital, Camperdown, Australia
| | - C Fondevila
- Department of Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Å Fretland
- Department of Surgery, University Hospital Oslo, Oslo, Norway
| | - F Garcia Borobia
- Department of Surgery, Hospital Parc Taulí de Sabadell, Sabadell, Spain
| | - A Gelabert
- Department of Radiology, Hospital Parc Taulí de Sabadell, Sabadell, Spain
- Department of Radiology, University Hospital Mútua Terassa, Terassa, Spain
| | - L Gérard
- Department of Radiology, CHU de Liège, Liège, Belgium
| | - F Giuliante
- Department of Surgery, Gemelli University Hospital Rome, Rome, Italy
| | - P D Gobardhan
- Department of Surgery, Amphia, Breda, The Netherlands
| | - F Gómez
- Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - T Grünberger
- Department of Surgery, HPB Center Vienna Health Network, Clinic Favoriten, Vienna, Austria
| | - D J Grünhagen
- Department of Surgery, Erasmus Medisch Centrum, Rotterdam, The Netherlands
| | - J Guitart
- Department of Radiology, University Hospital Mútua Terassa, Terassa, Spain
| | - J Hagendoorn
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Heil
- Department of Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - D Heise
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - E Herrero
- Department of Surgery, University Hospital Mútua Terassa, Terassa, Spain
| | - G F Hess
- Department of Surgery, Clarunis University Hospital, Basel, Switzerland
| | - M H Hoffmann
- Department of Radiology, St. Clara Spital, Basel, Switzerland
| | - R Iezzi
- Department of Radiology, Gemelli University Hospital, Rome, Italy
| | - F Imani
- Department of Radiology, Amphia, Breda, The Netherlands
| | - J Nguyen
- Department of Radiology, Western Health Footscray, Footscray, Australia
| | - E Jovine
- Department of Surgery, Ospedale Maggiore di Bologna, Bologna, Italy
| | - J C Kalff
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - G Kazemier
- Department of Surgery, Amsterdam University Medical Centers Location VU, Amsterdam, The Netherlands
| | - T P Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J Kleeff
- Department of Surgery, University Hospital Halle (Saale), Halle, Germany
| | - O Kollmar
- Department of Surgery, Clarunis University Hospital, Basel, Switzerland
| | - W K G Leclercq
- Department of Surgery, Maxima Medisch Centrum, Eindhoven, The Netherlands
| | - S Lopez Ben
- Department of Surgery, University Hospital Dr. Josep Trueta de Girona, Girona, Spain
| | - V Lucidi
- Department of Surgery, Hôpital Erasme, Brussels, Belgium
| | - A MacDonald
- Department of Radiology, Oxford University Hospital NHS, Oxford, UK
| | - D C Madoff
- Department of Radiology, Yale School of Medicine, New Haven, USA
| | - S Manekeller
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - G Martel
- Department of Surgery, The Ottawa Hospital, Ottawa, Canada
| | - A Mehrabi
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - H Mehrzad
- Department of Radiology, Queen Elizabeth Hospital Birmingham NHS, Birmingham, UK
| | - M R Meijerink
- Department of Radiology, Amsterdam University Medical Centers Location VU, Amsterdam, The Netherlands
| | - K Menon
- Department of Surgery, King's College Hospital NHS, London, UK
| | - P Metrakos
- Department of Surgery, McGill University Health Centre, Montréal, Canada
| | - C Meyer
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - A Moelker
- Department of Radiology and Nuclear Medicine, Erasmus Medisch Centrum, Rotterdam, The Netherlands
| | - S Modi
- Department of Radiology, University Hospital Southampton NHS, Southampton, UK
| | - N Montanari
- Department of Radiology, Ospedale Maggiore Di Bologna, Bologna, Italy
| | - J Navines
- Department of Surgery, University Hospital Germans Trias I Pujol, Badalona, Spain
| | - U P Neumann
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - P Peddu
- Department of Radiology, King's College Hospital NHS, London, UK
| | - J N Primrose
- Department of Surgery, University Hospital Southampton NHS, Southampton, UK
| | - X Qu
- Department of Radiology, Zhongshan Hospital, Fundan University, Shanghai, China
| | - D Raptis
- Department of Surgery, Royal Free Hospital NHS, London, UK
| | - F Ratti
- Department of Surgery, Ospedale San Raffaele, Milan, Italy
| | - F Ridouani
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - C Rogan
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - U Ronellenfitsch
- Department of Surgery, University Hospital Halle (Saale), Halle, Germany
| | - S Ryan
- Department of Radiology, The Ottawa Hospital, Ottawa, Canada
| | - C Sallemi
- Department of Radiology, Fondazione Poliambulanza, Brescia, Italy
| | - J Sampere Moragues
- Department of Radiology, University Hospital Germans Trias I Pujol, Badalona, Spain
| | - P Sandström
- Department of Surgery, Biomedical and Clinical Sciences, Linköping University Hospital, Linköping, Sweden
| | - L Sarriá
- Department of Radiology, University Hospital Miguel Servet, Saragossa, Spain
| | - A Schnitzbauer
- Department of Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M Serenari
- Department of Surgery, General Surgery and Transplant Unit, IRCCS Azienda Ospedaliero- Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - A Serrablo
- Department of Surgery, University Hospital Miguel Servet, Saragossa, Spain
| | - M L J Smits
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Sparrelid
- Department of Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - E Spüntrup
- Department of Radiology, Klinikum Saarbrücken gGmbH, Saarbrücken, Germany
| | - G A Stavrou
- Department of Surgery, Klinikum Saarbrücken gGmbH, Saarbrücken, Germany
| | - R P Sutcliffe
- Department of Surgery, Queen Elizabeth Hospital Birmingham NHS, Birmingham, UK
| | - I Tancredi
- Department of Radiology, Hôpital Erasme, Brussels, Belgium
| | - J C Tasse
- Department of Radiology, Rush University Medical Center, Chicago, USA
| | - V Udupa
- Department of Surgery, Oxford University Hospital NHS, Oxford, UK
| | - D Valenti
- Department of Radiology, McGill University Health Centre, Montréal, Canada
| | - Y Fundora
- Department of Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - T J Vogl
- Department of Radiology, University Hosptital Frankfurt, Frankfurt, Germany
| | - X Wang
- Department of Surgery, Zhongshan Hospital, Fundan University, Shanghai, China
| | - S A White
- Department of Surgery, Newcastle Upon Tyne Hospitals NHS, Newcastle upon Tyne, UK
| | - W A Wohlgemuth
- Department of Radiology, University Hospital Halle (Saale), Halle, Germany
| | - D Yu
- Department of Radiology, Royal Free Hospital NHS, London, UK
| | - I A J Zijlstra
- Department of Radiology, Amsterdam University Medical Centers Location VU, Amsterdam, The Netherlands
| | - C A Binkert
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - M H A Bemelmans
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - C van der Leij
- Deparment of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E Schadde
- Department of General and Visceral Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
- Department of Surgery, Rush University Medical Center Chicago, Chicago, USA
| | - R M van Dam
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht Universiteitssingel 40 room 5.452, 6229 ET, Maastricht, The Netherlands.
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
18
|
Böning G, Fehrenbach U, Auer TA, Neumann K, Jonczyk M, Pratschke J, Schöning W, Schmelzle M, Gebauer B. Liver Venous Deprivation (LVD) Versus Portal Vein Embolization (PVE) Alone Prior to Extended Hepatectomy: A Matched Pair Analysis. Cardiovasc Intervent Radiol 2022; 45:950-957. [PMID: 35314879 PMCID: PMC9226084 DOI: 10.1007/s00270-022-03107-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND To investigate whether liver venous deprivation (LVD) as simultaneous, portal vein (PVE) and right hepatic vein embolization offers advantages in terms of hypertrophy induction before extended hepatectomy in non-cirrhotic liver. MATERIALS AND METHODS Between June 2018 and August 2019, 20 patients were recruited for a prospective, non-randomized study to investigate the efficacy of LVD. After screening of 134 patients treated using PVE alone from January 2015 to August 2019, 14 directly matched pairs regarding tumor entity (cholangiocarcinoma, CC and colorectal carcinoma, CRC) and hypertrophy time (defined as time from embolization to follow-up imaging) were identified. In both treatment groups, the same experienced reader (> 5 years experience) performed imaging-based measurement of the volumes of liver segments of the future liver remnant (FLR) prior to embolization and after the standard clinical hypertrophy interval (~ 30 days), before surgery. Percentage growth of segments was calculated and compared. RESULTS After matched follow-up periods (mean of 30.5 days), there were no statistically significant differences in relative hypertrophy of FLRs. Mean ± standard deviation relative hypertrophy rates for LVD/PVE were 59 ± 29.6%/54.1 ± 27.6% (p = 0.637) for segments II + III and 48.2 ± 22.2%/44.9 ± 28.9% (p = 0.719) for segments II-IV, respectively. CONCLUSIONS LVD had no significant advantages over the standard method (PVE alone) in terms of hypertrophy induction of the FLR before extended hepatectomy in this study population.
Collapse
Affiliation(s)
- Georg Böning
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Uli Fehrenbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Timo Alexander Auer
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Konrad Neumann
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Jonczyk
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernhard Gebauer
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
19
|
Le TD, Than VS, Nguyen MD, Vu HL, Dao XH, Trinh HS. Mortality following transarterial embolization due to hemorrhage after liver venous deprivation. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2022. [DOI: 10.18528/ijgii210034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Thanh Dung Le
- Department of Radiology, Viet Duc University Hospital, Hanoi, Vietnam
| | - Van Sy Than
- Department of Radiology, Viet Duc University Hospital, Hanoi, Vietnam
| | - Minh Duc Nguyen
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
- Department of Radiology, Children’s Hospital 2, Ho Chi Minh City, Vietnam
| | - Hoai Linh Vu
- Department of Radiology, Viet Duc University Hospital, Hanoi, Vietnam
| | - Xuan Hai Dao
- Department of Radiology, Viet Duc University Hospital, Hanoi, Vietnam
| | - Hong Son Trinh
- Department of Oncology, Viet Duc University Hospital, Hanoi, Vietnam
| |
Collapse
|
20
|
Cannella R, Tselikas L, Douane F, Cauchy F, Rautou PE, Duran R, Ronot M. Imaging-guided interventions modulating portal venous flow: evidence and controversies. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100484. [PMID: 35677591 PMCID: PMC9168703 DOI: 10.1016/j.jhepr.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/07/2022]
Abstract
Portal hypertension is defined by an increase in the portosystemic venous gradient. In most cases, increased resistance to portal blood flow is the initial cause of elevated portal pressure. More than 90% of cases of portal hypertension are estimated to be due to advanced chronic liver disease or cirrhosis. Transjugular intrahepatic portosystemic shunts, a non-pharmacological treatment for portal hypertension, involve the placement of a stent between the portal vein and the hepatic vein or inferior vena cava which helps bypass hepatic resistance. Portal hypertension may also be a result of extrahepatic portal vein thrombosis or compression. In these cases, percutaneous portal vein recanalisation restores portal trunk patency, thus preventing portal hypertension-related complications. Any portal blood flow impairment leads to progressive parenchymal atrophy and triggers hepatic regeneration in preserved areas. This provides the rationale for using portal vein embolisation to modulate hepatic volume in preparation for extended hepatic resection. The aim of this paper is to provide a comprehensive evidence-based review of the rationale for, and outcomes associated with, the main imaging-guided interventions targeting the portal vein, as well as to discuss the main controversies around such approaches.
Collapse
|
21
|
Papamichail M, Pizanias M, Heaton ND, M P, M P, Nd H. Minimizing the risk of small-for-size syndrome after liver surgery. Hepatobiliary Pancreat Dis Int 2022; 21:113-133. [PMID: 34961675 DOI: 10.1016/j.hbpd.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Primary and secondary liver tumors are not always amenable to resection due to location and size. Inadequate future liver remnant (FLR) may prevent patients from having a curative resection or may result in increased postoperative morbidity and mortality from complications related to small-for-size syndrome (SFSS). DATA SOURCES This comprehensive review analyzed the principles, mechanism and risk factors associated with SFSS and presented current available options in the evaluation of FLR when planning liver surgery. In addition, it provided a detailed description of specific modalities that can be used before, during or after surgery, in order to optimize the conditions for a safe resection and minimize the risk of SFSS. RESULTS Several methods which aim to reduce tumor burden, preserve healthy liver parenchyma, induce hypertrophy of FLR or prevent postoperative complications help minimize the risk of SFSS. CONCLUSIONS With those techniques the indications of radical treatment for patients with liver tumors have significantly expanded. The successful outcome depends on appropriate patient selection, the individualization and modification of interventions and the right timing of surgery.
Collapse
Affiliation(s)
- Michail Papamichail
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK.
| | - Michail Pizanias
- Department of General Surgery, Whittington Hospital, London N19 5NF, UK
| | - Nigel D Heaton
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Papamichail M
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK; Department of General Surgery, Whittington Hospital, London N19 5NF, UK; Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Pizanias M
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK; Department of General Surgery, Whittington Hospital, London N19 5NF, UK; Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Heaton Nd
- Department of Hepato-Pancreato-Biliary Surgery, Royal Blackburn Hospital, Blackburn BB2 3HH, UK; Department of General Surgery, Whittington Hospital, London N19 5NF, UK; Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver Studies, Kings Health Partners at King's College Hospital NHS Trust, London SE5 9RS, UK
| |
Collapse
|
22
|
Perihilar cholangiocarcinoma: What the radiologist needs to know. Diagn Interv Imaging 2022; 103:288-301. [DOI: 10.1016/j.diii.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
|
23
|
Stoyanova R, Kopf H, Schima W, Matzek WK, Klaus A. Liver venous deprivation for resection of advanced hilar cholangiocarcinoma—a case report and review of the literature. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:90-96. [PMID: 36046358 PMCID: PMC9400787 DOI: 10.37349/etat.2022.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Hilar cholangiocarcinoma is a rare primary malignancy associated with a dismal prognosis. Currently, complete extended right or left-sided hepatectomy is the primary curative therapy. Achieving a negative resection margin is associated with long-term survival and better quality of life, while post-hepatectomy liver failure (PHLF) due to insufficient liver remnant remains the most dreaded complication with a negative effect on overall survival. Precise preoperative management with sufficient future remnant liver (FRL) volume is the key to achieving good results in the treatment of bile duct carcinoma. To present a case report and a literature review for preoperative FRL optimization prior to major hepatectomies for hilar cholangiocarcinoma. Improvement of postoperative outcomes after extended liver resections in the case of hilar cholangiocarcinoma. A 62-year-old Caucasian woman with Lynch syndrome presented to our department with a hilar cholangiocarcinoma Bismuth type IIIa. The patient had an insufficient future liver volume for extended liver resection. She underwent preoperative preconditioning using a liver venous deprivation (LVD) and underwent two weeks later a right trisectorectomy without any interventional complications. Liver function remained stable postoperatively. The patient was discharged on the 20th postoperative day without major surgical post-operative complications or the need for readmission. LVD is a technically feasible, safe, and effective procedure to increase the FRL in a short period of time with low intra and post-operative complications and therefore improving the survival of patients with hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Radoslava Stoyanova
- Department of Surgery, Barmherzige Schwestern Krankenhaus, 1060 Vienna, Austria
| | - Helmut Kopf
- Department of Diagnostic and Interventional Radiology, Barmherzige Schwestern Krankenhaus, 1060 Vienna, Austria
| | - Wolfgang Schima
- Department of Diagnostic and Interventional Radiology, Barmherzige Schwestern Krankenhaus, 1060 Vienna, Austria; Department of Diagnostic and Interventional Radiology, Göttlicher Heiland Krankenhaus, 1170 Vienna, Austria
| | - Wolfgang Karl Matzek
- Department of Diagnostic and Interventional Radiology, Göttlicher Heiland Krankenhaus, 1170 Vienna, Austria
| | - Alexander Klaus
- Department of Surgery, Barmherzige Schwestern Krankenhaus, 1060 Vienna, Austria
| |
Collapse
|
24
|
Degrauwe N, Duran R, Melloul E, Halkic N, Demartines N, Denys A. Induction of Robust Future Liver Remnant Hypertrophy Before Hepatectomy With a Modified Liver Venous Deprivation Technique Using a Trans-venous Access for Hepatic Vein Embolization. FRONTIERS IN RADIOLOGY 2021; 1:736056. [PMID: 37492178 PMCID: PMC10365094 DOI: 10.3389/fradi.2021.736056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/19/2021] [Indexed: 07/27/2023]
Abstract
Purpose: Hepatic and/or portal vein embolization are performed before hepatectomy for patients with insufficient future liver remnant and usually achieved with a trans-hepatic approach. The aim of the present study is to describe a modified trans-venous liver venous deprivation technique (mLVD), avoiding the potential risks and limitations of a percutaneous approach to hepatic vein embolization, and to assess the safety, efficacy, and surgical outcome after mLVD. Materials and Methods: Retrospective single-center institutional review board-approved study. From March 2016 to June 2019, consecutive oncologic patients with combined portal and hepatic vein embolization were included. CT volumetric analysis was performed before and after mLVD to assess liver hypertrophy. Complications related to mLVD and surgical outcome were obtained from medical records. Results: Thirty patients (62.7 ± 14.5 years old, 20 men) with liver metastasis (60%) or primary liver cancer (40%) underwent mLVD. Twenty-one patients (70%) had hepatic vein anatomic variants. Technical success of mLVD was 100%. Four patients had complications (three minor and one major). FLR hypertrophy was 64.2% ± 51.3% (mean ± SD). Twenty-four patients (80%) underwent the planned hepatectomy and no surgery was canceled as a consequence of mLVD complications or insufficient hypertrophy. Fifty percent of patients (12/24) had no or mild complications after surgery (Clavien-Dindo 0-II), and 45.8% (11/24) had more serious complications (Clavien-Dindo III-IV). Thirty-day mortality was 4.2% (1/24). Conclusion: mLVD is an effective method to induce FLR hypertrophy. This technique is applicable in a wide range of oncologic situations and in patients with complex right liver vein anatomy.
Collapse
Affiliation(s)
- Nils Degrauwe
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic Radiology and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emmanuel Melloul
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Nermin Halkic
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Alban Denys
- Department of Diagnostic Radiology and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
25
|
Induction of liver hypertrophy for extended liver surgery and partial liver transplantation: State of the art of parenchyma augmentation-assisted liver surgery. Langenbecks Arch Surg 2021; 406:2201-2215. [PMID: 33740114 PMCID: PMC8578101 DOI: 10.1007/s00423-021-02148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Background Liver surgery and transplantation currently represent the only curative treatment options for primary and secondary hepatic malignancies. Despite the ability of the liver to regenerate after tissue loss, 25–30% future liver remnant is considered the minimum requirement to prevent serious risk for post-hepatectomy liver failure. Purpose The aim of this review is to depict the various interventions for liver parenchyma augmentation–assisting surgery enabling extended liver resections. The article summarizes one- and two-stage procedures with a focus on hypertrophy- and corresponding resection rates. Conclusions To induce liver parenchymal augmentation prior to hepatectomy, most techniques rely on portal vein occlusion, but more recently inclusion of parenchymal splitting, hepatic vein occlusion, and partial liver transplantation has extended the technical armamentarium. Safely accomplishing major and ultimately total hepatectomy by these techniques requires integration into a meaningful oncological concept. The advent of highly effective chemotherapeutic regimen in the neo-adjuvant, interstage, and adjuvant setting has underlined an aggressive surgical approach in the given setting to convert formerly “palliative” disease into a curative and sometimes in a “chronic” disease.
Collapse
|
26
|
Heil J, Korenblik R, Heid F, Bechstein WO, Bemelmans M, Binkert C, Björnsson B, Breitenstein S, Detry O, Dili A, Dondelinger RF, Gerard L, Giménez-Maurel T, Guiu B, Heise D, Hertl M, Kalil JA, Klein JJ, Lakoma A, Neumann UP, Olij B, Pappas SG, Sandström P, Schnitzbauer A, Serrablo A, Tasse J, Van der Leij C, Metrakos P, Van Dam R, Schadde E. Preoperative portal vein or portal and hepatic vein embolization: DRAGON collaborative group analysis. Br J Surg 2021; 108:834-842. [PMID: 33661306 DOI: 10.1093/bjs/znaa149] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The extent of liver resection for tumours is limited by the expected functional reserve of the future liver remnant (FRL), so hypertrophy may be induced by portal vein embolization (PVE), taking 6 weeks or longer for growth. This study assessed the hypothesis that simultaneous embolization of portal and hepatic veins (PVE/HVE) accelerates hypertrophy and improves resectability. METHODS All centres of the international DRAGON trials study collaborative were asked to provide data on patients who had PVE/HVE or PVE on 2016-2019 (more than 5 PVE/HVE procedures was a requirement). Liver volumetry was performed using OsiriX MD software. Multivariable analysis was performed for the endpoints of resectability rate, FLR hypertrophy and major complications using receiver operating characteristic (ROC) statistics, regression, and Kaplan-Meier analysis. RESULTS In total, 39 patients had undergone PVE/HVE and 160 had PVE alone. The PVE/HVE group had better hypertrophy than the PVE group (59 versus 48 per cent respectively; P = 0.020) and resectability (90 versus 68 per cent; P = 0.007). Major complications (26 versus 34 per cent; P = 0.550) and 90-day mortality (3 versus 16 per cent respectively, P = 0.065) were comparable. Multivariable analysis confirmed that these effects were independent of confounders. CONCLUSION PVE/HVE achieved better FLR hypertrophy and resectability than PVE in this collaborative experience.
Collapse
Affiliation(s)
- J Heil
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Department of General, Visceral and Transplant Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - R Korenblik
- GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - F Heid
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Department of General and Visceral Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - W O Bechstein
- Department of General, Visceral and Transplant Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - M Bemelmans
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C Binkert
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - B Björnsson
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - S Breitenstein
- Department of General and Visceral Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - O Detry
- Department of Abdominal Surgery and Transplantation, University of Liege, Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - A Dili
- Department of Abdominal Surgery, Centre Hospitalier Universitaire Dinant Godinne Saint-Elisabeth - UCL-Namur, Yvoir, Belgium
| | - R F Dondelinger
- Department of Imaging, University Hospital Liege, Liege, Belgium
| | - L Gerard
- Department of Imaging, University Hospital Liege, Liege, Belgium
| | - T Giménez-Maurel
- Department of Surgery, Miguel University Hospital and University of Zaragoza, Zaragoza, Spain
| | - B Guiu
- Department of Radiology, St Eloi University Hospital, Montpellier, France
| | - D Heise
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - M Hertl
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - J A Kalil
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - J J Klein
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - A Lakoma
- Department of Surgery, Section of Hepato-Pancreatico-Biliary Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - U P Neumann
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - B Olij
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - S G Pappas
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - P Sandström
- Department of Surgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - A Schnitzbauer
- Department of General, Visceral and Transplant Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - A Serrablo
- Department of Surgery, Miguel University Hospital and University of Zaragoza, Zaragoza, Spain
| | - J Tasse
- Department of Radiology, Rush University Medical Center, Chicago, USA
| | - C Van der Leij
- Department of Radiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - P Metrakos
- Department of Surgery, Section of Hepato-Pancreatico-Biliary Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - R Van Dam
- GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of General, Visceral and Transplant Surgery, University Hospital Aachen, Aachen, Germany
| | - E Schadde
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Department of General and Visceral Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
27
|
Ali A, Ahle M, Björnsson B, Sandström P. Portal vein embolization with N-butyl cyanoacrylate glue is superior to other materials: a systematic review and meta-analysis. Eur Radiol 2021; 31:5464-5478. [PMID: 33501598 DOI: 10.1007/s00330-020-07685-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES It remains uncertain which embolization material is best for portal vein embolization (PVE). We investigated the various materials for effectiveness in inducing future liver remnant (FLR) hypertrophy, technical and growth success rates, and complication and resection rates. METHODS A systematic review from 1998 to 2019 on embolization materials for PVE was performed on Pubmed, Embase, and Cochrane. FLR growth between the two most commonly used materials was compared in a random effects meta-analysis. In a separate analysis using local data (n = 52), n-butyl cyanoacrylate (NBCA) was compared with microparticles regarding costs, radiation dose, and procedure time. RESULTS In total, 2896 patients, 61.0 ± 4.0 years of age and 65% male, from 51 papers were included in the analysis. In 61% of the patients, either NBCA or microparticles were used for embolization. The remaining were treated with ethanol, gelfoam, or sclerosing agents. The FLR growth with NBCA was 49.1% ± 29.7 compared to 42.2% ± 40 with microparticles (p = 0.037). The growth success rate with NBCA vs microparticles was 95.3% vs 90.7% respectively (p < 0.001). There were no differences in major complications between NBCA and microparticles. In the local analysis, NBCA (n = 41) entailed shorter procedure time and reduced fluoroscopy time (p < 0.001), lower radiation exposure (p < 0.01), and lower material costs (p < 0.0001) than microparticles (n = 11). CONCLUSION PVE with NBCA seems to be the best choice when combining growth of the FLR, procedure time, radiation exposure, and costs. KEY POINTS • The meta-analysis shows that n-butyl cyanoacrylate (NBCA) is superior to microparticles regarding hypertrophy of the future liver remnant, 49.1% ± 29.7 vs 42.2% ± 40.0 (p = 0.037). • There is no significant difference in major complication rates for portal vein embolization using NBCA, 4% (24/681), compared with microparticles, 5% (25/494) (p > 0.05). • Local data shows a shorter procedure time, 215 vs 348 mins from arrival to departure at the interventional radiology unit, and fluoroscopy time, 43 vs 96 mins (p < 0.001), lower radiation dosage, 573 vs 1287 Gycm2 (p < 0.01), and costs, €816 vs €4233 (p < 0.0001) for NBCA compared to microparticles.
Collapse
Affiliation(s)
- Adnan Ali
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| | - Margareta Ahle
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bergthor Björnsson
- Department of Surgery and Clinical and Experimental Medicine, University Hospital of Linköping, Linköping, Sweden
| | - Per Sandström
- Department of Surgery and Clinical and Experimental Medicine, University Hospital of Linköping, Linköping, Sweden
| |
Collapse
|
28
|
Dyna-CT-Based Three-Dimensional Cholangiography in Biliary Duct Assessment of Hilar Cholangiocarcinoma. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Zhang J, Steib CJ. New evidence for liver venous deprivation: safety and feasibility for extended liver resections. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1259. [PMID: 33178791 PMCID: PMC7607134 DOI: 10.21037/atm-20-3057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiang Zhang
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU Munich, Germany.,Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Christian J Steib
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU Munich, Germany
| |
Collapse
|
30
|
Hepatic Vein Embolization for Safer Liver Surgery: Insignificant Novelty or a Breakthrough? Ann Surg 2020; 272:206-209. [PMID: 32675482 DOI: 10.1097/sla.0000000000003973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Simultaneous portal and hepatic vein embolization before major liver resection. Langenbecks Arch Surg 2020; 406:1295-1305. [PMID: 32839889 PMCID: PMC8370912 DOI: 10.1007/s00423-020-01960-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
Background Regenerative liver surgery expands the limitations of technical resectability by increasing the future liver remnant (FLR) volume before extended resections in order to avoid posthepatectomy liver failure (PHLF). Portal vein rerouting with ligation of one branch of the portal vein bifurcation (PVL) or embolization (PVE) leads to a moderate liver volume increase over several weeks with a clinical dropout rate of 20–40%, mostly due to tumor progression during the waiting period. Accelerated liver regeneration by the Associating Liver Partition and Portal vein Ligation for Staged hepatectomy (ALPPS) was poised to overcome this limitation by reduction of the waiting time, but failed due increased perioperative complications. Simultaneous portal and hepatic vein embolization (PVE/HVE) is a novel minimal invasive way to induce rapid liver growth without the need of two surgeries. Purpose This article summarizes published results of PVE/HVE and analyzes what is known about its efficacy to achieve resection, safety, and the volume changes induced. Conclusions PVE/HVE holds promise to induce accelerated liver regeneration in a similar safety profile to PVE. The demonstrated accelerated hypertrophy may increase resectability. Randomized trials will have to compare PVE/HVE and PVE to determine if PVE/HVE is superior to PVE.
Collapse
|
32
|
Deshayes E, Piron L, Bouvier A, Lapuyade B, Lermite E, Vervueren L, Laurent C, Pinaquy JB, Chevallier P, Dohan A, Rode A, Sengel C, Guillot C, Quenet F, Guiu B. Study protocol of the HYPER-LIV01 trial: a multicenter phase II, prospective and randomized study comparing simultaneous portal and hepatic vein embolization to portal vein embolization for hypertrophy of the future liver remnant before major hepatectomy for colo-rectal liver metastases. BMC Cancer 2020; 20:574. [PMID: 32560632 PMCID: PMC7304136 DOI: 10.1186/s12885-020-07065-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In patients undergoing major liver resection, portal vein embolization (PVE) has been widely used to induce hypertrophy of the non-embolized liver in order to prevent post-hepatectomy liver failure. PVE is a safe and effective procedure, but does not always lead to sufficient hypertrophy of the future liver remnant (FLR). Hepatic vein(s) embolization has been proposed to improve FLR regeneration when insufficient after PVE. The sequential right hepatic vein embolization (HVE) after right PVE demonstrated an incremental effect on the FLR but it implies two different procedures with no time gain as compared to PVE alone. We have developed the so-called liver venous deprivation (LVD), a combination of PVE and HVE during the same intervention, to optimize the phase of liver preparation before surgery. The main objective of this randomized phase II trial is to compare the percentage of change in FLR volume at 3 weeks after LVD or PVE. METHODS Patients eligible to this multicenter prospective randomized phase II study are subjects aged from 18 years old suffering from colo-rectal liver metastases considered as resectable and with non-cirrhotic liver parenchyma. The primary objective is the percentage of change in FLR volume at 3 weeks after LVD or PVE using MRI or CT-Scan. Secondary objectives are assessment of tolerance, post-operative morbidity and mortality, post-hepatectomy liver failure, rate of non-respectability due to insufficient FLR or tumor progression, per-operative difficulties, blood loss, R0 resection rate, post-operative liver volume and overall survival. Objectives of translational research studies are evaluation of pre- and post-operative liver function and determination of biomarkers predictive of liver hypertrophy. Sixty-four patients will be included (randomization ratio 1:1) to detect a difference of 12% at 21 days in FLR volumes between PVE and LVD. DISCUSSION Adding HVE to PVE during the same procedure is an innovative and promising approach that may lead to a rapid and major increase in volume and function of the FLR, thereby increasing the rate of resectable patients and limiting the risk of patient's drop-out. TRIAL REGISTRATION This study was registered on clinicaltrials.gov on 15th February 2019 (NCT03841305).
Collapse
Affiliation(s)
- Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Department of Nuclear Medicine, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Lauranne Piron
- Department of Radiology, Saint Eloi University Hospital, 80 avenue Augustin Fliche, F-34295, Montpellier, France
| | - Antoine Bouvier
- Department of Radiology, Angers University Hospital, Angers, France
| | - Bruno Lapuyade
- Department of Radiology, Bordeaux University Hospital, Bordeaux, France
| | - Emilie Lermite
- Department of Liver surgery, Angers University Hospital, Angers, France
| | - Laurent Vervueren
- Department of Nuclear Medicine, Angers University Hospital, Angers, France
| | - Christophe Laurent
- Department of Liver surgery, Bordeaux University Hospital, Bordeaux, France
| | | | | | - Anthony Dohan
- Department of Radiology, Assistance Publique - Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Agnès Rode
- Department of Radiology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Christian Sengel
- Department of Radiology, Grenoble University Hospital, Grenoble, France
| | - Chloé Guillot
- Department of Radiology, Saint Eloi University Hospital, 80 avenue Augustin Fliche, F-34295, Montpellier, France
| | - François Quenet
- Department of Surgery, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Boris Guiu
- Department of Radiology, Saint Eloi University Hospital, 80 avenue Augustin Fliche, F-34295, Montpellier, France.
| |
Collapse
|
33
|
Madoff DC, Odisio BC, Schadde E, Gaba RC, Bennink RJ, van Gulik TM, Guiu B. Improving the Safety of Major Resection for Hepatobiliary Malignancy: Portal Vein Embolization and Recent Innovations in Liver Regeneration Strategies. Curr Oncol Rep 2020; 22:59. [PMID: 32415401 DOI: 10.1007/s11912-020-00922-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW For three decades, portal vein embolization (PVE) has been the "gold-standard" strategy to hypertrophy the anticipated future liver remnant (FLR) in advance of major hepatectomy. During this time, CT volumetry was the most common method to preoperatively assess FLR quality and function and used to determine which patients are appropriate surgical candidates. This review provides the most up-to-date methods for preoperatively assessing the anticipated FLR and summarizes data from the currently available strategies used to induce FLR hypertrophy before surgery for hepatobiliary malignancy. RECENT FINDINGS Functional and physiological imaging is increasingly replacing standard CT volumetry as the method of choice for preoperative FLR assessment. PVE, associating liver partition and portal vein ligation, radiation lobectomy, and liver venous deprivation are all currently available techniques to hypertrophy the FLR. Each strategy has pros and cons based on tumor type, extent of resection, presence or absence of underlying liver disease, age, performance status, complication rates, and other factors. Numerous strategies can lead to FLR hypertrophy and improve the safety of major hepatectomy. Which is best has yet to be determined.
Collapse
Affiliation(s)
- David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA.
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik Schadde
- Department of Surgery, Rush University Medical Center, Chicago, IL, USA.,Department of Surgery, Cantonal Hospital Winterthur, Zurich, Switzerland.,Institute of Physiology, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ron C Gaba
- Department of Radiology, Interventional Radiology Section, University of Illinois Hospital, Chicago, IL, USA
| | - Roelof J Bennink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Boris Guiu
- Department of Radiology, St-Eloi University Hospital-Montpellier, Montpellier, France
| |
Collapse
|
34
|
Kim D, Cornman-Homonoff J, Madoff DC. Preparing for liver surgery with "Alphabet Soup": PVE, ALPPS, TAE-PVE, LVD and RL. Hepatobiliary Surg Nutr 2020; 9:136-151. [PMID: 32355673 DOI: 10.21037/hbsn.2019.09.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Future liver remnant (FLR) size and function is a critical limiting factor for treatment eligibility and postoperative prognosis when considering surgical hepatectomy. Pre-operative portal vein embolization (PVE) has been proven effective in modulating FLR and now widely accepted as a standard of care. However, PVE is not always effective due to potentially inadequate augmentation of the FLR as well as tumor progression while awaiting liver growth. These concerns have prompted exploration of alternative techniques: associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), transarterial embolization-portal vein embolization (TAE-PVE), liver venous deprivation (LVD), and radiation lobectomy (RL). The article aims to review the principles and applications of PVE and these newer hepatic regenerative techniques.
Collapse
Affiliation(s)
- DaeHee Kim
- Department of Radiology, Division of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Cornman-Homonoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Kobayashi K, Yamaguchi T, Denys A, Perron L, Halkic N, Demartines N, Melloul E. Liver venous deprivation compared to portal vein embolization to induce hypertrophy of the future liver remnant before major hepatectomy: A single center experience. Surgery 2020; 167:917-923. [PMID: 32014304 DOI: 10.1016/j.surg.2019.12.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND To assess the safety and efficacy of liver venous deprivation (simultaneous hepatic vein embolization with portal vein embolization) compared with portal vein embolization alone before major hepatectomy in patients with small future liver remnant. METHODS We assessed all consecutive patients who underwent ipsilateral liver venous deprivation before major hepatectomy (>4 Couinaud's segments) at the University Hospital Lausanne from 2016 to 2018. Postembolization, volumetric analysis after liver venous deprivation and postoperative outcomes were compared with patients who underwent portal vein embolization alone (portal vein embolization group) from 2010 to 2016. RESULTS During the study period, 21 patients underwent liver venous deprivation and 39 portal vein embolization alone. In the liver venous deprivation versus portal vein embolization groups, dropout rate owing to disease progression was 1 of 21 vs 9 of 39 (P = .053). There were no per procedural complications after liver venous deprivation and no difference in the postoperative outcomes. Future liver remnant hypertrophy was greater in the liver venous deprivation group (median 135%, interquartile range: 123%-154%) than in the portal vein embolization group (median 124%, interquartile range: 107%-140%) at a median time of 22 days after liver venous deprivation vs 26 days after portal vein embolization (P = .034). The median kinetic growth rate was also greater (2.9%/week, interquartile range: 1.9-4.3% vs 1.4%/week, interquartile range: 0.7-2.1%; P < .001). CONCLUSION Ipsilateral liver venous deprivation before major hepatectomy is safe and seems to induce a greater and faster future liver remnant hypertrophy than after portal vein embolization alone. More data are needed to analyze the impact of liver venous deprivation on tumor growth.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Takamune Yamaguchi
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Alban Denys
- Interventional Radiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Lindsay Perron
- Interventional Radiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Nermin Halkic
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, Switzerland
| |
Collapse
|
36
|
Comment on "The Contribution of the Deportalized Lobe to Liver Regeneration in Tourniquet-ALPPS". Ann Surg 2020; 271:e97. [PMID: 31895711 DOI: 10.1097/sla.0000000000003760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Panaro F, Giannone F, Riviere B, Sgarbura O, Cusumano C, Deshayes E, Navarro F, Guiu B, Quenet F. Perioperative impact of liver venous deprivation compared with portal venous embolization in patients undergoing right hepatectomy: preliminary results from the pioneer center. Hepatobiliary Surg Nutr 2019; 8:329-337. [PMID: 31489302 DOI: 10.21037/hbsn.2019.07.06] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Preoperative portal vein embolization (PVE) is currently the standard technique used routinely to increase the size of the future remnant liver (FRL) before major hepatectomies. The degree of hypertrophy (DH) is approximatively 10% and requires on average six weeks. ALPPS is faster and achieves a good DH but with a higher morbidity and mortality. One method recently proposed to increase the FRL is liver venous deprivation (LVD), but its clinical and operative impact is still unknown. The aim of this study is to compare intra- and postoperative morbidity/mortality and the histological evaluation of the liver parenchyma between PVE and LVD in patients undergoing anatomic right hepatectomy. Methods Fifty-three consecutive patients undergoing PVE and LVD before a major hepatectomy were retrospectively analysed between 2015 and 2017. In order to reduce the bias, only potential standard right hepatectomies were selected. Surgical resections and the radiologic procedures were performed by the same Institution. Intra-operative parameters (transfusions, perfusions, bleeding, operative time), postoperative complications (Clavien-Dindo and ISGLS criteria), and histological findings were compared. Results To induce FRL growth 16 patients underwent PVE and 13 LVD. One patient of the PVE group was not resected due to peritoneal metastases. Surgery was performed for hepatocellular carcinoma (PVE =9, LVD =3), metastases (PVE =5, LVD =10), or others diseases (PVE =2, LVD =0). Per- and post-operative morbidity/mortality rates after PVE and LVD procedures were null. No differences between the two groups were found in terms of intraoperative bleeding (median: 550 vs. 1,200 mL; P=0.36), hepatic pedicle clamping (5 vs. 3 patients; P=0.69), intraoperative red blood cells transfusions (median: 622 vs. 594; P=0.42) and operative time (median: 270 vs. 330 min; P=0.34). Post-operative course was similar when comparing both medical and surgical complications in the two arms (PVE n=7, LVD n=10, P=0.1). Major complications (Clavien-Dindo ≥ IIIa) occurred in 3 patients undergoing PVE and in 1 patient of the LVD group (P=0.6). No difference in biliary leak (P=0.1), haemorrhage (P=0.2) and liver failure (P=0.64) was found. One cirrhotic patient in the group of PVE died of post-operative liver failure due to left portal vein thrombosis. Although we experienced a more marked liver damage when assessing on neoplastic liver parenchyma, no statistical difference was observed in terms of atrophy (P=0.19), necrosis (P=0.5), hemorrhage (P=0.42) and sinusoidal dilatation (P=0.69). Conclusions Despite the limitations of our study, to our knowledge this is the first report to compare the two techniques LVD is a promising and safe procedure to induce a fast FRL hypertrophy, showing similar mortality/morbidity rates during and after surgery compared to PVE.
Collapse
Affiliation(s)
- Fabrizio Panaro
- Division of HBP Surgery and Transplantation, Department of Surgery, St. Eloi Hospital, Montpellier University Hospital-School of Medicine, 34090 Montpellier, France
| | - Fabio Giannone
- Division of HBP Surgery and Transplantation, Department of Surgery, St. Eloi Hospital, Montpellier University Hospital-School of Medicine, 34090 Montpellier, France
| | - Benjamin Riviere
- Department of Pathology, Gui de Celiac Hospital, Montpellier University Hospital-School of Medicine, 34090 Montpellier, France
| | - Olivia Sgarbura
- Department of Surgical Oncology, Cancer Institute of Montpellier (ICM) 208, 34298 Montpellier, France
| | - Caterina Cusumano
- Department of Surgical Oncology, Cancer Institute of Montpellier (ICM) 208, 34298 Montpellier, France
| | - Emmanuel Deshayes
- Department of Nuclear Medicine, Cancer Institute of Montpellier (ICM) 208, 34298 Montpellier, France
| | - Francis Navarro
- Division of HBP Surgery and Transplantation, Department of Surgery, St. Eloi Hospital, Montpellier University Hospital-School of Medicine, 34090 Montpellier, France
| | - Boris Guiu
- Division of Interventional Radiology, Department of Radiology, St. Eloi Hospital, Montpellier University Hospital-School of Medicine, 34090 Montpellier, France
| | - Francois Quenet
- Department of Surgical Oncology, Cancer Institute of Montpellier (ICM) 208, 34298 Montpellier, France
| |
Collapse
|