1
|
Nasr B, Lareyre F, Guigo S, Bellenger K, Raffort J, Gouëffic Y. 3-Dimensional printing in vascular disease: From manufacturer to clinical use. Semin Vasc Surg 2024; 37:326-332. [PMID: 39277349 DOI: 10.1053/j.semvascsurg.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Three-dimensional (3D) printing has been used in medicine with applications in many different fields. 3D printing allows patient education, interventionalists training, preprocedural planning, and assists the interventionalist to improve treatment outcomes. 3D printing represents a potential advancement by allowing the printing of flexible vascular models. In this article, the authors report a clinical case using 3D printing to perform a physician-modified fenestrated endograft. An overview of 3D printing in vascular and endovascular surgery is provided, focusing on its potential applications for training, education, preprocedural planning, and current clinical applications.
Collapse
Affiliation(s)
- Bahaa Nasr
- Univ Brest, Institut National de la Santé et de la Recherche Médicale, IMT-Atlantique, UMR1011 LaTIM, Vascular and Endovascular Surgery Department, Centre Hospitalier Universitaire Cavale Blanche, Boulevard Tanguy Prigent, 29200 Brest, France.
| | - Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France; Université Côte d'Azur, Le Centre National De La Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France
| | - Samuel Guigo
- W.Print, Clinical Research and Innovation Department, Centre Hospitalier Universitaire Cavale Blanche, Brest, France
| | - Kevin Bellenger
- W.Print, Clinical Research and Innovation Department, Centre Hospitalier Universitaire Cavale Blanche, Brest, France
| | - Juliette Raffort
- Université Côte d'Azur, Le Centre National De La Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; Institute 3IA Côte d'Azur, Université Côte d'Azur, France
| | - Yann Gouëffic
- Groupe Hospitalier Paris St Joseph, Service de Chirurgie Vasculaire et Endovasculaire, F-75014
| |
Collapse
|
2
|
Catasta A, Martini C, Mersanne A, Foresti R, Bianchini Massoni C, Freyrie A, Perini P. Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery. Diagnostics (Basel) 2024; 14:1658. [PMID: 39125534 PMCID: PMC11312310 DOI: 10.3390/diagnostics14151658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The use of 3D-printed models in simulation-based training and planning for vascular surgery is gaining interest. This study aims to provide an overview of the current applications of 3D-printing technologies in vascular surgery. We performed a systematic review by searching four databases: PubMed, Web of Science, Scopus, and Cochrane Library (last search: 1 March 2024). We included studies considering the treatment of vascular stenotic/occlusive or aneurysmal diseases. We included papers that reported the outcome of applications of 3D-printed models, excluding case reports or very limited case series (≤5 printed models or tests/simulations). Finally, 22 studies were included and analyzed. Computed tomography angiography (CTA) was the primary diagnostic method used to obtain the images serving as the basis for generating the 3D-printed models. Processing the CTA data involved the use of medical imaging software; 3DSlicer (Brigham and Women's Hospital, Harvard University, Boston, MA), ITK-Snap, and Mimics (Materialise NV, Leuven, Belgium) were the most frequently used. Autodesk Meshmixer (San Francisco, CA, USA) and 3-matic (Materialise NV, Leuven, Belgium) were the most frequently employed mesh-editing software during the post-processing phase. PolyJet™, fused deposition modeling (FDM), and stereolithography (SLA) were the most frequently employed 3D-printing technologies. Planning and training with 3D-printed models seem to enhance physicians' confidence and performance levels by up to 40% and lead to a reduction in the procedure time and contrast volume usage to varying extents.
Collapse
Affiliation(s)
- Alexandra Catasta
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Martini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- Diagnostic Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Arianna Mersanne
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
- Italian National Research Council, Institute of Materials for Electronics and Magnetism (CNR-IMEM), 43124 Parma, Italy
| | - Claudio Bianchini Massoni
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Antonio Freyrie
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paolo Perini
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
3
|
Zasada WA, Stępak H, Węglewska M, Świątek Ł, Kluba J, Krasiński Z. The Utility of Three-Dimensional Printing in Physician-Modified Stent Grafts for Aortic Lesions Repair. J Clin Med 2024; 13:2977. [PMID: 38792518 PMCID: PMC11122058 DOI: 10.3390/jcm13102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Three-dimensional (3D) printing is becoming increasingly popular around the world not only in engineering but also in the medical industry. This trend is visible, especially in aortic modeling for both training and treatment purposes. As a result of advancements in 3D technology, patients can be offered personalized treatment of aortic lesions via physician-modified stent grafts (PMSG), which can be tailored to the specific vascular conditions of the patient. The objective of this systematic review was to investigate the utility of 3D printing in PMSG in aortic lesion repair by examining procedure time and complications. Methods: The systematic review has been performed using the PRISMA 2020 Checklist and PRISMA 2020 flow diagram and following the Cochrane Handbook. The systematic review has been registered in the International Prospective Register of Systematic Reviews: CRD42024526950. Results: Five studies with a total number of 172 patients were included in the final review. The mean operation time was 249.95± 70.03 min, and the mean modification time was 65.38 ± 10.59 min. The analysis of the results indicated I2 of 99% and 100% indicating high heterogeneity among studies. The bias assessment indicated the moderate quality of the included research. Conclusions: The noticeable variance in the reviewed studies' results marks the need for larger randomized trials as clinical results of 3D printing in PMSG have great potential for patients with aortic lesions in both elective and urgent procedures.
Collapse
Affiliation(s)
- Wiktoria Antonina Zasada
- Students’ Research Group of Vascular Surgery, Poznan University of Medical Sciences, Rokietnicka 7 Street, 60-608 Poznań, Poland
| | - Hubert Stępak
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Długa Street, 61-848 Poznan, Poland
| | - Magdalena Węglewska
- Students’ Research Group of Vascular Surgery, Poznan University of Medical Sciences, Rokietnicka 7 Street, 60-608 Poznań, Poland
| | - Łukasz Świątek
- Students’ Research Group of Vascular Surgery, Poznan University of Medical Sciences, Rokietnicka 7 Street, 60-608 Poznań, Poland
| | - Jerzy Kluba
- Students’ Research Group of Vascular Surgery, Poznan University of Medical Sciences, Rokietnicka 7 Street, 60-608 Poznań, Poland
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Długa Street, 61-848 Poznan, Poland
| |
Collapse
|
4
|
Hosseinzadeh E, Bosques-Palomo B, Carmona-Arriaga F, Fabiani MA, Aguirre-Soto A. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings. Macromol Rapid Commun 2024; 45:e2300611. [PMID: 38158746 DOI: 10.1002/marc.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Indexed: 01/03/2024]
Abstract
An ideal vascular phantom should be anatomically accurate, have mechanical properties as close as possible to the tissue, and be sufficiently transparent for ease of visualization. However, materials that enable the convergence of these characteristics have remained elusive. The fabrication of patient-specific vascular phantoms with high anatomical fidelity, optical transparency, and mechanical properties close to those of vascular tissue is reported. These final properties are achieved by 3D printing patient-specific vascular models with commercial elastomeric acrylic-based resins before coating them with thiol-based photopolymerizable resins. Ternary thiol-ene-acrylate chemistry is found optimal. A PETMP/allyl glycerol ether (AGE)/polyethylene glycol diacrylate (PEGDA) coating with a 30/70% AGE/PEGDA ratio applied on a flexible resin yielded elastic modulus, UTS, and elongation of 3.41 MPa, 1.76 MPa, and 63.2%, respectively, in range with the human aortic wall. The PETMP/AGE/PEGDA coating doubled the optical transmission from 40% to 80%, approaching 88% of the benchmark silicone-based elastomer. Higher transparency correlates with a decrease in surface roughness from 2000 to 90 nm after coating. Coated 3D-printed anatomical replicas are showcased for pre-procedural planning and medical training with good radio-opacity and echogenicity. Thiol-click chemistry coatings, as a surface treatment for elastomeric stereolithographic 3D-printed objects, address inherent limitations of photopolymer-based additive manufacturing.
Collapse
Affiliation(s)
- Elnaz Hosseinzadeh
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | - Beatriz Bosques-Palomo
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | | | - Mario Alejandro Fabiani
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64710, México
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| |
Collapse
|
5
|
Gloviczki P. The changing face of surgical education: transfer of surgical and endovascular knowledge to young surgeons. THE JOURNAL OF CARDIOVASCULAR SURGERY 2024; 65:64-68. [PMID: 38391236 DOI: 10.23736/s0021-9509.24.12791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The goal of vascular surgery education is to provide the best possible training to vascular residents and fellows and to assure the highest standards of care for patients with vascular disease. In the USA, the currently used Vascular Surgery Milestones Program includes milestones as set targets at five levels, from novice to expertise, to assess the trainees' performance in knowledge, skills, attitudes, and other attributes of competencies. Competencies are broad and foundational domains of ability, the most important being the care of the patient. The soon to be introduced Entrustable Professional Activities (EPA) Project, a competency-based assessment, appears to be the best way to evaluate that trainees are ready to practice independently. Transferring surgical and endovascular skills to trainees has been, however, a challenge, because of the decreased number of open surgical procedures, the increasing number of the endovascular interventions, the decreased work hours for residents and that learning on patients in the operating room is no longer acceptable. Simulation laboratories, using 3D reconstructions of real patient's aneurysms has been most helpful to teach even complex endovascular procedures. In open or endovascular simulation laboratories, deliberate practice with focused attention and specific goals of improving performance should be combined with expert feedback. Greatness is not coded into our DNA but comes from deliberate practice, dedication and perseverance.
Collapse
Affiliation(s)
- Peter Gloviczki
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN, USA -
| |
Collapse
|
6
|
Lee J, Chadalavada SC, Ghodadra A, Ali A, Arribas EM, Chepelev L, Ionita CN, Ravi P, Ryan JR, Santiago L, Wake N, Sheikh AM, Rybicki FJ, Ballard DH. Clinical situations for which 3D Printing is considered an appropriate representation or extension of data contained in a medical imaging examination: vascular conditions. 3D Print Med 2023; 9:34. [PMID: 38032479 PMCID: PMC10688120 DOI: 10.1186/s41205-023-00196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Medical three-dimensional (3D) printing has demonstrated utility and value in anatomic models for vascular conditions. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (3DPSIG) provides appropriateness recommendations for vascular 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with vascular indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for the following areas: aneurysm, dissection, extremity vascular disease, other arterial diseases, acute venous thromboembolic disease, venous disorders, lymphedema, congenital vascular malformations, vascular trauma, vascular tumors, visceral vasculature for surgical planning, dialysis access, vascular research/development and modeling, and other vasculopathy. Recommendations are provided in accordance with strength of evidence of publications corresponding to each vascular condition combined with expert opinion from members of the 3DPSIG. CONCLUSION This consensus appropriateness ratings document, created by the members of the 3DPSIG, provides an updated reference for clinical standards of 3D printing for the care of patients with vascular conditions.
Collapse
Affiliation(s)
- Joonhyuk Lee
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | - Anish Ghodadra
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arafat Ali
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - Elsa M Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonid Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ciprian N Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Justin R Ryan
- Webster Foundation 3D Innovations Lab, Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego Health, San Diego, CA, USA
| | - Lumarie Santiago
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Adnan M Sheikh
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Frank J Rybicki
- Department of Radiology, University of Arizona - Phoenix, Phoenix, AZ, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Antonuccio MN, Gasparotti E, Bardi F, Monteleone A, This A, Rouet L, Avril S, Celi S. Fabrication of deformable patient-specific AAA models by material casting techniques. Front Cardiovasc Med 2023; 10:1141623. [PMID: 37753165 PMCID: PMC10518418 DOI: 10.3389/fcvm.2023.1141623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Background Abdominal Aortic Aneurysm (AAA) is a balloon-like dilatation that can be life-threatening if not treated. Fabricating patient-specific AAA models can be beneficial for in-vitro investigations of hemodynamics, as well as for pre-surgical planning and training, testing the effectiveness of different interventions, or developing new surgical procedures. The current direct additive manufacturing techniques cannot simultaneously ensure the flexibility and transparency of models required by some applications. Therefore, casting techniques are presented to overcome these limitations and make the manufactured models suitable for in-vitro hemodynamic investigations, such as particle image velocimetry (PIV) measurements or medical imaging. Methods Two complex patient-specific AAA geometries were considered, and the related 3D models were fabricated through material casting. In particular, two casting approaches, i.e. lost molds and lost core casting, were investigated and tested to manufacture the deformable AAA models. The manufactured models were acquired by magnetic resonance, computed tomography (CT), ultrasound imaging, and PIV. In particular, CT scans were segmented to generate a volumetric reconstruction for each manufactured model that was compared to a reference model to assess the accuracy of the manufacturing process. Results Both lost molds and lost core casting techniques were successful in the manufacturing of the models. The lost molds casting allowed a high-level surface finish in the final 3D model. In this first case, the average signed distance between the manufactured model and the reference was (- 0.2 ± 0.2 ) mm. However, this approach was more expensive and time-consuming. On the other hand, the lost core casting was more affordable and allowed the reuse of the external molds to fabricate multiple copies of the same AAA model. In this second case, the average signed distance between the manufactured model and the reference was (0.1 ± 0.6 ) mm. However, the final model's surface finish quality was poorer compared to the model obtained by lost molds casting as the sealing of the outer molds was not as firm as the other casting technique. Conclusions Both lost molds and lost core casting techniques can be used for manufacturing patient-specific deformable AAA models suitable for hemodynamic investigations, including medical imaging and PIV.
Collapse
Affiliation(s)
- Maria Nicole Antonuccio
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana “G. Monasterio”, Massa, Italy
- Philips Research Paris, Suresnes, France
- Mines Saint-Étienne, Université Jean Monnet, INSERM, Saint-Étienne, France
| | - Emanuele Gasparotti
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana “G. Monasterio”, Massa, Italy
| | - Francesco Bardi
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana “G. Monasterio”, Massa, Italy
- Mines Saint-Étienne, Université Jean Monnet, INSERM, Saint-Étienne, France
- Predisurge, Grande Usine Creative 2, Saint-Etienne, France
| | - Angelo Monteleone
- Department of Radiology, Fondazione Toscana “G. Monasterio”, Massa, Italy
| | | | | | - Stéphane Avril
- Mines Saint-Étienne, Université Jean Monnet, INSERM, Saint-Étienne, France
| | - Simona Celi
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana “G. Monasterio”, Massa, Italy
| |
Collapse
|
8
|
Osztrogonacz P, Benfor B, Haddad P, Barnes R, Chinnadurai P, Dang V, Hess JP, Corr SJ, Rahimi M. Cadaveric aortic aneurysm creation: A life-like model for training endovascular repair. J Vasc Surg Cases Innov Tech 2023; 9:101115. [PMID: 37692905 PMCID: PMC10492191 DOI: 10.1016/j.jvscit.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
The recent decline in RAAA incidence and the fast paced scenario with associated challenges regarding training calls for initiative for a better training environment to maximize learning. This led us to the creation of a pulsatile human cadaveric RAAA model. Fresh frozen cadaver was used to create RAAA with BioTissue in hybrid suite with ability to perform CBCTA for sizing. As a proof of concept, the model was used to perform REVAR with proximal CODA balloon control. The model proved to be feasible and we believe it is a better environment to train and gain adequate proficiency in RAAA management.
Collapse
Affiliation(s)
- Peter Osztrogonacz
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Bright Benfor
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
| | - Paul Haddad
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
| | - Rebecca Barnes
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
| | - Ponraj Chinnadurai
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
- Advanced Therapies, Siemens Medical Solutions USA Inc, Malvern, PA
| | - Vy Dang
- School of Medicine, Texas A&M, Bryan, TX
| | - John Paul Hess
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stuart J Corr
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
- Institute of Life Science 2, Swansea University Medical School, Sketty, Swansea, United Kingdom
- Weill Cornell Medical College, Cornell University, New York, NY
| | - Maham Rahimi
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX
| |
Collapse
|
9
|
Sun Z, Zhao J, Leung E, Flandes-Iparraguirre M, Vernon M, Silberstein J, De-Juan-Pardo EM, Jansen S. Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2023; 13:1180. [PMID: 37627245 PMCID: PMC10452258 DOI: 10.3390/biom13081180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jack Zhao
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Emily Leung
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Maria Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jenna Silberstein
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Elena M. De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
- Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Sun Z, Wong YH, Yeong CH. Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice. MICROMACHINES 2023; 14:464. [PMID: 36838164 PMCID: PMC9959835 DOI: 10.3390/mi14020464] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
3D printing has been increasingly used for medical applications with studies reporting its value, ranging from medical education to pre-surgical planning and simulation, assisting doctor-patient communication or communication with clinicians, and the development of optimal computed tomography (CT) imaging protocols. This article presents our experience of utilising a 3D-printing facility to print a range of patient-specific low-cost models for medical applications. These models include personalized models in cardiovascular disease (from congenital heart disease to aortic aneurysm, aortic dissection and coronary artery disease) and tumours (lung cancer, pancreatic cancer and biliary disease) based on CT data. Furthermore, we designed and developed novel 3D-printed models, including a 3D-printed breast model for the simulation of breast cancer magnetic resonance imaging (MRI), and calcified coronary plaques for the simulation of extensive calcifications in the coronary arteries. Most of these 3D-printed models were scanned with CT (except for the breast model which was scanned using MRI) for investigation of their educational and clinical value, with promising results achieved. The models were confirmed to be highly accurate in replicating both anatomy and pathology in different body regions with affordable costs. Our experience of producing low-cost and affordable 3D-printed models highlights the feasibility of utilizing 3D-printing technology in medical education and clinical practice.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth 6845, Australia
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin How Wong
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chai Hong Yeong
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
11
|
Giugno L, Formato GM, Chessa M, Votta E, Carminati M, Sturla F. Case report: Personalized transcatheter approach to mid-aortic syndrome by in vitro simulation on a 3-dimensional printed model. Front Cardiovasc Med 2023; 9:1076359. [PMID: 36704466 PMCID: PMC9871590 DOI: 10.3389/fcvm.2022.1076359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
An 8-year-old girl, diagnosed with mid-aortic syndrome (MAS) at the age of 2 months and under antihypertensive therapy, presented with severe systemic hypertension (>200/120 mmHg). Computed tomography (CT) examination revealed aortic aneurysm between severe stenoses at pre- and infra-renal segments, and occlusion of principal splanchnic arteries with peripheral collateral revascularization. Based on CT imaging, preoperative three-dimensional (3D) anatomy was reconstructed to assess aortic dimensions and a dedicated in vitro planning platform was designed to investigate the feasibility of a stenting procedure under fluoroscopic guidance. The in vitro system was designed to incorporate a translucent flexible 3D-printed patient-specific model filled with saline. A covered 8-zig 45-mm-long Cheatham-Platinum (CP) stent and a bare 8-zig, 34-mm-long CP stent were implanted with partial overlap to treat the stenoses (global peak-to-peak pressure gradient > 60 mmHg), excluding the aneurysm and avoiding risk of renal arteries occlusion. Percutaneous procedure was successfully performed with no residual pressure gradient and exactly replicating the strategy tested in vitro. Also, as investigated on the 3D-printed model, additional angioplasty was feasible across the frames of the stent to improve bilateral renal flow. Postoperative systemic pressure significantly reduced (130/70 mmHg) as well as dosage of antihypertensive therapy. This is the first report demonstrating the use of a 3D-printed model to effectively plan percutaneous intervention in a complex pediatric MAS case: taking full advantage of the combined use of a patient-specific 3D model and a dedicated in vitro platform, feasibility of the stenting procedure was successfully tested during pre-procedural assessment. Hence, use of patient-specific 3D-printed models and in vitro dedicated platforms is encouraged to assist pre-procedural planning and personalize treatment, thus enhancing intervention success.
Collapse
Affiliation(s)
- Luca Giugno
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Maria Formato
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Massimo Chessa
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy,Facoltà di Medicina e Chirurgia, Vita Salute San Raffaele University, Milan, Italy,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, Amsterdam, Netherlands
| | - Emiliano Votta
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Mario Carminati
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy,*Correspondence: Francesco Sturla ✉
| |
Collapse
|
12
|
Stana J, Grab M, Kargl R, Tsilimparis N. 3D printing in the planning and teaching of endovascular procedures. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:28-33. [PMID: 36112173 DOI: 10.1007/s00117-022-01047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The introduction of 3D printing in the medical field led to new possibilities in the planning of complex procedures, as well as new ways of training junior physicians. Especially in the field of vascular interventions, 3D printing has a wide range of applications. METHODOLOGICAL INNOVATIONS 3D-printed models of aortic aneurysms can be used for procedural training of endovascular aortic repair (EVAR), which can help boost the physician's confidence in the procedure, leading to a better outcome for the patient. Furthermore, it allows for a better understanding of complex anatomies and pathologies. In addition to teaching applications, the field of pre-interventional planning benefits greatly from the addition of 3D printing. Especially in the preparation for a complex endovascular aortic repair, prior orientation and test implantation of the stent grafts can further improve outcomes and reduce complications. For both teaching and planning applications, high-quality imaging datasets are required that can be transferred into a digital 3D model and subsequently printed in 3D. Thick slice thickness or suboptimal contrast agent phase can reduce the overall detail of the digital model, possibly concealing crucial anatomical details. CONCLUSION Based on the digital 3D model created for 3D printing, another new visualization technique might see future applications in the field of vascular interventions: virtual reality (VR). It enables the physician to quickly visualize a digital 3D model of the patient's anatomy in order to assess possible complications during endovascular repair. Due to the short transfer time from the radiological dataset into the VR, this technique might see use in emergency situations, where there is no time to wait for a printed model.
Collapse
Affiliation(s)
- J Stana
- Department of Vascular Surgery, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany.
| | - M Grab
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany
- Chair of Medical Materials and Implants, Technical University Munich, Munich, Germany
| | - R Kargl
- Institute for Chemistry and Technology of Biobased System, (IBioSys), Graz University of Technology, Graz, Switzerland
| | - N Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
13
|
Lau I, Gupta A, Ihdayhid A, Sun Z. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease. Biomolecules 2022; 12:1548. [PMID: 36358899 PMCID: PMC9687840 DOI: 10.3390/biom12111548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 04/05/2024] Open
Abstract
Understanding the anatomical features and generation of realistic three-dimensional (3D) visualization of congenital heart disease (CHD) is always challenging due to the complexity and wide spectrum of CHD. Emerging technologies, including 3D printing and mixed reality (MR), have the potential to overcome these limitations based on 2D and 3D reconstructions of the standard DICOM (Digital Imaging and Communications in Medicine) images. However, very little research has been conducted with regard to the clinical value of these two novel technologies in CHD. This study aims to investigate the usefulness and clinical value of MR and 3D printing in assisting diagnosis, medical education, pre-operative planning, and intraoperative guidance of CHD surgeries through evaluations from a group of cardiac specialists and physicians. Two cardiac computed tomography angiography scans that demonstrate CHD of different complexities (atrial septal defect and double outlet right ventricle) were selected and converted into 3D-printed heart models (3DPHM) and MR models. Thirty-four cardiac specialists and physicians were recruited. The results showed that the MR models were ranked as the best modality amongst the three, and were significantly better than DICOM images in demonstrating complex CHD lesions (mean difference (MD) = 0.76, p = 0.01), in enhancing depth perception (MD = 1.09, p = 0.00), in portraying spatial relationship between cardiac structures (MD = 1.15, p = 0.00), as a learning tool of the pathology (MD = 0.91, p = 0.00), and in facilitating pre-operative planning (MD = 0.87, p = 0.02). The 3DPHM were ranked as the best modality and significantly better than DICOM images in facilitating communication with patients (MD = 0.99, p = 0.00). In conclusion, both MR models and 3DPHM have their own strengths in different aspects, and they are superior to standard DICOM images in the visualization and management of CHD.
Collapse
Affiliation(s)
- Ivan Lau
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia
| | - Ashu Gupta
- Department of Medical Imaging, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Abdul Ihdayhid
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
14
|
George MJ, Dias-Neto M, Ramos Tenorio E, Skibber MA, Morris JM, Oderich GS. 3D printing in aortic endovascular therapies. THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:597-605. [PMID: 35822744 DOI: 10.23736/s0021-9509.22.12407-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endovascular treatment of aortic disease, including aneurysm or dissection, is expanding at a rapid pace. Often, the specific patient anatomy in these cases is complex. Additive manufacturing, also known as three-dimensional (3D) printing, is especially useful in the treatment of aortic disease, due to its ability to manufacture physical models of complex patient anatomy. Compared to other surgical procedures, endovascular aortic repair can readily exploit the advantages of 3D printing with regard to operative planning and preoperative training. To date, there have been numerous uses of 3D printing in the treatment of aortic pathology as an adjunct in presurgical planning and as a basis for training modules for fellows and residents. In this review, we summarize the current uses of 3D printing in the endovascular management of aortic disease. We also review the process of producing these models, the limitations of their applications, and future directions of 3D printing in this field.
Collapse
Affiliation(s)
- Mitchell J George
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA -
| | - Marina Dias-Neto
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Emanuel Ramos Tenorio
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Max A Skibber
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jonathan M Morris
- Unit of Anatomic Modeling, Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Gustavo S Oderich
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
15
|
Sun Z, Wee C. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine. MICROMACHINES 2022; 13:1575. [PMID: 36295929 PMCID: PMC9610217 DOI: 10.3390/mi13101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
3D printing has shown great promise in medical applications with increased reports in the literature. Patient-specific 3D printed heart and vascular models replicate normal anatomy and pathology with high accuracy and demonstrate superior advantages over the standard image visualizations for improving understanding of complex cardiovascular structures, providing guidance for surgical planning and simulation of interventional procedures, as well as enhancing doctor-to-patient communication. 3D printed models can also be used to optimize CT scanning protocols for radiation dose reduction. This review article provides an overview of the current status of using 3D printing technology in cardiovascular disease. Limitations and barriers to applying 3D printing in clinical practice are emphasized while future directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Cleo Wee
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia
| |
Collapse
|
16
|
Haiser A, Aydin A, Kunduzi B, Ahmed K, Dasgupta P. A Systematic Review of Simulation-Based Training in Vascular Surgery. J Surg Res 2022; 279:409-419. [PMID: 35839575 PMCID: PMC9483723 DOI: 10.1016/j.jss.2022.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022]
Abstract
Introduction Recent advancements in surgical technology, reduced working hours, and training opportunities exacerbated by the COVID-19 pandemic have led to an increase in simulation-based training. Furthermore, a rise in endovascular procedures has led to a requirement for high-fidelity simulators that offer comprehensive feedback. This review aims to identify vascular surgery simulation models and assess their validity and levels of effectiveness (LoE) for each model in order to successfully implement them into current training curricula. Methods PubMed and EMBASE were searched on January 1, 2021, for full-text English studies on vascular surgery simulators. Eligible articles were given validity ratings based on Messick’s modern concept of validity alongside an LoE score according to McGaghie’s translational outcomes. Results Overall 76 eligible articles validated 34 vascular surgery simulators and training courses for open and endovascular procedures. High validity ratings were achieved across studies for: content (35), response processes (12), the internal structure (5), relations to other variables (57), and consequences (2). Only seven studies achieved an LoE greater than 3/5. Overall, ANGIO Mentor was the most highly validated and effective simulator and was the only simulator to achieve an LoE of 5/5. Conclusions Simulation-based training in vascular surgery is a continuously developing field with exciting future prospects, demonstrated by the vast number of models and training courses. To effectively integrate simulation models into current vascular surgery curricula and assessments, there is a need for studies to look at trainee skill retention over a longer period of time. A more detailed discussion on cost-effectiveness is also needed.
Collapse
Affiliation(s)
- Alexander Haiser
- Guy's, King's and St Thomas' School of Medical Education, King's College London, London, UK
| | - Abdullatif Aydin
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, UK.
| | - Basir Kunduzi
- Department of Transplant Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, London, UK
| | - Kamran Ahmed
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, UK
| | - Prokar Dasgupta
- MRC Centre for Transplantation, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
17
|
Komada T, Kamomae T, Matsushima M, Hyodo R, Naganawa S. Embolization using patient-specific vascular models created by a 3D printer for difficult cases: a report of two cases. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:477-483. [PMID: 35967941 PMCID: PMC9350560 DOI: 10.18999/nagjms.84.2.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
With the widespread use of three-dimensional printers, organ models created by these printers are now being used in the medical field for preoperative planning of surgeries. In this article, we report two cases in which embolization was expected to be difficult, and the three-dimensional printer-based vascular modeling was helpful in planning the surgery. The first case involved an aneurysm of the splenic artery. We attempted to embolize the aneurysm but were unable to advance the catheter into the distal artery and discontinued the procedure. The second case was a perianal varicose vein, which was initially treated with percutaneous transhepatic obliteration but was recanalized and required embolization. However, we expected difficulty in selecting the inferior mesenteric vein. In both cases, the vascular models were created using a 3D printer from the patients' computed tomography images. Preoperative planning, including treatment simulation, was based on these models. The time required to print a three-dimensional vascular model was approximately 12 hours at a cost of less than $10 each. Patient-specific vascular models using a three-dimensional printer can be a simple and inexpensive tool that can increase the success of embolization in difficult cases.
Collapse
Affiliation(s)
- Tomohiro Komada
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kamomae
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Matsushima
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hyodo
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Little CD, Mackle EC, Maneas E, Chong D, Nikitichev D, Constantinou J, Tsui J, Hamilton G, Rakhit RD, Mastracci TM, Desjardins AE. A patient-specific multi-modality abdominal aortic aneurysm imaging phantom. Int J Comput Assist Radiol Surg 2022; 17:1611-1617. [PMID: 35397710 PMCID: PMC9463301 DOI: 10.1007/s11548-022-02612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Purpose Multimodality imaging of the vascular system is a rapidly growing area of innovation and research, which is increasing with awareness of the dangers of ionizing radiation. Phantom models that are applicable across multiple imaging modalities facilitate testing and comparisons in pre-clinical studies of new devices. Additionally, phantom models are of benefit to surgical trainees for gaining experience with new techniques. We propose a temperature-stable, high-fidelity method for creating complex abdominal aortic aneurysm phantoms that are compatible with both radiation-based, and ultrasound-based imaging modalities, using low cost materials. Methods Volumetric CT data of an abdominal aortic aneurysm were acquired. Regions of interest were segmented to form a model compatible with 3D printing. The novel phantom fabrication method comprised a hybrid approach of using 3D printing of water-soluble materials to create wall-less, patient-derived vascular structures embedded within tailored tissue-mimicking materials to create realistic surrounding tissues. A non-soluble 3-D printed spine was included to provide a radiological landmark. Results The phantom was found to provide realistic appearances with intravascular ultrasound, computed tomography and transcutaneous ultrasound. Furthermore, the utility of this phantom as a training model was demonstrated during a simulated endovascular aneurysm repair procedure with image fusion. Conclusion With the hybrid fabrication method demonstrated here, complex multimodality imaging patient-derived vascular phantoms can be successfully fabricated. These have potential roles in the benchtop development of emerging imaging technologies, refinement of novel minimally invasive surgical techniques and as clinical training tools.
Collapse
Affiliation(s)
- Callum D Little
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK
- Department of Cardiology, Royal Free Hospital, London, NW3 2QG, UK
| | - Eleanor C Mackle
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK
| | - Efthymios Maneas
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK
| | - Debra Chong
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
- Department of Vascular Surgery, Royal Free Hospital, London, NW3 2QG, UK
| | - Daniil Nikitichev
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
| | - Jason Constantinou
- Department of Vascular Surgery, Royal Free Hospital, London, NW3 2QG, UK
| | - Janice Tsui
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
- Department of Vascular Surgery, Royal Free Hospital, London, NW3 2QG, UK
| | - George Hamilton
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK
- Department of Vascular Surgery, Royal Free Hospital, London, NW3 2QG, UK
| | - Roby D Rakhit
- Department of Cardiology, Royal Free Hospital, London, NW3 2QG, UK
| | - Tara M Mastracci
- Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Adrien E Desjardins
- Wellcome Trust-EPSRC Centre for Interventional and Surgical Sciences, London, W1W 7TS, UK.
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Kaufmann R, Zech CJ, Takes M, Brantner P, Thieringer F, Deutschmann M, Hergan K, Scharinger B, Hecht S, Rezar R, Wernly B, Meissnitzer M. Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study. J Digit Imaging 2022; 35:9-20. [PMID: 34997376 PMCID: PMC8854516 DOI: 10.1007/s10278-021-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) printing of vascular structures is of special interest for procedure simulations in Interventional Radiology, but remains due to the complexity of the vascular system and the lack of biological tissue mimicking 3D printing materials a technical challenge. In this study, the technical feasibility, accuracy, and usability of a recently introduced silicone-like resin were evaluated for endovascular procedure simulations and technically compared to a commonly used standard clear resin. Fifty-four vascular models based on twenty-seven consecutive embolization cases were fabricated from preinterventional CT scans and each model was checked for printing success and accuracy by CT-scanning and digital comparison to its original CT data. Median deltas (Δ) of luminal diameters were 0.35 mm for clear and 0.32 mm for flexible resin (216 measurements in total) with no significant differences (p > 0.05). Printing success was 85.2% for standard clear and 81.5% for the novel flexible resin. In conclusion, vascular 3D printing with silicone-like flexible resin was technically feasible and highly accurate. This is the first and largest consecutive case series of 3D-printed embolizations with a novel biological tissue mimicking material and is a promising next step in patient-specific procedure simulations in Interventional Radiology.
Collapse
Affiliation(s)
- R. Kaufmann
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - C. J. Zech
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - M. Takes
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - P. Brantner
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - F. Thieringer
- Clinic for Oral and Maxillofacial Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - M. Deutschmann
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - K. Hergan
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - B. Scharinger
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - S. Hecht
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - R. Rezar
- Clinic of Internal Medicine II, Department of Cardiology and Internal Intensive Care Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - B. Wernly
- Clinic of Internal Medicine II, Department of Cardiology and Internal Intensive Care Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - M. Meissnitzer
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
20
|
Tenewitz C, Le RT, Hernandez M, Baig S, Meyer TE. Systematic review of three-dimensional printing for simulation training of interventional radiology trainees. 3D Print Med 2021; 7:10. [PMID: 33881672 PMCID: PMC8059217 DOI: 10.1186/s41205-021-00102-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
RATIONALE AND OBJECTIVES Three-dimensional (3D) printing has been utilized as a means of producing high-quality simulation models for trainees in procedure-intensive or surgical subspecialties. However, less is known about its role for trainee education within interventional radiology (IR). Thus, the purpose of this review was to assess the state of current literature regarding the use of 3D printed simulation models in IR procedural simulation experiences. MATERIALS AND METHODS A literature query was conducted through April 2020 for articles discussing three-dimensional printing for simulations in PubMed, Embase, CINAHL, Web of Science, and the Cochrane library databases using key terms relating to 3D printing, radiology, simulation, training, and interventional radiology. RESULTS We identified a scarcity of published sources, 4 total articles, that appraised the use of three-dimensional printing for simulation training in IR. While trainee feedback is generally supportive of the use of three-dimensional printing within the field, current applications utilizing 3D printed models are heterogeneous, reflecting a lack of best practices standards in the realm of medical education. CONCLUSIONS Presently available literature endorses the use of three-dimensional printing within interventional radiology as a teaching tool. Literature documenting the benefits of 3D printed models for IR simulation has the potential to expand within the field, as it offers a straightforward, sustainable, and reproducible means for hands-on training that ought to be standardized.
Collapse
Affiliation(s)
- Chase Tenewitz
- Mercer University School of Medicine, Savannah, GA, USA.
| | - Rebecca T Le
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | - Saif Baig
- UF Health Jacksonville, Jacksonville, FL, USA
| | | |
Collapse
|
21
|
Coles-Black J, Bolton D, Robinson D, Chuen J. Utility of 3D printed abdominal aortic aneurysm phantoms: a systematic review. ANZ J Surg 2021; 91:1673-1681. [PMID: 33825293 DOI: 10.1111/ans.16763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND 3D printed (3DP) abdominal aortic aneurysm (AAA) phantoms are emerging in the literature as an adjunct for the visualization of complex anatomy, particularly for presurgical device selection and simulation. This is the first systematic review to provide a comprehensive overview of 3DP for endovascular aneurysm repair (EVAR) planning and intervention, evaluating the readiness of current levels of technology for mainstream implementation. METHODS A systematic literature search of PubMed and MEDLINE was performed as per PRISMA guidelines using the terms '3D Printing', 'AAA' OR 'EVAR' and related index terms, and further relevant articles were appraised via a snowballing approach. Our last search was conducted on 14 November 2020. RESULTS Twenty-five articles were identified for critical analysis, with 14 cases or technical reports. Nineteen publications utilized 3DP AAA phantoms to aid presurgical decision making, device selection and design. Four publications explored the utility of 3DP phantoms as EVAR trainers, and one publication examined the technology as a tool for patient education. Flexible, transparent phantoms were deemed most useful; however, the cost and availability of higher end machines limited accessibility. CONCLUSION 3DP phantoms have been used in EVAR to facilitate visualization of complex patient anatomy, appropriate device selection, in predicting navigational difficulties and the shape and position of endograft after deployment. These phantoms show promise in reducing known complications such as endoleak, stent graft occlusion and migration; however, larger scale prospective studies are required to validate its impacts on patient outcomes and cost savings to the healthcare system.
Collapse
Affiliation(s)
- Jasamine Coles-Black
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Domenic Robinson
- Department of Surgery, St Vincent's Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason Chuen
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Coles-Black J, Barber T, Bolton D, Chuen J. A systematic review of three-dimensional printed template-assisted physician-modified stent grafts for fenestrated endovascular aneurysm repair. J Vasc Surg 2021; 74:296-306.e1. [PMID: 33677030 DOI: 10.1016/j.jvs.2020.08.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Fenestrated endovascular aneurysm repair has yet to gain widespread adoption owing to the technical complexity and increased risk of complications. Three-dimensional (3D) printed templates to guide fenestrated physician-modified stent grafts (PMSGs) are a novel technique that may have the potential to increase the accuracy of fenestration alignment, and to disrupt both the cost and timing of the current commercial fenestrated endograft supply chain. We have conducted a critical appraisal of the emerging literature to assess this. METHODS A systematic literature search was performed using PubMed and OVID Medline as guided by the PRISMA statement on April 30, 2020. We used "3D printing" and "physician modified" or "surgeon modified" and all related search terms. We identified 50 articles which met our search criteria. None articles were included as being of direct relevance to 3D-printed template-assisted PMSGs for fenestrated endovascular aneurysm repair. Abstracts were screened individually by each investigator to ensure relevance. RESULTS Nine relevant articles were identified for critical analysis. These included one technical report, five case reports or series, two prospective trials, and one letter to the editor. CONCLUSIONS These 3D-printed templates are a promising new avenue to assist with the placement of fenestrations in PMSGs, particularly in urgent or emergent cases where custom fenestrated endografts are unavailable, with larger scale studies warranted. Further work to validate the key stages of the template workflow are required, as well as further investigation into the most suitable manufacturing and distribution methods before the mainstream implementation of this novel technique.
Collapse
Affiliation(s)
- Jasamine Coles-Black
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, Australia; Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Australia.
| | - Tracie Barber
- Department of Engineering, University of New South Wales, Kensington, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Australia
| | - Jason Chuen
- 3dMedLab, Austin Health, The University of Melbourne, Parkville, Australia; Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Australia
| |
Collapse
|
23
|
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2020; 10:biom10111577. [PMID: 33233652 PMCID: PMC7699768 DOI: 10.3390/biom10111577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.
Collapse
|
24
|
Moglia A, Piazza R, Mocellin DM, Ferrari V, Campanelli G, Ferrari M, Berchiolli R. Definition of Proficiency Level by a Virtual Simulator as a First Step Toward a Curriculum on Fundamental Skills for Endovascular Aneurysm Repair (EVAR). JOURNAL OF SURGICAL EDUCATION 2020; 77:1592-1597. [PMID: 32522561 DOI: 10.1016/j.jsurg.2020.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE At present, there is no proficiency-based curriculum for endovascular treatment of aortic aneurysm repair (EVAR) using virtual reality (VR) surgical simulators, whereas such curricula are available for the treatment of iliac and/or superficial femoral artery disease. The purpose of this work was to compute proficiency, defined by a benchmark level determined by the performance of experts, using a commercial VR simulator as a first step of a curriculum on EVAR. MATERIALS AND METHODS Expert endovascular surgeons (with more than 150 EVAR cases as first operators) from 12 major Italian centers completed three cases of EVAR of increasing difficulty level 3 times each, using the Angio Mentor simulator (by Simbionix) and Gore devices. Proficiency level was based on performance of expert surgeons, as assessed by metrics from a VR simulator. RESULTS The participating surgeons had a median of 20 years of experience and executed a median of 440 EVAR. For the 3 simulated cases, the following proficiency values were respectively obtained: total procedure time: 22 minutes 32 seconds, 23 minutes 05 seconds, and 20 minutes 32 seconds; total amount of contrast injected: 85.16 mL, 89.97 mL, and 98.01 mL total fluoroscopy time: 10 minutes 39 seconds, 12 minutes 22 seconds, and 10 minutes 17 seconds; time to contralateral gate cannulation: 5 minutes 51 seconds, 7 minutes 09 seconds, and 3 minutes 32 seconds. CONCLUSIONS We computed proficiency levels for 3 simulated cases of EVAR using a VR simulator. Our next step is to determine whether surgical residents can reach this level. Translational research will then be required to assess the impact of such training on real patients.
Collapse
Affiliation(s)
- Andrea Moglia
- EndoCAS, Center for Computer-Assisted Surgery, Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - Roberta Piazza
- EndoCAS, Center for Computer-Assisted Surgery, Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Davide Maria Mocellin
- Vascular Surgery Unit, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vincenzo Ferrari
- EndoCAS, Center for Computer-Assisted Surgery, Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Mauro Ferrari
- EndoCAS, Center for Computer-Assisted Surgery, Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Vascular Surgery Unit, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Raffaella Berchiolli
- Vascular Surgery Unit, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Sun Z. Use of Three-dimensional Printing in the Development of Optimal Cardiac CT Scanning Protocols. Curr Med Imaging 2020; 16:967-977. [PMID: 32107994 DOI: 10.2174/1573405616666200124124140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
26
|
|