1
|
Daye D, Panagides J, Norton L, Ahmed M, Fukuma E, Ward RC, Gomez D, Kokabi N, Vogl T, Abi-Jaoudeh N, Deipolyi A. New Frontiers in the Role of Locoregional Therapies in Breast Cancer: Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel. J Vasc Interv Radiol 2023; 34:1835-1842. [PMID: 37414212 DOI: 10.1016/j.jvir.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Emerging evidence regarding the effectiveness of locoregional therapies (LRTs) for breast cancer has prompted investigation of the potential role of interventional radiology (IR) in the care continuum of patients with breast cancer. The Society of Interventional Radiology Foundation invited 7 key opinion leaders to develop research priorities to delineate the role of LRTs in both primary and metastatic breast cancer. The objectives of the research consensus panel were to identify knowledge gaps and opportunities pertaining to the treatment of primary and metastatic breast cancer, establish priorities for future breast cancer LRT clinical trials, and highlight lead technologies that will improve breast cancer outcomes either alone or in combination with other therapies. Potential research focus areas were proposed by individual panel members and ranked by all participants according to each focus area's overall impact. The results of this research consensus panel present the current priorities for the IR research community related to the treatment of breast cancer to investigate the clinical impact of minimally invasive therapies in the current breast cancer treatment paradigm.
Collapse
Affiliation(s)
- Dania Daye
- Department of Interventional Radiology, Massachusetts General Hospital, Boston, Massachusetts.
| | - John Panagides
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Larry Norton
- Division of Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconness Medical Center, Boston, Massachusetts
| | - Eisuke Fukuma
- Department of Radiology, Kameda Medical Center Breast Center, Kamogawa, Chiba, Japan
| | - Robert C Ward
- Department of Radiology, Brown University Rhode Island Hospital, Providence, Rhode Island
| | - Daniel Gomez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nima Kokabi
- Department of Radiology and Imaging Science, Emory University Hospital, Atlanta, Georgia
| | - Thomas Vogl
- Department of Radiology, Hospital of the Goethe University Frankfurt Center of Radiology, Frankfurt am Main, Germany
| | - Nadine Abi-Jaoudeh
- Division of Vascular and Interventional Radiology, Department of Radiology, University of California Irvine, Orange, California
| | - Amy Deipolyi
- Department of Radiology, Charleston Area Medical Center, Vascular Center of Excellence, Charleston, West Virginia
| |
Collapse
|
2
|
Deipolyi AR, Johnson CB, Riedl CC, Kunin H, Solomon SB, Oklu R, Hsu M, Moskowitz CS, Kombak FE, Bhanot U, Erinjeri JP. Prospective Evaluation of Immune Activation Associated with Response to Radioembolization Assessed with PET/CT in Women with Breast Cancer Liver Metastasis. Radiology 2023; 306:279-287. [PMID: 35972356 PMCID: PMC9772064 DOI: 10.1148/radiol.220158] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Background The impact of transarterial radioembolization (TARE) of breast cancer liver metastasis (BCLM) on antitumor immunity is unknown, which hinders the optimal selection of candidates for TARE. Purpose To determine whether response to TARE at PET/CT in participants with BCLM is associated with specific immune markers (cytokines and immune cell populations). Materials and Methods This prospective pilot study enrolled 23 women with BCLM who planned to undergo TARE (June 2018 to February 2020). Peripheral blood and liver tumor biopsies were collected at baseline and 1-2 months after TARE. Monocyte, myeloid-derived suppressor cell (MDSC), interleukin (IL), and tumor-infiltrating lymphocyte (TIL) levels were assessed with use of gene expression studies and flow cytometry, and immune checkpoint and cell surface marker levels with immunohistochemistry. Modified PET Response Criteria in Solid Tumors was used to determine complete response (CR) in treated tissue. After log-transformation, immune marker levels before and after TARE were compared using paired t tests. Association with CR was assessed with Wilcoxon rank-sum or unpaired t tests. Results Twenty women were included. After TARE, peripheral IL-6 (geometric mean, 1.0 vs 1.6 pg/mL; P = .02), IL-10 (0.2 vs 0.4 pg/mL; P = .001), and IL-15 (1.9 vs 2.4 pg/mL; P = .01) increased. In biopsy tissue, lymphocyte activation gene 3-positive CD4+ TILs (15% vs 31%; P < .001) increased. Eight of 20 participants (40% [exact 95% CI: 19, 64]) achieved CR. Participants with CR had lower baseline peripheral monocytes (10% vs 29%; P < .001) and MDSCs (1% vs 5%; P < .001) and higher programmed cell death protein (PD) 1-positive CD4+ TILs (59% vs 26%; P = .006) at flow cytometry and higher PD-1+ staining in tumor (2% vs 1%; P = .046). Conclusion Complete response to transarterial radioembolization was associated with lower baseline cytokine, monocyte, and myeloid-derived suppressor cell levels and higher programmed cell death protein 1-positive tumor-infiltrating lymphocyte levels. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Amy R. Deipolyi
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - C. Bryce Johnson
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Christopher C. Riedl
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Henry Kunin
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Stephen B. Solomon
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Rahmi Oklu
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Meier Hsu
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Chaya S. Moskowitz
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Faruk E. Kombak
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Umesh Bhanot
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Joseph P. Erinjeri
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| |
Collapse
|
3
|
Liu C, Tadros G, Smith Q, Martinez L, Jeffries J, Yu Z, Yu Q. Selective internal radiation therapy of metastatic breast cancer to the liver: A meta-analysis. Front Oncol 2022; 12:887653. [PMID: 36505832 PMCID: PMC9729947 DOI: 10.3389/fonc.2022.887653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The aim of this study is to conduct a meta-analysis to assess the efficacy of yttrium-90 selective internal radiation therapy (SIRT) in treating patients with breast cancer with hepatic metastasis. Method PubMed and The Cochrane Library were queried from establishment to January 2021. The following keywords were implemented: "breast", "yttrium", and "radioembolization". The following variables and outcomes were collected: publication year, region, sample size, study design, presence of extrahepatic disease, tumor burden, infused radioactivity, breast cancer subtype, previous treatment, median survival time (MST), length of follow-up, adverse events, and radiographical response such as Response Evaluation Criteria in Solid Tumors (RECIST), modified RECIST (mRECIST), and Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST). Results A total of 24 studies from 14 institutions were included in the present meta-analysis. On the basis of the data from 412 patients, post-embolization MST was 9.8 [95% confidence interval (CI): 9.0-11.6] months. Patients with additional extrahepatic metastasis had a poorer survival rate compared with those with localized hepatic metastasis only (MST: 5.3 vs. 15 months, p < 0.0001). Patients with <25% liver tumor burden exhibited more promising survival than those with >25% (MST: 10.5 vs. 6.8 months, p < 0.0139). On the basis of RECIST, mRECIST, and PERCIST criteria, tumor response rate was 36% (95% CI: 26%-47%), 49% (95% CI: 34%-65%), and 47% (95% CI: 17%-78%), respectively, whereas tumor control rate was 85% (95% CI: 76%-93%), 73% (95% CI: 59%-85%), and 97% (95% CI: 91%-100%), respectively. Conclusion On the basis of the available published evidence, SIRT is feasible and effective in treating patients with breast cancer with liver metastasis. Patients with lower hepatic tumor burden and without extrahepatic metastasis demonstrated more survival benefit. Future randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Chenyu Liu
- School of Medicine, George Washington University, Washington DC, United States
| | - George Tadros
- Department of Surgery, Cleveland Clinic Florida, Weston, FL, United States
| | - Quinn Smith
- Kansas City University, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Linda Martinez
- School of Medicine, Ross University, Miramar, FL, United States
| | - James Jeffries
- Interventional Radiology, University of Chicago, Chicago, IL, United States
| | - Zhiyong Yu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Yu
- Interventional Radiology, University of Chicago, Chicago, IL, United States,*Correspondence: Qian Yu,
| |
Collapse
|
6
|
Manchec B, Kokabi N, Narayanan G, Niekamp A, Peña C, Powell A, Schiro B, Gandhi R. Radioembolization of Secondary Hepatic Malignancies. Semin Intervent Radiol 2021; 38:445-452. [PMID: 34629712 DOI: 10.1055/s-0041-1732318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cancer has become the leading cause of mortality in America, and the majority of patients eventually develop hepatic metastasis. As liver metastases are frequently unresectable, the value of liver-directed therapies, such as transarterial radioembolization (TARE), has become increasingly recognized as an integral component of patient management. Outcomes after radioembolization of hepatic malignancies vary not only by location of primary malignancy but also by tumor histopathology. This article reviews the outcomes of TARE for the treatment of metastatic colorectal cancer, metastatic breast cancer, and metastatic neuroendocrine tumors, as well as special considerations when treating metastatic disease with TARE.
Collapse
Affiliation(s)
- Barbara Manchec
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Nima Kokabi
- Division of Interventional Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Govindarajan Narayanan
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Andrew Niekamp
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Constantino Peña
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Alex Powell
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Brian Schiro
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Ripal Gandhi
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, Florida.,Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| |
Collapse
|
7
|
Zane KE, Cloyd JM, Mumtaz KS, Wadhwa V, Makary MS. Metastatic disease to the liver: Locoregional therapy strategies and outcomes. World J Clin Oncol 2021; 12:725-745. [PMID: 34631439 PMCID: PMC8479345 DOI: 10.5306/wjco.v12.i9.725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Secondary cancers of the liver are more than twenty times more common than primary tumors and are incurable in most cases. While surgical resection and systemic chemotherapy are often the first-line therapy for metastatic liver disease, a majority of patients present with bilobar disease not amenable to curative local resection. Furthermore, by the time metastasis to the liver has developed, many tumors demonstrate a degree of resistance to systemic chemotherapy. Fortunately, catheter-directed and percutaneous locoregional approaches have evolved as major treatment modalities for unresectable metastatic disease. These novel techniques can be used for diverse applications ranging from curative intent for small localized tumors, downstaging of large tumors for resection, or locoregional control and palliation of advanced disease. Their use has been associated with increased tumor response, increased disease-free and overall survival, and decreased morbidity and mortality in a broad range of metastatic disease. This review explores recent advances in liver-directed therapies for metastatic liver disease from primary colorectal, neuroendocrine, breast, and lung cancer, as well as uveal melanoma, cholangiocarcinoma, and sarcoma. Therapies discussed include bland transarterial embolization, chemoembolization, radioembolization, and ablative therapies, with a focus on current treatment approaches, outcomes of locoregional therapy, and future directions in each type of metastatic disease.
Collapse
Affiliation(s)
- Kylie E Zane
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Jordan M Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Khalid S Mumtaz
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Vibhor Wadhwa
- Department of Radiology, Weill Cornell Medical Center, New York City, NY 10065, United States
| | - Mina S Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|