1
|
Naik S, Li Y, Talleur AC, Selukar S, Ashcraft E, Cheng C, Madden RM, Mamcarz E, Qudeimat A, Sharma A, Srinivasan A, Suliman AY, Epperly R, Obeng EA, Velasquez MP, Langfitt D, Schell S, Métais JY, Arnold PY, Hijano DR, Maron G, Merchant TE, Akel S, Leung W, Gottschalk S, Triplett BM. Memory T-cell enriched haploidentical transplantation with NK cell addback results in promising long-term outcomes: a phase II trial. J Hematol Oncol 2024; 17:50. [PMID: 38937803 PMCID: PMC11212178 DOI: 10.1186/s13045-024-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Relapse remains a challenge after transplantation in pediatric patients with hematological malignancies. Myeloablative regimens used for disease control are associated with acute and long-term adverse effects. We used a CD45RA-depleted haploidentical graft for adoptive transfer of memory T cells combined with NK-cell addback and hypothesized that maximizing the graft-versus-leukemia (GVL) effect might allow for reduction in intensity of conditioning regimen. METHODS In this phase II clinical trial (NCT01807611), 72 patients with hematological malignancies (complete remission (CR)1: 25, ≥ CR2: 28, refractory disease: 19) received haploidentical CD34 + enriched and CD45RA-depleted hematopoietic progenitor cell grafts followed by NK-cell infusion. Conditioning included fludarabine, thiotepa, melphalan, cyclophosphamide, total lymphoid irradiation, and graft-versus-host disease (GVHD) prophylaxis consisted of a short-course sirolimus or mycophenolate mofetil without serotherapy. RESULTS The 3-year overall survival (OS) and event-free-survival (EFS) for patients in CR1 were 92% (95% CI:72-98) and 88% (95% CI: 67-96); ≥ CR2 were 81% (95% CI: 61-92) and 68% (95% CI: 47-82) and refractory disease were 32% (95% CI: 11-54) and 20% (95% CI: 6-40). The 3-year EFS for all patients in morphological CR was 77% (95% CI: 64-87) with no difference amongst recipients with or without minimal residual disease (P = 0.2992). Immune reconstitution was rapid, with mean CD3 and CD4 T-cell counts of 410/μL and 140/μL at day + 30. Cumulative incidence of acute GVHD and chronic GVHD was 36% and 26% but most patients with acute GVHD recovered rapidly with therapy. Lower rates of grade III-IV acute GVHD were observed with NK-cell alloreactive donors (P = 0.004), and higher rates of moderate/severe chronic GVHD occurred with maternal donors (P = 0.035). CONCLUSION The combination of a CD45RA-depleted graft and NK-cell addback led to robust immune reconstitution maximizing the GVL effect and allowed for use of a submyeloablative, TBI-free conditioning regimen that was associated with excellent EFS resulting in promising long-term outcomes in this high-risk population. The trial is registered at ClinicalTrials.gov (NCT01807611).
Collapse
Affiliation(s)
- Swati Naik
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Ying Li
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Subodh Selukar
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Ashcraft
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Renee M Madden
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amr Qudeimat
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashok Srinivasan
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Y Suliman
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca Epperly
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Esther A Obeng
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah Schell
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paula Y Arnold
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Diego R Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gabriela Maron
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Salem Akel
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Wing Leung
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon M Triplett
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Yao D, Li B, Chu X, Pan J, Meng L, Hu Y, Gao L, Li J, Tian Y, Hu S. Association between CD34 + and CD3 + T-cells in allogeneic grafts and acute graft-versus-host disease in children undergoing allogeneic hematopoietic stem cell transplantation: A single-center study. Transpl Immunol 2023; 77:101779. [PMID: 36596428 DOI: 10.1016/j.trim.2022.101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We examined the association between the composition of the cell subsets present in allogeneic grafts (allografts) and the occurrence and severity of aGVHD in pediatric patients. METHODS We retrospectively analyzed 80 consecutive pediatric patients undergoing allo-HSCT at our center. RESULTS Both univariate and multivariate analyses showed that the number of CD34+ and CD3+ T-cells in allografts were the two highest risk factors associated with II-IV aGVHD. Using receiver operating characteristic analysis, the cutoff levels of the allo-HSCT cell doses were used to divide the recipients into low-dose and high-dose groups. The 100-day cumulative incidence of II-IV aGVHD in the high-dose CD34+ and CD3+ T-cells group was significantly higher than that of the low-dose group (CD34+: 57% vs. 29%, p = 0.009; CD3+: 63% vs. 18%, p < 0.001). No other clinical factors or cell subsets correlated with aGVHD incidence. CONCLUSIONS Our analysis indicates that the CD34+ and CD3+ T-cell numbers in the allografts could be the risk factors for the development of severe aGVHD (level II-IV). Further studies should aim to optimize the critical number of CD34+ and CD3+ T-cells to reduce the risk of severe aGVHD occurrence in pediatric patients.
Collapse
Affiliation(s)
- Di Yao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China; Department of Pediatrics, Hangzhou First People's Hospital, Hangzhou, China
| | - Bohan Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Jian Pan
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Lijun Meng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Li Gao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Jie Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China
| | - Yuanyuan Tian
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China; Children's Hematology and Oncology Center of Jiangsu Province, Jiangsu, China.
| |
Collapse
|
3
|
Doglio M, Crossland RE, Alho AC, Penack O, Dickinson AM, Stary G, Lacerda JF, Eissner G, Inngjerdingen M. Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Front Immunol 2022; 13:1045168. [PMID: 36466922 PMCID: PMC9714556 DOI: 10.3389/fimmu.2022.1045168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative option for patients with hematological malignancies. However, due to disparities in major and minor histocompatibility antigens between donor and recipient, severe inflammatory complications can occur, among which chronic graft-versus-host disease (cGVHD) can be life-threatening. A classical therapeutic approach to the prevention and treatment of cGVHD has been broad immunosuppression, but more recently adjuvant immunotherapies have been tested. This review summarizes and discusses immunomodulatory approaches with T cells, including chimeric antigen receptor (CAR) and regulatory T cells, with natural killer (NK) cells and innate lymphoid cells (ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular vesicles thereof. Clinical studies and pre-clinical research results are presented likewise.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Haematology Unit, Division of Immunology Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana C. Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alcyomics Ltd, Newcastle upon Tyne, United Kingdom
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - João F. Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Mushtaq MU, Shahzad M, Shah AY, Chaudhary SG, Zafar MU, Anwar I, Neupane K, Khalid A, Ahmed N, Bansal R, Balusu R, Singh AK, Abhyankar SH, Callander NS, Hematti P, McGuirk JP. Impact of natural killer cells on outcomes after allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis. Front Immunol 2022; 13:1005031. [PMID: 36263054 PMCID: PMC9574024 DOI: 10.3389/fimmu.2022.1005031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Natural killer (NK) cells play a vital role in early immune reconstitution following allogeneic hematopoietic stem cell transplantation (HSCT). Methods A literature search was performed on PubMed, Cochrane, and Clinical trials.gov through April 20, 2022. We included 21 studies reporting data on the impact of NK cells on outcomes after HSCT. Data was extracted following the PRISMA guidelines. Pooled analysis was done using the meta-package (Schwarzer et al.). Proportions with 95% confidence intervals (CI) were computed. Results We included 1785 patients from 21 studies investigating the impact of NK cell reconstitution post-HSCT (8 studies/1455 patients), stem cell graft NK cell content (4 studies/185 patients), therapeutic NK cell infusions post-HSCT (5 studies/74 patients), and pre-emptive/prophylactic NK cell infusions post-HSCT (4 studies/77 patients). Higher NK cell reconstitution was associated with a better 2-year overall survival (OS) (high: 77%, 95%CI 0.73-0.82 vs low: 55%, 95%CI 0.37-0.72; n=899), however, pooled analysis for relapse rate (RR) or graft versus host disease (GVHD) could not be performed due to insufficient data. Higher graft NK cell content demonstrated a trend towards a better pooled OS (high: 65.2%, 95%CI 0.47-0.81 vs low: 46.5%, 95%CI 0.24-0.70; n=157), lower RR (high: 16.9%, 95%CI 0.10-0.25 vs low: 33%, 95%CI 0.04-0.72; n=157), and lower acute GVHD incidence (high: 27.6%, 95%CI 0.20-0.36 vs low: 49.7%, 95%CI 0.26-0.74; n=157). Therapeutic NK or cytokine-induced killer (CIK) cell infusions for hematologic relapse post-HSCT reported an overall response rate (ORR) and complete response (CR) of 48.9% and 11% with CIK cell infusions and 82.8% and 44.8% with NK cell infusions, respectively. RR, acute GVHD, and chronic GVHD were observed in 55.6% and 51.7%, 34.5% and 20%, and 20.7% and 11.1% of patients with CIK and NK cell infusions, respectively. Pre-emptive donor-derived NK cell infusions to prevent relapse post-HSCT had promising outcomes with 1-year OS of 69%, CR rate of 42%, ORR of 77%, RR of 28%, and acute and chronic GVHD rates of 24.9% and 3.7%, respectively. Conclusion NK cells have a favorable impact on outcomes after HSCT. The optimal use of NK cell infusions post-HSCT may be in a pre-emptive fashion to prevent disease relapse.
Collapse
Affiliation(s)
- Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Moazzam Shahzad
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
- Moffitt Cancer Center, University of South Florida, Tampa, FL, United States
| | - Amna Y. Shah
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sibgha Gull Chaudhary
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Muhammad U. Zafar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iqra Anwar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Karun Neupane
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ayesha Khalid
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Bansal
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ramesh Balusu
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anurag K. Singh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sunil H. Abhyankar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Natalie S. Callander
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peiman Hematti
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joseph P. McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Reshef R. Peripheral blood stem cell grafts in allogeneic hematopoietic cell transplantation: It is not all about the CD34+ cell dose. Transfus Apher Sci 2021; 60:103081. [PMID: 33593707 DOI: 10.1016/j.transci.2021.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Allogeneic Hematopoietic Cell Transplantation is a curative approach in various malignant and non-malignant disorders. The majority of adult transplants in the current era are performed using mobilized stem cells, harvested from the peripheral blood by leukapheresis. Peripheral blood stem cell (PBSC) collections are designed to target a dose of stem cells that will result in safe engraftment and hematopoietic recovery; however, 99 % of the cells contained in a PBSC graft are not stem cells and a growing number of studies attempt to characterize the associations between graft composition and transplant outcomes. A better understanding of the impact of the quantity and quality of various cell types in PBSC grafts may lead to development of novel collection strategies or improved donor selection algorithms. Here we review relevant findings from recent studies in this area.
Collapse
Affiliation(s)
- Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, 630 W. 168th St. Mailbox 127, New York, NY, United States.
| |
Collapse
|
6
|
Guerra-Márquez Á, Peñaflor K, Mayani H. Cord Blood Banking and Transplantation in a National Program: Thirteen Years of Experience. Arch Med Res 2020; 51:54-62. [PMID: 32086109 DOI: 10.1016/j.arcmed.2019.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The umbilical cord blood bank at the Mexican Institute of Social Security (IMSS-CBB) was established in January 2005. This lead to the development of the UCB transplantation program. Herein, we describe the experience generated during these 13 years. STUDY DESIGN AND METHODS Donor selection, as well as UCB collection, processing, and banking were performed under good manufacturing practices and standard operating procedures. UCB units were thawed, processed, and released for transplantation based on HLA and nucleated cell content. RESULTS From January 2005-December 2017, 1,298 UCB units were banked; 164 of them were released for transplantation, and 118 UCB transplants were performed. Ninety-four transplants were performed in pediatric patients and 24 in adults. Sixty percent of them corresponded to patients with leukemia, 19% were patients with marrow failure, and the rest had immunodeficiency, hemoglobinopathy, metabolic disorders, or solid tumors. Engraftment was observed in 67 patients (57% of transplanted patients) and 64% of them were still alive when writing this article. In contrast, only 13 of the 51 (25%) non-engrafting patients were alive. At the time of writing this article, the disease-free survival rate was 37%, and the overall survival rate was 47%, with survival periods of 161-3,721 days. CONCLUSION The IMSS UCB banking and transplantation program has had a significant impact for many IMSS patients. The hematopoietic transplantation program at our institution has benefited from the use of UCB as a source of transplantable cells.
Collapse
Affiliation(s)
- Ángel Guerra-Márquez
- Banco de sangre del cordón umbilical, Centro Médico La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Karina Peñaflor
- Banco de sangre del cordón umbilical, Centro Médico La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Hector Mayani
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
7
|
High prevalence of CD3, NK, and NKT cells in the graft predicts adverse outcome after matched-related and unrelated transplantations with post transplantation cyclophosphamide. Bone Marrow Transplant 2019; 55:544-552. [PMID: 31541204 DOI: 10.1038/s41409-019-0665-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
The predictive value of graft composition and plasma biomarkers on the outcome of allogeneic HSCT is well known for conventional GVHD prophylaxis based on calcineurin inhibitors with or without antithymocyte globulin. Currently, there is limited data whether these results could be translated to post transplantation cyclophosphamide (PTCy). The prospective extension cohort of NCT02294552 trial enrolled 79 adult patients with acute leukemia in CR. Twenty-six received matched-related bone marrow (BM) grafts with single-agent PTCy and 53 received unrelated peripheral blood stem cell graft (PBSC) with PTCy, tacrolimus, and MMF. The grafts were studied by the flow cytometry, and plasma samples were analyzed by ELISA. In the cluster and major component analysis, we determined that transplantation from donors with high content of CD3, NKT, and CD16-CD56 + subpopulations in the PBSC grafts was associated with poor immunological recovery and compromised event-free survival (50% vs. 80%, HR 2.93, p = 0.015) both due to increased relapse incidence and non-relapse mortality. The significant independent predictor of moderate and severe chronic GVHD was the high prevalence of and iNKT, Vβ11, and double-positive cells in the PBSC grafts from young donors (HR 2.75, p = 0.0483). No patterns could be identified for BM grafts and for plasma biomarkers.
Collapse
|
8
|
Correlation of graft immune composition with outcomes after allogeneic stem cell transplantation: Moving towards a perfect transplant. Cell Immunol 2018; 323:1-8. [DOI: 10.1016/j.cellimm.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
|
9
|
Kariminia A, Ivison S, Ng B, Rozmus J, Sung S, Varshney A, Aljurf M, Lachance S, Walker I, Toze C, Lipton J, Lee SJ, Szer J, Doocey R, Lewis I, Smith C, Chaudhri N, Levings MK, Broady R, Devins G, Szwajcer D, Foley R, Mostafavi S, Pavletic S, Wall DA, Couban S, Panzarella T, Schultz KR. CD56 bright natural killer regulatory cells in filgrastim primed donor blood or marrow products regulate chronic graft- versus-host disease: the Canadian Blood and Marrow Transplant Group randomized 0601 study results. Haematologica 2017; 102:1936-1946. [PMID: 28935847 PMCID: PMC5664398 DOI: 10.3324/haematol.2017.170928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Abstract
Randomized trials have conclusively shown higher rates of chronic graft-versus-host disease with filgrastim-stimulated apheresis peripheral blood as a donor source than unstimulated bone marrow. The Canadian Blood and Marrow Transplant Group conducted a phase 3 study of adults who received either filgrastim-stimulated apheresis peripheral blood or filgrastim-stimulated bone marrow from human leukocyte antigen-identical sibling donors. Because all donors received the identical filgrastim dosing schedule, this study allowed for a controlled evaluation of the impact of stem cell source on development of chronic graft-versus-host disease. One hundred and twenty-one evaluable filgrastim-stimulated apheresis peripheral blood and filgrastim-stimulated bone marrow patient donor products were immunologically characterized by flow cytometry and tested for their association with acute and chronic graft-versus-host disease within 2 years of transplantation. The immune populations evaluated included, regulatory T cells, central memory and effector T cells, interferon γ positive producing T cells, invariate natural killer T cells, regulatory natural killer cells, dendritic cell populations, macrophages, and activated B cells and memory B cells. When both filgrastim-stimulated apheresis peripheral blood and filgrastim-stimulated bone marrow were grouped together, a higher chronic graft-versus-host disease frequency was associated with lower proportions of CD56bright natural killer regulatory cells and interferon γ-producing T helper cells in the donor product. Lower CD56bright natural killer regulatory cells displayed differential impacts on the development of extensive chronic graft-versus-host disease between filgrastim-stimulated apheresis peripheral blood and filgrastim-stimulated bone marrow. In summary, while controlling for the potential impact of filgrastim on marrow, our studies demonstrated that CD56bright natural killer regulatory cells had a much stronger impact on filgrastim-stimulated apheresis peripheral blood than on filgrastim-stimulated bone marrow. This supports the conclusion that a lower proportion of CD56bright natural killer regulatory cells results in the high rate of chronic graft-versus-host disease seen in filgrastim-stimulated apheresis peripheral blood. clinicaltrials.gov Identifier: 00438958.
Collapse
Affiliation(s)
- Amina Kariminia
- Michael Cuccione Childhood Cancer research Program, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Sabine Ivison
- Michael Cuccione Childhood Cancer research Program, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Ng
- Department of Statistics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Jacob Rozmus
- Michael Cuccione Childhood Cancer research Program, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Susanna Sung
- Michael Cuccione Childhood Cancer research Program, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Avani Varshney
- Michael Cuccione Childhood Cancer research Program, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Sylvie Lachance
- Hôpital Maisonneuve-Rosemont, Université de Montréal, QC, Canada
| | - Irwin Walker
- Hamilton Health Sciences Centre and McMaster University, Hamilton, ON, Canada
| | - Cindy Toze
- Leukemia/Bone Marrow Transplant Program of BC, Vancouver General Hospital, British Columbia Cancer Agency and the University of British Columbia, Vancouver, BC, Canada
| | - Jeff Lipton
- Princess Margaret Cancer Centre University of Toronto, ON, Canada
| | | | - Jeff Szer
- Royal Melbourne Hospital and University of Melbourne, Australia
| | - Richard Doocey
- Auckland City and Starship Children's Hospital, Auckland, New Zealand
| | - Ian Lewis
- Institute of Medical and Veterinary Sciences, Adelaide, Australia
| | - Clayton Smith
- General Hematology, Blood Cancers and Bone Marrow Transplant Program, University of Colorado Hospital, Aurora, CO, USA
| | - Naeem Chaudhri
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Megan K Levings
- BC Children's Hospital Research Institute and Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Raewyn Broady
- Leukemia/Bone Marrow Transplant Program of BC, Vancouver General Hospital, British Columbia Cancer Agency and the University of British Columbia, Vancouver, BC, Canada
| | - Gerald Devins
- Princess Margaret Cancer Centre University of Toronto, ON, Canada
| | | | - Ronan Foley
- Hamilton Health Sciences Centre and McMaster University, Hamilton, ON, Canada
| | - Sara Mostafavi
- Department of Statistics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Steven Pavletic
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Donna A Wall
- The Hospital for Sick Children and University of Toronto, ON, Canada
| | - Stephan Couban
- Nova Scotia Health Authority and Dalhousie University, Halifax, NS, Canada
| | - Tony Panzarella
- Princess Margaret Cancer Centre University of Toronto, ON, Canada
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer research Program, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Fisher SA, Lamikanra A, Dorée C, Gration B, Tsang P, Danby RD, Roberts DJ. Increased regulatory T cell graft content is associated with improved outcome in haematopoietic stem cell transplantation: a systematic review. Br J Haematol 2017; 176:448-463. [PMID: 28094847 DOI: 10.1111/bjh.14433] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 01/13/2023]
Abstract
Allogeneic haematopoietic stem cell transplant (HSCT) recipients are at increased risk of morbidity and mortality, often due to the development of acute or chronic graft-versus-host disease (GVHD). Low numbers or proportions of regulatory T cells (Tregs) have been reported in patients who develop GVHD. We undertook a systematic review of studies that reported the Treg composition of HSCT grafts in patients with haematological malignancies. Fourteen eligible studies were identified, eight of which stratified patients by Tregs (absolute dose or ratio to CD3+ or CD4+ cells). Meta-analyses showed that high levels of Tregs in the grafts were associated with improved overall survival [hazard ratio (HR) 0·42, 95% confidence interval (CI) 0·23-0·74, P = 0·003, 2 studies], with a significant reduction in non-relapse mortality (HR 0·30, 95% CI 0·14-0·64, P = 0·002, 2 studies) and a reduced risk of acute GVHD (relative risk (RR) 0·59, 95% CI 0·40-0·89, P = 0·01, 6 studies). The consistency of these findings strongly suggests that the Treg composition of HSCT grafts has a powerful effect on the success of allogeneic HSCT. The major challenge is to translate these findings into better selection of allografts and future donors to provide a substantial improvement in allogeneic HSCT outcomes and practice.
Collapse
Affiliation(s)
- Sheila A Fisher
- NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Abigail Lamikanra
- NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Carolyn Dorée
- NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Betty Gration
- Oxford University Medical School, University of Oxford, Oxford, UK
| | - Pat Tsang
- NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert D Danby
- Department of Haematology, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK.,Anthony Nolan Research Institute, London, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Department of Haematology, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK
| |
Collapse
|
11
|
Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res 2016; 2016:5601204. [PMID: 27965986 PMCID: PMC5124677 DOI: 10.1155/2016/5601204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Graft-versus-host disease (GVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (HSCT). We designed a functional assay for assessment of individual risk for acute GVHD. Study Design and Methods. Blood samples were collected from patients and donors before HSCT. Two groups of seven patients each were selected, one in which individuals developed acute GVHD grades II-IV and one in which none showed any clinical signs of GVHD. Peripheral blood mononuclear cells (PBMCs) isolated from donors were incubated in mixed lymphocyte cultures (MLCs) with recipient PBMCs. The cells were characterized by flow cytometry before and after MLC. Results. Samples from donors in the GVHD group contained significantly lower frequencies of naïve γδ T-cells and T-cells expressing NK-cell markers CD56 and CD94. Donor samples in this group also exhibited lower frequencies of naïve CD95+ T-cells compared to controls. After MLC, there were dissimilarities in the CD4/CD8 T-cell ratio and frequency of CD69+ T-cells between the two patient groups, with the non-GVHD group showing higher frequencies of CD8+ and CD69+ T-cells. Conclusion. We conclude that a thorough flow cytometric analysis of donor cells for phenotype and allogeneic reactivity may be of value when assessing pretransplant risk for severe acute GVHD.
Collapse
|
12
|
Yeral M, Kasar M, Boga C, Kozanoglu I, Ozdogu H, Sariturk C. Clinical Relevance of Apheretic Graft Composition in Patients With Acute Myeloblastic Leukemia Who Received a Busulfan-Fludarabine-Antithymocyte Globulin Conditioning Regimen for Allogeneic Transplant. EXP CLIN TRANSPLANT 2015; 13:453-60. [PMID: 26103468 DOI: 10.6002/ect.2014.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Sparse data are available about the effects of apheretic graft composition on the clinical transplant outcome in allotransplanted patients who have hematologic malignant disease. Major obstacles in recent studies have included heterogeneity of patient populations and differences in the conditioning regimens used. MATERIALS AND METHODS This prospective study included 50 patients who had acute myeloblastic leukemia and received busulfan-fludarabine-antithymocyte globulin-based conditioning for peripheral allogeneic stem cell transplant. The concentration of CD34+ cells, T-cell subsets, B cells, and natural killer cells in the graft were analyzed by flow cytometry in the donors who were matched for human leukocyte antigen. RESULTS In univariate analysis, infusion with a higher dose of natural killer cells (> 1.55 × 106/kg) was associated with improved survival (P = .007 for disease-free survival; P = .024 for overall survival) in patients with acute myeloblastic leukemia. Cox regression models revealed that increased concentration of natural killer cells and CD34+ cells positively affected the clinical outcome of allotransplanted patients (P = .005 for both cell types). According to univariate analysis, these findings were dependent on minimal residual disease and acute graft-versus-host disease. Graft-versus-host disease (acute and chronic forms) was not affected by graft composition. CONCLUSIONS Our results suggest that increased concentration of natural killer cells and CD34+ cells in the apheretic product may predict better survival. In contrast, busulfan-fludarabine-antithymocyte globulin-based conditioning eliminates the disadvantages that resulted from the high content of T-cell subsets and B cells, and the course of the transplant and clinical parameters were not affected by the amount of T and B cells.
Collapse
Affiliation(s)
- Mahmut Yeral
- Baskent University Adana Adult Bone Marrow Transplantation Center, Adana, Turkey
| | | | | | | | | | | |
Collapse
|
13
|
Thoma MD, Glejf J, Jacob E, Huneke TJ, DeCook LJ, Johnson ND, Patnaik MM, Litzow MR, Hogan WJ, Newell LF, Chandran R, Porrata LF, Holtan SG. Impact of clinical factors and allograft leukocyte content on post-transplant lymphopenia, monocytopenia, and survival in patients undergoing allogeneic peripheral blood haematopoietic cell transplant. BMC HEMATOLOGY 2014; 14:14. [PMID: 25221674 PMCID: PMC4161916 DOI: 10.1186/2052-1839-14-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND We have previously shown that lymphopenia and monocytopenia at 2-3 months post-allogeneic haematopoietic cell transplant (HCT) is associated with poor survival in recipients of both myeloablative and reduced intensity conditioning regimens. It is not known whether the graft leukocyte content has a role in early lymphocyte and monocyte recovery following allogeneic T-cell replete peripheral blood HCT. METHODS Haematologic recovery data, including absolute lymphocyte and monocyte counts (ALC and AMC, respectively) at day +15, +30, +60, and +100, and outcomes data were pooled from two prior independent cohorts, and parameters were correlated with leukocyte graft content in those individuals receiving peripheral blood progenitor cell grafts. 216 consecutive patients from 2001-2010 were included in the analysis. RESULTS Neither infused allograft lymphocyte, monocyte, granulocyte, nor CD34+ cell number per kilogram recipient body weight correlated with haematologic recovery parameters or overall survival in this cohort. Prognostic factors for overall survival based on multivariate analysis were as expected from the results of the previous independent cohorts and included severity of chronic GVHD (p < 0.001), development of post-transplant relapse (p = 0.001), day +60 AMC > 0.3 x 10(9) cells/L (p = 0.0015), and day +100 ALC > 0.3 x 10(9) cells/L (p < 0.001). Low monocyte and lymphocyte counts at the day +60 and day +100 time points were significantly associated with acute GVHD and/or CMV viraemia. CONCLUSIONS This study suggests that graft cell count does not influence post-transplant monocyte and lymphocyte recovery following T-cell replete allogeneic peripheral blood HCT. Post-transplant complications such as acute GVHD and/or CMV viraemia negatively influenced monocyte and lymphocyte recovery, and hence the survival. Further studies aimed at understanding the mechanisms behind sustained lymphopenia and monocytopenia post-transplant are needed.
Collapse
Affiliation(s)
- Mary D Thoma
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Jennifer Glejf
- Department of Pathology and Laboratory Medicine, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Eapen Jacob
- Department of Pathology and Laboratory Medicine, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Tanya J Huneke
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Lori J DeCook
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Phoenix, AZ USA
| | - Nicci D Johnson
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Mrinal M Patnaik
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Mark R Litzow
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - William J Hogan
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Laura F Newell
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | | | - Luis F Porrata
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA
| | - Shernan G Holtan
- Department of Medicine, Division of Hematology, Mayo Clinic Graduate School of Medicine, Rochester, MN USA ; Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA ; Blood and Marrow Transplant Program, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| |
Collapse
|
14
|
Zheng F, Cheng L, Yu Q, Liu Q, Cheng F. The Primary Study of CD90(+)CD34(-)and Sca-1(+) Stem Cells Mobilized by EPO Plus G-CSF in Mice. Int J Stem Cells 2014; 2:129-34. [PMID: 24855532 DOI: 10.15283/ijsc.2009.2.2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 12/27/2022] Open
Abstract
To investigate effects of recombinant human erythropoietin (rhEPO) plus recombinant human granulocyte colony stimulating factor (rhG-CSF) on mobilization of CD90(+)CD34(-) and Sca-1(+) stem cells in mice. rhEPO 1000 IU·kg(-1)·d(-1) per mice alone or plus rhG-CSF 250 μg·kg(-1)·d-1(-1)per mice was administered to mice for five days, the peripheral blood was collected at 6 hours, 1, 3,5 and 7 days after the last administration. The number of white blood cells (WBC) and mononuclear cells (MNC) was counted. The level of CD34, CD90 and Sca-1 mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR).The expressions of CD90(+)CD34(-) in absolute nuclear cells of peripheral blood was detected by flow cytometry. The results indicate that compared to mobilizing by rhG-CSF, rhEPO or plus rhG-CSF did not significantly enhance the number of WBC and MNC, on the fifth and the seventh day after the last administration, both the expression of CD34,CD90 and Sca-1 mRNA and the proportion of CD90(+)CD34(-) cells dramatically raised in rhEPO or in addition to rhG-CSF groups. We conclude that rhEPO or plus rhG-CSF had a strong capacity of mobilization of stem cells. The alteration of expression of CD34, CD90 and Sca-1 mRNA after the administration of rhEPO or combined with rhG-CSF indicated that this agents might potentially alter the peripheral blood graft content.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Hematology, Dongfeng Hospital affiliated to Yunyang Medical college, 16 Daling Avenue, Shiyan 442008, China. ; Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Long Cheng
- Institute of Hematology, Dongfeng Hospital affiliated to Yunyang Medical college, 16 Daling Avenue, Shiyan 442008, China
| | - Qiang Yu
- Institute of Hematology, Dongfeng Hospital affiliated to Yunyang Medical college, 16 Daling Avenue, Shiyan 442008, China
| | - Qihuan Liu
- Institute of Hematology, Dongfeng Hospital affiliated to Yunyang Medical college, 16 Daling Avenue, Shiyan 442008, China
| | - Fanjun Cheng
- Institute of Hematology, Dongfeng Hospital affiliated to Yunyang Medical college, 16 Daling Avenue, Shiyan 442008, China
| |
Collapse
|
15
|
Abstract
New advances in effective mobilization of peripheral blood stem cells have permitted a greater proportion of patients to benefit from autologous stem cell transplantation. In this review, the relative merits of peripheral blood and mobilized bone marrow are discussed. All available agents are reviewed. A critical assessment of the appropriate dosing and frequency of available growth factors is undertaken, and the most commonly used chemotherapy plus growth factor combinations are covered. Specific recommendations for patients who are poor mobilizers are dealt with including the role of plerixafor.
Collapse
Affiliation(s)
- Morie A Gertz
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Future perspectives: therapeutic targeting of notch signalling may become a strategy in patients receiving stem cell transplantation for hematologic malignancies. BONE MARROW RESEARCH 2010; 2011:570796. [PMID: 22046566 PMCID: PMC3200006 DOI: 10.1155/2011/570796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 12/26/2022]
Abstract
The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects.
Collapse
|
17
|
Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010; 2010:692097. [PMID: 20625438 PMCID: PMC2896720 DOI: 10.1155/2010/692097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/20/2010] [Indexed: 12/21/2022] Open
Abstract
In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients.
Collapse
|
18
|
Zhao XY, Chang YJ, Xu LP, Liu DH, Liu KY, Huang XJ. Association of natural killer cells in allografts with transplant outcomes in patients receiving G-CSF-mobilized PBSC grafts and G-CSF-primed BM grafts from HLA-haploidentical donors. Bone Marrow Transplant 2009; 44:721-8. [PMID: 19377516 DOI: 10.1038/bmt.2009.73] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Abstract
Early interest in dendritic cells (DC) in transplantation centered on the role of graft interstitial DC in the instigation of rejection. Much information has subsequently accumulated concerning the phenotypic and functional diversity of these rare, migratory, bone marrow-derived antigen-presenting cells, and their role in the induction and regulation of immunity. Detailed insights have emerged from studies of freshly isolated or in vitro-propagated DC, and from analyses of their function in experimental animal models. The functional plasticity of these uniquely well-equipped antigen-presenting cells is reflected in their ability not only to induce alloimmune responses, but also to serve as potential targets and therapeutic agents for the long-term improvement of transplant outcome. Notably, however, a great deal remains to be understood about the immunobiology of DC populations in relation to human transplant outcome. Herein, we briefly review aspects of human DC biology in organ and bone marrow transplantation, the potential of these cells for monitoring outcome, and the role of DC in development of vaccines to protect against infectious disease or to promote allograft tolerance.
Collapse
|
20
|
Storek J. Immunological reconstitution after hematopoietic cell transplantation – its relation to the contents of the graft. Expert Opin Biol Ther 2008; 8:583-97. [DOI: 10.1517/14712598.8.5.583] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Novelo-Garza B, Limon-Flores A, Guerra-Marquez A, Luna-Bautista F, Juan-Shum L, Montero I, Sanchez-Valle E, Vélez-Ruelas MA, Mayani H. Establishing a cord blood banking and transplantation program in Mexico: a single institution experience. Transfusion 2007; 48:228-36. [PMID: 18028272 DOI: 10.1111/j.1537-2995.2007.01529.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Over the past decade, umbilical cord blood (UCB) banking and transplantation have increased significantly worldwide. The experience in developing countries, however, is still limited. In January 2005 the Mexican Institute of Social Security (IMSS) initiated its UCB banking and transplantation program. This study reports on the experience generated at this institution during the first 2 years of activities. STUDY DESIGN AND METHODS A public UCB bank was established at La Raza Medical Center, IMSS, in Mexico City. Good manufacturing practices and standard operating procedures were used to address donor selection, as well as UCB collection, processing, and cryopreservation. Based mainly on human leukocyte antigen (HLA) and total nucleated cell (TNC) content, specific UCB units were thawed, processed, and released for transplantation. RESULTS Based on stringent selection criteria, 360 UCB units were collected from January 2005 to December 2006. A total of 201 (56%) units (minimum volume, 50 mL without anticoagulant) were processed and stored. Median values for specific parameters were as follows: volume, 89.9 mL; viability, 94.8%; TNCs, 0.91 x 10(9); CD34+ cells, 3.13 x 10(6); and colony-forming cells, 1.20 x 10(6). During this period, 10 units had been released for transplantation to seven patients (six children and one adult). Engraftment was observed in five patients; four of them were still in remission (114-293 days after transplant). In spite of showing sustained engraftment, one patient died on Day +88. Two patients showed no engraftment and died 29 to 30 days after transplant. CONCLUSION The results obtained during this initial period are encouraging and indicate that the UCB banking and transplantation program at IMSS will help to improve already existing hematopoietic cell transplant programs in Mexico. The experience generated at IMSS may be helpful to other institutions, particularly those in developing countries.
Collapse
Affiliation(s)
- Barbara Novelo-Garza
- Umbilical Cord Blood Bank and the Department of Pediatric Hematology, La Raza Medical Center, IMSS, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Herein, we succinctly review mechanisms underlying self-tolerance and the roles of dendritic leukocytes (DCs) in T-cell tolerance to self and foreign antigens. We also consider the properties of naturally arising and other populations of regulatory T cells (Treg), together with growing evidence that interplay between DCs and Treg cells can sustain antigen-specific tolerance. B-cell tolerance and the role of hematopoietic cell chimerism in the induction and maintenance of tolerance are also discussed, as is the impact of cosignaling pathway manipulation on tolerance induction. This overview also surveys prospects for technological advances in the monitoring and prediction of tolerance and the application of genomic and proteomic analysis. In addition, we consider potential novel therapeutic targets for promotion of tolerance induction.
Collapse
Affiliation(s)
- Giorgio Raimondi
- University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute, Pittsburgh, PA, USA
| | | | | |
Collapse
|
23
|
Hallett WHD, Murphy WJ. Positive and negative regulation of Natural Killer cells: therapeutic implications. Semin Cancer Biol 2006; 16:367-82. [PMID: 16934486 DOI: 10.1016/j.semcancer.2006.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural Killer (NK) cells can mediate numerous anti-tumor and anti-viral effector functions as well as play important immunoregulatory roles in various disease states. Promoting the ability of NK cells to respond in an immunotherapeutic setting has often been sought by the addition of NK cell-stimulating factors. However, such therapies are often found to be insufficient, which may in part be due to the presence of inhibitory influences on the NK cell. NK cells can respond to a plethora of cytokines which are generated by numerous cell types and these interactions can markedly affect NK cell survival and activity. NK cells also possess multiple activating and inhibiting receptors which can alter their function. Whether the NK cell will become activated or not can depend on a complex balance of activating and inhibitory signals received by the cell and modulation of these signals may shift the balance on NK activation. This review discusses the various activating and inhibitory stimuli which can act on NK cells, and suggests that future NK cell-based therapies consider not only activating stimuli but also removal of possible inhibitory elements which could prevent optimal NK cell function and/or survival.
Collapse
Affiliation(s)
- William H D Hallett
- Department of Microbiology and Immunology, MS 199, University of Nevada School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | | |
Collapse
|