1
|
High-fat diet intensifies MLL-AF9-induced acute myeloid leukemia through activation of the FLT3 signaling in mouse primitive hematopoietic cells. Sci Rep 2020; 10:16187. [PMID: 32999332 PMCID: PMC7528010 DOI: 10.1038/s41598-020-73020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Using a MLL-AF9 knock-in mouse model, we discovered that consumption of a high-fat diet (HFD) accelerates the risk of developing acute myeloid leukemia (AML). This regimen increases the clusterization of FLT3 within lipid rafts on the cell surface of primitive hematopoietic cells, which overactivates this receptor as well as the downstream JAK/STAT signaling known to enhance the transformation of MLL-AF9 knock-in cells. Treatment of mice on a HFD with Quizartinib, a potent inhibitor of FLT3 phosphorylation, inhibits the JAK3/STAT3, signaling and finally antagonizes the accelerated development of AML that occurred following the HFD regimen. We can therefore conclude that, on a mouse model of AML, a HFD enforces the FLT3 signaling pathway on primitive hematopoietic cells and, in turn, improves the oncogenic transformation of MLL-AF9 knock-in cells and the leukemia initiation.
Collapse
|
2
|
Wang X, Mak PY, Mu H, Tao W, Rao A, Visweswaran R, Ruvolo V, Pachter JA, Weaver DT, Andreeff M, Xu B, Carter BZ. Combinatorial Inhibition of Focal Adhesion Kinase and BCL-2 Enhances Antileukemia Activity of Venetoclax in Acute Myeloid Leukemia. Mol Cancer Ther 2020; 19:1636-1648. [PMID: 32404407 PMCID: PMC7416436 DOI: 10.1158/1535-7163.mct-19-0841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/05/2019] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Focal adhesion kinase (FAK) promotes cancer cell growth and metastasis. We previously reported that FAK inhibition by the selective inhibitor VS-4718 exerted antileukemia activities in acute myeloid leukemia (AML). The mechanisms involved, and whether VS-4718 potentiates efficacy of other therapeutic agents, have not been investigated. Resistance to apoptosis inducted by the BCL-2 inhibitor ABT-199 (venetoclax) in AML is mediated by preexisting and ABT-199-induced overexpression of MCL-1 and BCL-XL. We observed that VS-4718 or silencing FAK with siRNA decreased MCL-1 and BCL-XL levels. Importantly, VS-4718 antagonized ABT-199-induced MCL-1 and BCL-XL. VS-4718 markedly synergized with ABT-199 to induce apoptosis in AML cells, including primary AML CD34+ cells and AML cells overexpressing MCL-1 or BCL-XL. In a patient-derived xenograft (PDX) model derived from a patient sample with NPM1/FLT3-ITD/TET2/DNMT3A/WT1 mutations and complex karyotype, VS-4718 statistically significantly reduced leukemia tissue infiltration and extended survival (72 vs. control 36 days, P = 0.0002), and only its combination with ABT-199 effectively decreased systemic leukemia tissue infiltration and circulating blasts, and prolonged survival (65.5 vs. control 36 days, P = 0.0119). Furthermore, the combination decreased NFκB signaling and induced the expression of IFN genes in vivo The combination also markedly extended survival of a second PDX model developed from an aggressive, TP53-mutated complex karyotype AML sample. The data suggest that the combined inhibition of FAK and BCL-2 enhances antileukemia activity in AML at least in part by suppressing MCL-1 and BCL-XL and that this combination may be effective in AML with TP53 and other mutations, and thus benefit patients with high-risk AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Biomarkers, Tumor/antagonists & inhibitors
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Proliferation
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nucleophosmin
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Sulfonamides/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Rao
- The Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ravikumar Visweswaran
- The Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
4
|
Behbehani GK, Samusik N, Bjornson ZB, Fantl WJ, Medeiros BC, Nolan GP. Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy. Cancer Discov 2015; 5:988-1003. [PMID: 26091827 DOI: 10.1158/2159-8290.cd-15-0298] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Acute myeloid leukemia (AML) is characterized by a high relapse rate that has been attributed to the quiescence of leukemia stem cells (LSC), which renders them resistant to chemotherapy. However, this hypothesis is largely supported by indirect evidence and fails to explain the large differences in relapse rates across AML subtypes. To address this, bone marrow aspirates from 41 AML patients and five healthy donors were analyzed by high-dimensional mass cytometry. All patients displayed immunophenotypic and intracellular signaling abnormalities within CD34(+)CD38(lo) populations, and several karyotype- and genotype-specific surface marker patterns were identified. The immunophenotypic stem and early progenitor cell populations from patients with clinically favorable core-binding factor AML demonstrated a 5-fold higher fraction of cells in S-phase compared with other AML samples. Conversely, LSCs in less clinically favorable FLT3-ITD AML exhibited dramatic reductions in S-phase fraction. Mass cytometry also allowed direct observation of the in vivo effects of cytotoxic chemotherapy. SIGNIFICANCE The mechanisms underlying differences in relapse rates across AML subtypes are poorly understood. This study suggests that known chemotherapy sensitivities of common AML subsets are mediated by cell-cycle differences among LSCs and provides a basis for using in vivo functional characterization of AML cells to inform therapy selection.
Collapse
Affiliation(s)
- Gregory K Behbehani
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California. Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California. Stanford Cancer Institute, Stanford, California
| | - Nikolay Samusik
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Zach B Bjornson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Wendy J Fantl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Bruno C Medeiros
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California. Stanford Cancer Institute, Stanford, California
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
5
|
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Rep 2014; 9:1333-48. [PMID: 25456130 DOI: 10.1016/j.celrep.2014.10.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.
Collapse
|
6
|
Chung HJ, Kamli MR, Lee HJ, Ha JD, Cho SY, Lee J, Kong JY, Han SY. Discovery of quinolinone derivatives as potent FLT3 inhibitors. Biochem Biophys Res Commun 2014; 445:561-5. [PMID: 24530392 DOI: 10.1016/j.bbrc.2014.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 11/30/2022]
Abstract
Recently some fms-like tyrosine kinase 3 (FLT3) inhibitors have shown good efficacy in acute myeloid leukemia (AML) patients. In an effort to develop anti-leukemic drugs, we investigated quinolinone derivatives as novel FLT3 inhibitors. Two substituted quinolinones, KR65367 and KR65370 were subjected to FLT3 kinase activity assay and showed potent inhibition against FLT3 kinase activity in vitro, with IC50 of 2.7 and 0.57 nM, respectively. As a measure of selectivity, effects on the activity of other kinases were also tested. Both compounds have negligible activity against Met, Ron, epidermal growth factor receptor, Aurora A, Janus kinase 2, and insulin receptor; with IC50 greater than 10 μM. KR compounds showed strong growth inhibition in MV4;11 AML cells and increased the apoptotic cell death in flow cytometric analyses. A decrease in STAT5 phosphorylation by KR compounds was observed in MV4;11 cells. Furthermore, in vitro evaluation of compounds structurally related to KR65367 and KR65370 showed a good structure-activity relationship.
Collapse
Affiliation(s)
- Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Majid Rasool Kamli
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Du Ha
- Bio-organic Science Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sung Yun Cho
- Bio-organic Science Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Jae Yang Kong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
7
|
The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias. LEUKEMIA RESEARCH AND TREATMENT 2013; 2013:275760. [PMID: 23936658 PMCID: PMC3725705 DOI: 10.1155/2013/275760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022]
Abstract
The development of the genetic studies on acute myeloid leukemias (AMLs) has led to the identification of some recurrent genetic abnormalities. Their discovery was of fundamental importance not only for a better understanding of the molecular pathogenesis of AMLs, but also for the identification of new therapeutic targets. In this context, it is essential to identify AML-associated “driver” mutations, which have a causative role in leukemogenesis. Evidences accumulated during the last years indicate that activating internal tandem duplication mutations in FLT3 (FLT3-ITD), detected in about 20% of AMLs, represents driver mutations and valid therapeutic targets in AMLs. Furthermore, the screening of FLT3-ITD mutations has also considerably helped to improve the identification of more accurate prognostic criteria and of the therapeutic selection of patients.
Collapse
|
8
|
Brault L, Rovó A, Decker S, Dierks C, Tzankov A, Schwaller J. CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia. Leukemia 2013; 28:566-76. [PMID: 23817178 DOI: 10.1038/leu.2013.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/20/2023]
Abstract
The CXCR4 receptor is a major regulator of hematopoietic cell migration. Overexpression of CXCR4 has been associated with poor prognosis in acute myelogenous leukemia (AML). We have previously shown that ligand-mediated phosphorylation of the Serine339 (CXCR4-S339) residue of the intracellular domain by PIM1 is implicated in surface re-expression of this receptor. Here, we report that phosphorylation of CXCR4-S339 in bone marrow (BM) biopsies correlated with poor prognosis in a cohort of AML patients. To functionally address the impact of CXCR4-S339 phosphorylation, we generated cell lines-expressing CXCR4 mutants that mimic constitutive phosphorylation (S339E) or abrogate phosphorylation (S339A). Whereas the expression of CXCR4 significantly increased, both CXCR4-S339E and the CXCR4-S339A mutants significantly reduced the BM homing and engraftment of Kasumi-1 AML cells in immunodeficient mice. In contrast, only expression of the CXCR4-S339E mutant increased the BM retention of the cells and resistance to cytarabine treatment, and impaired detachment capacity and AMD3100-induced mobilization of engrafted leukemic cells. These observations suggest that the poor prognosis in AML patients displaying CXCR4-S339 phosphorylation can be the consequence of an increased retention to the BM associated with an enhanced chemoresistance of leukemic cells. Therefore, CXCR4-S339 phosphorylation could serve as a novel prognostic marker in human AML.
Collapse
Affiliation(s)
- L Brault
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - A Rovó
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - S Decker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - A Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - J Schwaller
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Brady A, Gibson S, Rybicki L, Hsi E, Saunthararajah Y, Sekeres MA, Tiu R, Copelan E, Kalaycio M, Sobecks R, Bates J, Advani AS. Expression of phosphorylated signal transducer and activator of transcription 5 is associated with an increased risk of death in acute myeloid leukemia. Eur J Haematol 2012; 89:288-93. [PMID: 22725130 DOI: 10.1111/j.1600-0609.2012.01825.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND Constitutive activation of STAT5 (by phosphorylation) has been identified in a number of malignancies, including acute myeloid leukemia (AML). OBJECTIVES We investigated whether the level of phosphorylated STAT5 (pSTAT5) expression correlates with clinical outcome in AML. METHODS Adult patients with newly diagnosed AML receiving induction chemotherapy and with an available diagnostic bone marrow were evaluated. RESULTS Forty-two percent of patients had pSTAT5 expression >0 on immunohistochemical analysis of fixed bone marrow core biopsies. In multivariable analyses, controlling for age, history of antecedent hematologic disorder, cytogenetic risk, and WBC at diagnosis, pSTAT5 expression was significantly associated with an increased risk of death (HR 1.96, 95% CI 1.19-3.23, P = 0.008) and of relapse after achieving complete remission (HR 2.31, 95% CI 1.16-4.63, P = 0.018). CONCLUSIONS Validation of pSTAT5's prognostic value requires additional study in a larger group of uniformly treated patients. However, our data suggests that targeting this signaling pathway in AML may improve the outcome of patients.
Collapse
Affiliation(s)
- Anna Brady
- Hematologic Oncology and Blood Disorders, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
Collapse
|
11
|
Discovery of LY2457546: a multi-targeted anti-angiogenic kinase inhibitor with a novel spectrum of activity and exquisite potency in the acute myelogenous leukemia-Flt-3-internal tandem duplication mutant human tumor xenograft model. Invest New Drugs 2011; 30:936-49. [DOI: 10.1007/s10637-011-9640-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/28/2011] [Indexed: 01/31/2023]
|
12
|
In situ RHAMM protein expression in acute myeloid leukemia blasts suggests poor overall survival. Ann Hematol 2011; 90:901-9. [PMID: 21274712 DOI: 10.1007/s00277-011-1159-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/10/2011] [Indexed: 12/28/2022]
Abstract
Treatment options for patients with high-risk acute myeloid leukemia (AML) include high-dose chemotherapy regimens in combination with allogeneic hematopoietic stem cell transplantation, which takes advantage of the donor T-cell-mediated graft-versus-leukemia effect. Together with beneficial responses observed in assays targeted at leukemia-associated antigens (LAA), this encouraged research on cancer vaccines and adoptive cellular therapies in AML. The receptor for hyaluronic acid-mediated motility (RHAMM, CD168) was identified as one of the most promising LAA in AML. Thus far, little is known about in situ expression in leukemic bone marrow blasts or the prognostic role of RHAMM and its interaction partners in AML. We immunohistochemically analyzed the expression and prognostic significance of RHAMM on trephine bone marrow biopsies from 71 AML cases that had been evaluated for cytogenetics and presence of FLT3-internal tandem duplications and NPM1 mutations. Fifty-five patients (77%) were treated with curative intent, while 16 (23%) received the most appropriate supportive care. Twenty of 71 (28%) AML cases were considered RHAMM+. Receiver operating characteristic curves showed significant discriminatory power considering overall survival (OS) in AML patients treated curatively for RHAMM (p = 0.015). Multivariable analysis revealed that expression of RHAMM in >5% of leukemic blasts identifies a subgroup of curatively treated cases with adverse OS independent of failures to achieve complete remission. RHAMM not only represents a promising LAA with specific T-cell responses in AML but, if assessed in situ on blasts, also a probable prognostic factor.
Collapse
|
13
|
Suter SE, Small GW, Seiser EL, Thomas R, Breen M, Richards KL. FLT3 mutations in canine acute lymphocytic leukemia. BMC Cancer 2011; 11:38. [PMID: 21272320 PMCID: PMC3040160 DOI: 10.1186/1471-2407-11-38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/27/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit FLT3 ITD mutations. METHODS We molecularly characterized FLT3 mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via in vitro proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting. RESULTS The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have FLT3 ITD mutations and FLT3 mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the FLT3 mutation. Finally, western blots were used to confirm the conserved downstream mediators of FLT3 activating mutations. CONCLUSIONS These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias.
Collapse
Affiliation(s)
- Steven E Suter
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | |
Collapse
|
14
|
Rosen DB, Minden MD, Kornblau SM, Cohen A, Gayko U, Putta S, Woronicz J, Evensen E, Fantl WJ, Cesano A. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP). PLoS One 2010; 5:e13543. [PMID: 21048955 PMCID: PMC2965086 DOI: 10.1371/journal.pone.0013543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/19/2010] [Indexed: 01/08/2023] Open
Abstract
Background Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative. Methodology/Principal Findings Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management. Conclusions/Significance These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.
Collapse
Affiliation(s)
- David B. Rosen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Mark D. Minden
- Department of Medical Oncology/Hematology, The University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Steven M. Kornblau
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Aileen Cohen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Urte Gayko
- Nodality, Inc., South San Francisco, California, United States of America
| | - Santosh Putta
- Nodality, Inc., South San Francisco, California, United States of America
| | - John Woronicz
- Nodality, Inc., South San Francisco, California, United States of America
| | - Erik Evensen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Wendy J. Fantl
- Nodality, Inc., South San Francisco, California, United States of America
| | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|