1
|
Chen J, Du Y, Hou H, Li W, Sun C, Liang F, Wang H. Unveiling the Correlation Between the Membrane Assembly of P-gp and Drug Resistance in Multiple Myeloma Using Super-Resolution Fluorescence Imaging. Anal Chem 2024; 96:11673-11681. [PMID: 38994836 DOI: 10.1021/acs.analchem.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Drug resistance in multiple myeloma (MM) poses a significant challenge to treatment efficacy, primarily attributed to P-glycoprotein (P-gp) dysfunction. This study delves into the elusive spatial organization of P-gp, aiming to enhance our understanding of its role in MM drug resistance by exploring the intricate relationship between molecular function and spatial arrangement. Employing super-resolution imaging of P-gp with the inhibitor probe Tariquidar-TAMR labeling on MM cell membranes, the research uncovered a more pronounced clustering distribution of P-gp in drug-resistant cells (MM1R) compared to drug-sensitive counterparts (MM1S). Further exploration revealed the clustering distribution of P-gp was heightened as cellular drug resistance increased in hypoxic condition, directly emphasizing the strong correlation between P-gp cluster morphology and drug resistance. Additionally, stable P-gp cluster formation was influenced by cross-linking of membrane carbohydrates, and disrupting these glycoprotein clusters could reduce cellular drug resistance, suggesting that altering distribution patterns of P-gp can modulate drug responsiveness. Finally, dexamethasone (Dex) treatment was revealed to enhance P-gp clustering distribution, particularly in MM1S cells, indicating that change degree in P-gp distribution correlate with the modifiable space of cellular drug responsiveness. This study provides insights into the correlation between P-gp assembly and cellular drug responsiveness, deepening our understanding of functional changes in MM drug resistance and offering valuable perspectives for overcoming this challenge.
Collapse
Affiliation(s)
- Junling Chen
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Yuwei Du
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hao Hou
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - WenFeng Li
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Dadao, Wuhan 430022, China
| | - Feng Liang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
2
|
Genetic Polymorphisms Affecting Cardiac Biomarker Concentrations in Children with Cancer: an Analysis from the "European Paediatric Oncology Off-patents Medicines Consortium" (EPOC) Trial. Eur J Drug Metab Pharmacokinet 2021; 45:413-422. [PMID: 31981210 DOI: 10.1007/s13318-019-00592-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Doxorubicin plays an essential role in the treatment of paediatric cancers. Defining genotypes with a higher risk for developing anthracycline-induced cardiotoxicity could help to reduce cardiotoxicity. METHODS Data originated from a phase II study assessing the pharmacokinetics of doxorubicin in 100 children. Studied patients (0-17 years) were treated for solid tumours or leukaemia. Two cycles of doxorubicin were studied. Concentrations of natriuretic peptides proANP, BNP and NT-proBNP and cardiac troponins T and I were measured at five time points before, during and after two cycles of doxorubicin treatment. Genotypes of 17 genetic polymorphisms in genes encoding for anthracycline metabolizing enzymes and drug transporters were determined for each patient. We analysed the influence of genotypes on cardiac biomarker concentrations at different time points by a Kruskal-Wallis test. To perform a pairwise comparison significant genetic polymorphisms with more than two genotypes were analysed by a post hoc test. RESULTS The Kruskal-Wallis tests and the post hoc-tests showed a significant association for seven genetic polymorphisms (ABCB1-rs1128503, ABCB1-rs1045642, ABCC1-rs4148350, CBR3-rs8133052, NQO2-in/del, SLC22A16-rs714368 and SLC22A16-rs6907567) with the concentration of at least one biomarker at one or more time points. We could not identify any polymorphism with a consistent effect on any biomarker over the whole treatment period. CONCLUSIONS In this study of patients treated with doxorubicin for different tumour entities, seven genetic polymorphisms possibly influencing the pharmacokinetics and pharmacodynamics of doxorubicin could lead occasionally to differences in the concentration of cardiac biomarkers. Since, the role of cardiac biomarkers for monitoring anthracycline-induced cardiotoxicity has not yet been clarified, further trials with a long follow-up time are required to assess the impact of these genetic polymorphisms on chemotherapy-related cardiotoxicity. TRIAL REGISTRATION EudraCT number: 2009-011454-17.
Collapse
|
3
|
Stage TB, Hu S, Sparreboom A, Kroetz DL. Role for Drug Transporters in Chemotherapy-Induced Peripheral Neuropathy. Clin Transl Sci 2020; 14:460-467. [PMID: 33142018 PMCID: PMC7993259 DOI: 10.1111/cts.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity to widely used chemotherapeutics. Although the exact molecular mechanism of chemotherapy-induced peripheral neuropathy remains elusive, there is consensus that it is caused by damage to the peripheral nervous system leading to sensory symptoms. Recently developed methodologies have provided evidence of expression of drug transporters in the peripheral nervous system. In this literature review, we explore the role for drug transporters in CIPN. First, we assessed the transport of chemotherapeutics that cause CIPN (taxanes, platins, vincristine, bortezomib, epothilones, and thalidomide). Second, we cross-referenced the transporters implicated in genetic or functional studies with CIPN with their expression in the peripheral nervous system. Several drug transporters are involved in the transport of chemotherapeutics that cause peripheral neuropathy and particularly efflux transporters, such as ABCB1 and ABCC1, are expressed in the peripheral nervous system. Previous literature has linked genetic variants in efflux transporters to higher risk of peripheral neuropathy with the taxanes paclitaxel and docetaxel and the vinca alkaloid vincristine. We propose that this might be due to accumulation of the chemotherapeutics in the peripheral nervous system due to reduced neuronal efflux capacity. Thus, concomitant administration of efflux transporter inhibitors may lead to higher risk of adverse events of drugs that cause CIPN. This might prove valuable in drug development where screening new drugs for neurotoxicity might also require drug transporter consideration. There are ongoing efforts targeting drug transporters in the peripheral nervous system to reduce intraneuronal concentrations of chemotherapeutics that cause CIPN, which might ultimately protect against this dose-limiting adverse event.
Collapse
Affiliation(s)
- Tore B Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|
5
|
Colombo M, Garavelli S, Mazzola M, Platonova N, Giannandrea D, Colella R, Apicella L, Lancellotti M, Lesma E, Ancona S, Palano MT, Barbieri M, Taiana E, Lazzari E, Basile A, Turrini M, Pistocchi A, Neri A, Chiaramonte R. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-dependent drug resistance. Haematologica 2019; 105:1925-1936. [PMID: 31582544 PMCID: PMC7327642 DOI: 10.3324/haematol.2019.221077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma is still incurable due to an intrinsic aggressiveness or, more frequently, to the interactions of malignant plasma cells with the bone marrow (BM) microenvironment. Myeloma cells educate BM cells to support neoplastic cell growth, survival, acquisition of drug resistance resulting in disease relapse. Myeloma microenvironment is characterized by Notch signaling hyperactivation due to the increased expression of Notch1 and 2 and the ligands Jagged1 and 2 in tumor cells. Notch activation influences myeloma cell biology and promotes the reprogramming of BM stromal cells. In this work we demonstrate, in vitro, ex vivo and by using a zebrafish multiple myeloma model, that Jagged inhibition causes a decrease in both myeloma-intrinsic and stromal cell-induced resistance to currently used drugs, i.e. bortezomib, lenalidomide and melphalan. The molecular mechanism of drug resistance involves the chemokine system CXCR4/SDF1α. Myeloma cell-derived Jagged ligands trigger Notch activity in BM stromal cells. These, in turn, secrete higher levels of SDF1α in the BM microenvironment increasing CXCR4 activation in myeloma cells, which is further potentiated by the concomitant increased expression of this receptor induced by Notch activation. Consistently with the augmented pharmacological resistance, SDF1α boosts the expression of BCL2, Survivin and ABCC1. These results indicate that a Jagged-tailored approach may contribute to disrupting the pharmacological resistance due to intrinsic myeloma cell features or to the pathological interplay with BM stromal cells and, conceivably, improve patients' response to standard-of-care therapies.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Silvia Garavelli
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Mara Mazzola
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Raffaella Colella
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Luana Apicella
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Silvia Ancona
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Marzia Barbieri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | - Elisa Lazzari
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano
| | - Mauro Turrini
- Department of Hematology, Division of Medicine, Valduce Hospital, Como, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | | |
Collapse
|
6
|
Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother Pharmacol 2019; 84:959-975. [DOI: 10.1007/s00280-019-03932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
7
|
Drug resistance in multiple myeloma. Cancer Treat Rev 2018; 70:199-208. [DOI: 10.1016/j.ctrv.2018.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
|
8
|
Yang WC, Lin SF, Su YC. Multiple Myeloma: Personalised Medicine Based on Pathogenesis. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10312856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is increasingly being recognised as more than one disease, characterised by marked cytogenetic, molecular, and proliferative heterogeneity. The prognosis is widely varied, ranging from low to very high-risk, based on cytogenetic and molecular studies. Although novel agents, such as proteasome inhibitors and immunomodulators, have been developed, which have improved treatment responses and disease prognosis, multiple myeloma remains an incurable disease. Based on highly sensitive detection tools, such as gene expression profiling and next generation sequence analysis, and the understanding of the pathogenesis of multiple myeloma, many potential agents, including monoclonal antibodies, drug-conjugated antibodies, drugs targeted to molecular abnormalities, microRNA inhibitors or mimics, and immune therapies, such as chimeric antigen receptors T cells and anti-PD1 agents, can be considered personalised therapies. In this paper, multiple myeloma pathogenesis and potential molecular and immunotherapies are reviewed.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan; School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Sheng-Fung Lin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
| | - Yu-Chieh Su
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan; School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 2018; 32:2224-2239. [PMID: 29581547 PMCID: PMC6160356 DOI: 10.1038/s41375-018-0044-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/03/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Bromodomain and extraterminal (BET) domain containing protein (BRD)-4 modulates the expression of oncogenes such as c-myc, and is a promising therapeutic target in diverse cancer types. We performed pre-clinical studies in myeloma models with bi-functional protein-targeting chimeric molecules (PROTACs) which target BRD4 and other BET family members for ubiquitination and proteasomal degradation. PROTACs potently reduced the viability of myeloma cell lines in a time- and concentration-dependent manner associated with G0/G1 arrest, reduced levels of CDKs 4 and 6, increased p21 levels, and induction of apoptosis. These agents specifically decreased cellular levels of downstream BRD4 targets, including c-MYC and N-MYC, and a Cereblon-targeting PROTAC showed downstream effects similar to those of an immunomodulatory agent. Notably, PROTACs overcame bortezomib, dexamethasone, lenalidomide, and pomalidomide resistance, and their activity was maintained in otherwise isogenic myeloma cells with wild-type or deleted TP53. Combination studies showed synergistic interactions with dexamethasone, BH3 mimetics, and Akt pathway inhibitors. BET-specific PROTACs induced a rapid loss of viability of primary cells from myeloma patients, and delayed growth of MM1.S-based xenografts. Our data demonstrate that BET degraders have promising activity against pre-clinical models of multiple myeloma, and support their translation to the clinic for patients with relapsed and/or refractory disease.
Collapse
|
10
|
Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial. Cancer Chemother Pharmacol 2017; 81:183-193. [PMID: 29177954 PMCID: PMC5754426 DOI: 10.1007/s00280-017-3481-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/12/2017] [Indexed: 10/26/2022]
Abstract
PURPOSE Despite therapeutic advances, patients with multiple myeloma (MM) continue to experience disease relapse and treatment resistance. The gene ABCB1 encodes the drug transporter P-glycoprotein, which confers resistance through drug extrusion across the cell membrane. Lenalidomide (Len) is excreted mainly via the kidneys, and, given the expression of P-gp in the renal tubuli, single-nucleotide polymorphisms (SNPs) in the ABCB1 gene may influence Len plasma concentrations and, subsequently, the outcome of treatment. We, therefore, investigated the influence of ABCB1 genetic variants on Len treatment outcomes and adverse events (AEs). METHODS Ninety patients with relapsed or refractory MM, who received the second-line Len plus dexamethasone in the Rev II trial, were genotyped for the ABCB1 SNPs 1199G>A (Ser400Asn, rs2229109), 1236C>T (silent, rs1128503), 2677G>T/A (Ala893Ser, rs2032582), and 3435C>T (silent, rs1045642) using pyrosequencing, and correlations to response parameters, outcomes, and AEs were investigated. RESULTS No significant associations were found between genotype and either best response rates or hematological AEs, and 1236C>T, 2677G>T or 3435C>T genotypes had no impact on survival. There was a trend towards increased time to progression (TTP) in patients carrying the 1199A variant, and a significant difference in TTP between genotypes in patients with standard-risk cytogenetics. CONCLUSIONS Our findings show a limited influence of ABCB1 genotype on lenalidomide treatment efficacy and safety. The results suggest that 1199G>A may be a marker of TTP following Len treatment in standard-risk patients; however, larger studies are needed to validate and clarify the relationship.
Collapse
|
11
|
Xiao Z, Yin G, Ni Y, Qu X, Wu H, Lu H, Qian S, Chen L, Li J, Qiu H, Miao K. MDR1 polymorphisms affect the outcome of Chinese multiple myeloma patients. Biomed Pharmacother 2017; 95:743-748. [PMID: 28888211 DOI: 10.1016/j.biopha.2017.08.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To illustrate the association of MDR1 (Multidrug Resistance 1) polymorphisms at loci 1236, 2677, 3435 and the prognosis of multiple myeloma (MM) in Jiangsu population. METHODS A total of 129 MM patients were recruited from Jiangsu Province, China. The DNA was extracted from white blood cells (WBC) of peripheral blood and was amplified by polymerase chain reaction-allele specific primers (PCR-ASP). MDR1 polymorphisms at 3 loci were analyzed by electrophoresis followed by photograph or DNA direct sequencing. The association between the MDR1 and clinical outcomes were calculated by Graphpad and SPSS. RESULTS MDR1 alleles at locus C1236T with T had significant lower calcium level in MM patients compared with C. The genotype CT had a significantly prolonged progress free survival (PFS) compared genotype CC at locus C1236T (median time: 48 months vs. 28 months, respectively; p=0.0062; HR=0.21; 95%CI0.061-0.715) while patients carrying T allele (CT and TT) at locus C3435T had a longer PFS than patients without T allele (CC) (median time: 60 months vs. 29 months, respectively; p=0.038; HR=0.508; 95%CI 0.264-0.978). And a borderline significance was found in haplotype at loci 2677-3435 and PFS. No significant findings were revealed between OS and MDR1 polymorphisms. CONCLUSION MDR1 polymorphisms could affect the prognosis of multiple myeloma whereas more samples and a longer follow-up are also needed.
Collapse
Affiliation(s)
- Zhengrui Xiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Guangli Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ying Ni
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoyan Qu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hanxin Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hua Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hairong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Kourong Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
12
|
Basmaci C, Pehlivan M, Tomatir A, Sever T, Okan V, Yilmaz M, Oguzkan-Balci S, Pehlivan S. Effects of TNFα, NOS3, MDR1 Gene Polymorphisms on Clinical Parameters, Prognosis and Survival of Multiple Myeloma Cases. Asian Pac J Cancer Prev 2017; 17:1009-14. [PMID: 27039718 DOI: 10.7314/apjcp.2016.17.3.1009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
It is not clear how gene polymorphisms affecting drugs can contributes totheir efficacy in multiple myeloma (MM). We here aimed to explore associations among gene polymorphisms of tumor necrosis factor alpha (TNFα), nitric oxide synthesis 3 (NOS3) and multi-drug resistance 1 (MDR1), clinical parameters, prognosis and survival in MM patients treated with VAD (vincristine-adriamycine-dexamethasone), MP (mephalane-prednisolone), autolougus stem cell transplantation (ASCT), BODEC (bortezomib-dexamethasone-cyclophosphamide) and TD (thalidomide-dexamethasone). We analyzed TNFα, NOS 3 and MDR1 in 77 patients with MM and 77 healthy controls. The genotyping was performed with PCR and/or PCR-RFLP. There was no clinically significant difference between MM and control groups when TNF α(-238) and (-857) and MDR1 gene polymorphisms were studied. However, the TNFαgene polymorphism (-308) GG genotype (p=0.012) and NOS3 (+894) TT genotype (p=0.008) were more common in the MM group compared to healthy controls. NOS3 (VNTR) AA (p=0.007) and NOS3 (+894) GG genotypes (p=0.004) were decreased in the MM group in contrast. In conclusion, the NOS3 (+894) TT and TNF α(-308) GG genotypes may have roles in myeloma pathogenesis.
Collapse
Affiliation(s)
- C Basmaci
- Department of Hematology, Gaziantep University Faculty of Medicine, Gaziantep,Turkey E-mail : or
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zaïr ZM, Singer DR. Efflux transporter variants as predictors of drug toxicity in lung cancer patients: systematic review and meta-analysis. Pharmacogenomics 2016; 17:1089-112. [PMID: 27269636 DOI: 10.2217/pgs-2015-0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Chemotherapeutic drugs are underutilized in lung cancer management due in part to serious adverse drug reactions (ADRs). AIM With studies revealing an association between interindividual patient ADR variation and efflux transporter variants, we carried out a meta-analysis and systemic review, in order to highlight current knowledge regarding the strength of association between efflux transporter SNPs variants and chemotherapeutic-drug induced ADRs. MATERIALS & METHODS Papers were sourced from MEDLINE, Cochrane Library, CINHL, EMBASE, Web of Knowledge, Scopus. The Cochrane Collaboration Risk of Bias Tool v13 was used to evaluate six types of bias domains for each of the publications reviewed. RESULTS Twenty-five publications comprising three randomised control trials, two retrospective case-controls and 20 clinical observation studies, totalling 3578 patients, were deemed eligible for review. Of the known efflux drug transporters, we report findings on the ABC members ABCB1, ABCC1, ABCC2, ABCG2, ABCA1, ABCC4 and ABCC5. Meta-analysis showed an decreased risk of irinotecan-induced neutropenia in patients expressing ABCB1 2677G>T/G (odds ratio [OR]: 0.24; 95% CI: 0.1-0.59; p = 0.002) but increased risk for ABCC2 3972T>T (OR: 1.67; 95% CI: 1.01-2.74; p = 0.04). ABCG2 34G>A was associated with a threefold increased risk of irinotecan-induced diarrhea (95% CI: 1.00-6.24; p = 0.05). CONCLUSION The majority of studies have identified a role for variants in effluxdrug transporters in contributing to lung cancer treatment-associated ADRs. However, for implementation of use of these transporter genetic variants as prognostic markers for ADR risk, future studies must incorporate larger patient numbers.
Collapse
Affiliation(s)
| | - Donald Rj Singer
- Yale University School of Medicine, New Haven, CT 06510, USA.,Fellowship of Postgraduate Medicine, 11 Chandos Street, London, UK
| |
Collapse
|
14
|
Krishnan SR, Jaiswal R, Brown RD, Luk F, Bebawy M. Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review). Int J Oncol 2016; 49:33-50. [PMID: 27175906 DOI: 10.3892/ijo.2016.3516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a mature B cell neoplasm that results in multi-organ failure. The median age of onset, diverse clinical manifestations, heterogeneous survival rate, clonal evolution, intrinsic and acquired drug resistance have impact on the therapeutic management of the disease. Specifically, the emergence of multidrug resistance (MDR) during the course of treatment contributes significantly to treatment failure. The introduction of the immunomodulatory agents and proteasome inhibitors has seen an increase in overall patient survival, however, for the majority of patients, relapse remains inevitable with evidence that these agents, like the conventional chemotherapeutics are also subject to the development of MDR. Clinical management of patients with MM is currently compromised by lack of a suitable procedure to monitor the development of clinical drug resistance in individual patients. The current MM prognostic measures fail to pick the clonotypic tumor cells overexpressing drug efflux pumps, and invasive biopsy is insufficient in detecting sporadic tumors in the skeletal system. This review summarizes the challenges associated with treating the complex disease spectrum of myeloma, with an emphasis on the role of deleterious multidrug resistant clones orchestrating relapse.
Collapse
Affiliation(s)
- Sabna Rajeev Krishnan
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| | - Ritu Jaiswal
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| | - Ross D Brown
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Frederick Luk
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| | - Mary Bebawy
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
15
|
Di Martino MT, Arbitrio M, Guzzi PH, Cannataro M, Tagliaferri P, Tassone P. Experimental treatment of multiple myeloma in the era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1142356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Yin G, Xiao Z, Ni Y, Qu X, Wu H, Lu H, Qian S, Chen L, Li J, Qiu H, Miao K. Association of MDR1 single-nucleotide polymorphisms and haplotype variants with multiple myeloma in Chinese Jiangsu Han population. Tumour Biol 2016; 37:9549-54. [DOI: 10.1007/s13277-015-4574-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
|
17
|
Foran E, Kwon DY, Nofziger JH, Arnold ES, Hall MD, Fischbeck KH, Burnett BG. CNS uptake of bortezomib is enhanced by P-glycoprotein inhibition: implications for spinal muscular atrophy. Neurobiol Dis 2016; 88:118-24. [PMID: 26792401 DOI: 10.1016/j.nbd.2016.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022] Open
Abstract
The development of therapeutics for neurological disorders is constrained by limited access to the central nervous system (CNS). ATP-binding cassette (ABC) transporters, particularly P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed on the luminal surface of capillaries in the CNS and transport drugs out of the endothelium back into the blood against the concentration gradient. Survival motor neuron (SMN) protein, which is deficient in spinal muscular atrophy (SMA), is a target of the ubiquitin proteasome system. Inhibiting the proteasome in a rodent model of SMA with bortezomib increases SMN protein levels in peripheral tissues but not the CNS, because bortezomib has poor CNS penetrance. We sought to determine if we could inhibit SMN degradation in the CNS of SMA mice with a combination of bortezomib and the ABC transporter inhibitor tariquidar. In cultured cells we show that bortezomib is a substrate of P-gp. Mass spectrometry analysis demonstrated that intraperitoneal co-administration of tariquidar increased the CNS penetrance of bortezomib, and reduced proteasome activity in the brain and spinal cord. This correlated with increased SMN protein levels and improved survival and motor function of SMA mice. These findings show that CNS penetrance of treatment for this neurological disorder can be improved by inhibiting drug efflux at the blood-brain barrier.
Collapse
Affiliation(s)
- Emily Foran
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States.
| | - Deborah Y Kwon
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States; Department of Neuroscience, Brown University, United States
| | - Jonathan H Nofziger
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Eveline S Arnold
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Matthew D Hall
- CE Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Barrington G Burnett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Services, United States
| |
Collapse
|
18
|
Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:341430. [PMID: 26649299 PMCID: PMC4663284 DOI: 10.1155/2015/341430] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients eventually relapse or become refractory to current treatments. Although the treatments have improved, the major problem in MM is resistance to therapy. Clonal evolution of MM cells and bone marrow microenvironment changes contribute to drug resistance. Some mechanisms affect both MM cells and microenvironment, including the up- and downregulation of microRNAs and programmed death factor 1 (PD-1)/PD-L1 interaction. Here, we review the pathogenesis of MM cells and bone marrow microenvironment and highlight possible drug resistance mechanisms. We also review a potential molecular targeting treatment and immunotherapy for patients with refractory or relapse MM.
Collapse
|
19
|
McBride A, Klaus JO, Stockerl-Goldstein K. Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma. Am J Health Syst Pharm 2015; 72:353-60. [PMID: 25694410 DOI: 10.2146/ajhp130281] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The pharmacology, clinical efficacy, safety, cost, dosage and administration, and place in therapy of carfilzomib for the treatment of multiple myeloma (MM) are reviewed. SUMMARY Proteasome inhibition in MM has become a cornerstone in treatment regimens. Carfilzomib, a second-generation proteasome inhibitor, has demonstrated efficacy in patients with relapsed or refractory disease who have received at least two prior therapies including bortezomib and an immunomodulatory agent. Carfilzomib is an irreversible inhibitor and binds to a different site than bortezomib on the proteasome. A Phase II study evaluated 266 heavily pretreated patients with relapsed or refractory MM who had received at least two prior therapies, including bortezomib and either thalidomide or lenalidomide. The overall response rate was 23.7%, with a median duration of response of 7.8 months. The median overall survival time was 15.6 months. Carfilzomib has a similar adverse-effect profile to bortezomib, including anemia, thrombocytopenia, fatigue, dyspnea, and nausea; however, it does not result in the development or worsening of peripheral neuropathy. Carfilzomib is infused intravenously over 2-10 minutes for 2 consecutive days every week for three out of four weeks, with a 12-day rest period. Dosing is based on the patient's actual body surface area. Carfilzomib is available in 60-mg vials for single infusion. The total cost for a year of therapy is approximately $155,852. CONCLUSION Carfilzomib, a second-generation proteasome inhibitor that irreversibly inhibits the 26S proteasome, has shown efficacy in clinical studies of patients with relapsed or refractory MM, though the drug's role in the management of MM is not yet clear.
Collapse
Affiliation(s)
- Ali McBride
- Ali McBride, Pharm.D., M.S., BCPS, is Clinical Coordinator Hematology/Oncology, Department of Pharmacy, University of Arizona Cancer Center, Tucson. Jeff O. Klaus, Pharm.D., is Clinical Pharmacist, Hematologic Malignancies/Stem Cell Transplant, Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO. Keith Stockerl-Goldstein, M.D.,is Associate Professor, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis.
| | - Jeff O Klaus
- Ali McBride, Pharm.D., M.S., BCPS, is Clinical Coordinator Hematology/Oncology, Department of Pharmacy, University of Arizona Cancer Center, Tucson. Jeff O. Klaus, Pharm.D., is Clinical Pharmacist, Hematologic Malignancies/Stem Cell Transplant, Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO. Keith Stockerl-Goldstein, M.D.,is Associate Professor, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis
| | - Keith Stockerl-Goldstein
- Ali McBride, Pharm.D., M.S., BCPS, is Clinical Coordinator Hematology/Oncology, Department of Pharmacy, University of Arizona Cancer Center, Tucson. Jeff O. Klaus, Pharm.D., is Clinical Pharmacist, Hematologic Malignancies/Stem Cell Transplant, Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO. Keith Stockerl-Goldstein, M.D.,is Associate Professor, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis
| |
Collapse
|
20
|
Abstract
The phenomenon of multidrug resistance (MDR) in cancer is associated with the overexpression of the ATP-binding cassette (ABC) transporter proteins, including multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein. MRP1 plays an active role in protecting cells by its ability to efflux a vast array of drugs to sub-lethal levels. There has been much effort in elucidating the mechanisms of action, structure and substrates and substrate binding sites of MRP1 in the last decade. In this review, we detail our current understanding of MRP1, its clinical relevance and highlight the current environment in the search for MRP1 inhibitors. We also look at the capacity for the rapid intercellular transfer of MRP1 phenotype from spontaneously shed membrane vesicles known as microparticles and discuss the clinical and therapeutic significance of this in the context of cancer MDR.
Collapse
Affiliation(s)
- Jamie F Lu
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| | - Deep Pokharel
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| | - Mary Bebawy
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| |
Collapse
|
21
|
Wang XW, Zhang YL, Xiong Y. Impact of ABCB1 single-nucleotide polymorphisms on treatment outcomes with salmeterol/fluticasone combination therapy for stable chronic obstructive pulmonary disease. Genet Test Mol Biomarkers 2015; 19:566-72. [PMID: 26327575 DOI: 10.1089/gtmb.2015.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To investigate the relationship between ABCB1 single-nucleotide polymorphisms and the efficacy of salmeterol/fluticasone combination (SFC) inhalation therapy for stable chronic obstructive pulmonary disease (COPD) in a Chinese Han population. METHODS A total of 362 patients with stable COPD were recruited between July 2012 and March 2014. Based on the therapeutic effects of lung function improvement and COPD Assessment Test (CAT) scores, all patients were either placed into the effective group (n = 138) or the ineffective group (n = 224). Three common polymorphisms (rs1045642C > T, rs1128503C > T, and rs1202184A > G) in the ABCB1 gene were analyzed by polymerase chain reaction-restriction fragment length polymorphism in these patients. All data were analyzed by SPSS version 18.0 software. RESULTS The genotype and allele frequencies of the ABCB1 rs1045642C > T polymorphic locus were significantly different between the effective group and the ineffective group under the codominant, recessive, and allele models (all p < 0.05). Haplotype analysis of ABCB1 indicated that CTA (rs1045642C-rs1128503T-rs1202184A) haplotype frequencies in the effective group were significantly lower than the ineffective group (p = 0.022), but TCG (rs1045642T-rs1128503C-rs1202184G) haplotype frequencies in the effective group were significantly higher than the ineffective group (p = 0.048). Logistic regression analysis showed that smoking history and rs1045642 CT + CC/TT may be correlated with the efficacy of SFC inhalation therapy in stable COPD patients. CONCLUSION ABCB1 rs1045642C > T polymorphism and CTA/TCG haplotypes, as well as smoking history may influence the efficacy of SFC inhalation therapy in stable COPD patients in the Chinese Han population.
Collapse
Affiliation(s)
- Xin-Wei Wang
- 1 Department of Respiratory Diseases, Hubei Zhongshan Hospital , Wuhan, People's Republic of China
| | - Yan-Lin Zhang
- 2 Department of Internal Medicine, Wuhan Institute of Tuberculosis Prevention , Wuhan, People's Republic of China
| | - Ying Xiong
- 3 Department of Laboratory, Wuhan Union Hospital , Wuhan, People's Republic of China
| |
Collapse
|
22
|
Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine. Int J Mol Sci 2015; 16:17514-34. [PMID: 26263974 PMCID: PMC4581206 DOI: 10.3390/ijms160817514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022] Open
Abstract
Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL).
Collapse
|
23
|
Hill CR, Cole M, Errington J, Malik G, Boddy AV, Veal GJ. Characterisation of the clinical pharmacokinetics of actinomycin D and the influence of ABCB1 pharmacogenetic variation on actinomycin D disposition in children with cancer. Clin Pharmacokinet 2015; 53:741-51. [PMID: 24968986 PMCID: PMC4111883 DOI: 10.1007/s40262-014-0153-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background and Objective Despite its important role in cancer treatment, there is currently very limited available information concerning the clinical pharmacology of actinomycin D (Act D). The study was designed to characterise Act D pharmacokinetics and investigate the impact of pharmacogenetic variation on Act D disposition in children with cancer. Methods A total of 650 plasma samples collected over an 8 year period from 117 patients ≤21 years receiving Act D (0.4–1.6 mg/m2) were used to characterise a population pharmacokinetic model. Polymorphisms in ABCB1 were analysed in 140 patients. Results A 3-compartment model provided a good fit to the data. Median values for Act D clearance and volume of distribution in the central compartment (V1) obtained from the model were 5.3 L/h and 1.9 L (13.9 L/h/70 kg and 7.5 L/70 kg), respectively. There was substantial inter-subject variation in all pharmacokinetic parameters (coefficients of variation 53–81 % for non-normalised values). Body weight was a major determinant of Act D clearance, such that dose capping at 2 mg in larger children at a protocol dose of 1.5 mg/m2 resulted in significantly lower area under the plasma concentration-time curves (mean AUC values: 9.3 versus 12.8 mg·min/L; P < 0.0001). No significant relationships were found between ABCB1 genetic variants and Act D pharmacokinetic parameters, nor between CL, V1 or dose and incidence of grade 3 or 4 toxicity. Conclusion We have defined the pharmacokinetics of Act D in a paediatric patient population, providing robust estimates of key pharmacokinetic parameters. Pharmacokinetic data bring into question the current clinical practice of dose capping at 2 mg in larger patients. Pharmacogenetic variation in candidate drug transporter genes identified from preclinical studies does not significantly impact on Act D exposure in a clinical setting. Electronic supplementary material The online version of this article (doi:10.1007/s40262-014-0153-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher R Hill
- Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
24
|
Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget 2014; 4:2186-207. [PMID: 24327604 PMCID: PMC3926819 DOI: 10.18632/oncotarget.1497] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the era of new and mostly effective therapeutic protocols, multiple myeloma still tends to be a hard-to-treat hematologic cancer. This hallmark of the disease is in fact a sequel to drug resistant phenotypes persisting initially or emerging in the course of treatment. Furthermore, the heterogeneous nature of multiple myeloma makes treating patients with the same drug challenging because finding a drugable oncogenic process common to all patients is not yet feasible, while our current knowledge of genetic/epigenetic basis of multiple myeloma pathogenesis is outstanding. Nonetheless, bone marrow microenvironment components are well known as playing critical roles in myeloma tumor cell survival and environment-mediated drug resistance happening most possibly in all myeloma patients. Generally speaking, however; real mechanisms underlying drug resistance in multiple myeloma are not completely understood. The present review will discuss the latest findings and concepts in this regard. It reviews the association of important chromosomal translocations, oncogenes (e.g. TP53) mutations and deranged signaling pathways (e.g. NFκB) with drug response in clinical and experimental investigations. It will also highlight how bone marrow microenvironment signals (Wnt, Notch) and myeloma cancer stem cells could contribute to drug resistance in multiple myeloma.
Collapse
Affiliation(s)
- Jahangir Abdi
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
25
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Kouroukis T, Baldassarre F, Haynes A, Imrie K, Reece D, Cheung M. Bortezomib in multiple myeloma: systematic review and clinical considerations. Curr Oncol 2014; 21:e573-603. [PMID: 25089109 PMCID: PMC4117625 DOI: 10.3747/co.21.1798] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We conducted a systematic review to determine the appropriate use of bortezomib alone or in combination with other agents in patients with multiple myeloma (mm). We searched medline, embase, the Cochrane Library, conference proceedings, and the reference lists of included studies. We analyzed randomized controlled trials and systematic reviews if they involved adult mm patients treated with bortezomib and if they reported on survival, disease control, response, quality of life, or adverse effects. Twenty-six unique studies met the inclusion criteria. For patients with previously untreated mm and for candidates for transplantation, we found a statistically significant benefit in time to progression [hazard ratio (hr): 0.48, p < 0.001; and hr: 0.63, p = 0.006, respectively] and a better response with a bortezomib than with a non-bortezomib regimen (p < 0.001). Progression-free survival was longer with bortezomib and thalidomide than with thalidomide alone (p = 0.01). In non-candidates for transplantation, a significant benefit in overall survival was observed with a bortezomib regimen (hr compared with a non-bortezomib regimen: 0.61; p = 0.008), and in transplantation candidates receiving bortezomib, the response rate was improved after induction (p = 0.004) and after a first transplant (p = 0.016). In relapsed or refractory mm, overall survival (p = 0.03), time to progression (hr: 1.82; p = 0.000004), and progression-free survival (hr: 1.69; p = 0.000026) were significantly improved with bortezomib and pegylated liposomal doxorubicin (compared with bortezomib alone), and bortezomib monotherapy was better than dexamethasone alone (hr: 0.77; p = 0.027). Bortezomib combined with thalidomide and dexamethasone was better than either bortezomib monotherapy or thalidomide with dexamethasone (p < 0.001). In previously untreated or in relapsed or refractory mm patients, bortezomib-based therapy has improved disease control and, in some patients, overall survival.
Collapse
Affiliation(s)
| | - F.G. Baldassarre
- Program in Evidence-Based Care, Cancer Care Ontario, Hamilton, ON
| | - A.E. Haynes
- Program in Evidence-Based Care, Cancer Care Ontario, Hamilton, ON
| | - K. Imrie
- Odette Cancer Centre at Sunnybrook Health Sciences Centre, Toronto, ON
| | | | - M.C. Cheung
- Odette Cancer Centre at Sunnybrook Health Sciences Centre, Toronto, ON
| |
Collapse
|
27
|
Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma 2014; 56:26-33. [PMID: 24678978 DOI: 10.3109/10428194.2014.907890] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a malignant neoplastic cancer of the plasma cells that involves the bone marrow. The majority of patients with MM initially respond to chemotherapy, but they eventually become resistant to later drug therapy. One of the reasons for drug resistance in patients with MM is efflux transporters. P-glycoprotein (P-gp) is the most studied of the multidrug resistance proteins, and is up-regulated in response to many chemotherapeutic drugs. This up-regulation of P-gp causes a decrease in the intracellular accumulation of these drugs, limiting their therapeutic efficacy. In this review, we focus on the role of P-gp in drugs used for patients with MM. P-gp has been found to be an important factor with regard to drug resistance in many of the drug classes used in the treatment of MM (proteasome inhibitors, anthracyclines, alkylating agents and immunomodulators are examples). Thus, our further understanding of its mechanism and inhibitory effects will help us decrease drug resistance in patients with MM.
Collapse
Affiliation(s)
- Joseph Abraham
- Cancer Biology Division, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis , St. Louis, MO , USA
| | | | | |
Collapse
|
28
|
Marin JJG, Monte MJ, Blazquez AG, Macias RIR, Serrano MA, Briz O. The role of reduced intracellular concentrations of active drugs in the lack of response to anticancer chemotherapy. Acta Pharmacol Sin 2014; 35:1-10. [PMID: 24317012 PMCID: PMC3880477 DOI: 10.1038/aps.2013.131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022] Open
Abstract
A major difficulty in the treatment of cancers is the poor response of many tumors to pharmacological regimens. This situation can be accounted for by the existence of a variety of complex mechanisms of chemoresistance (MOCs), leading to reduced intracellular concentrations of active agents, changes in the molecular targets of the drugs, enhanced repair of drug-induced modifications in macromolecules, stimulation of anti-apoptotic mechanisms, and inhibition of pro-apoptotic mechanisms. The present review focuses on alterations in the expression and appearance of the genetic variants that affect the genes involved in reducing the amount of active agents inside tumor cells. These alterations can occur through two mechanisms: either by lowering uptake or enhancing efflux (so-called MOC-1a and MOC-1b, respectively), or by decreasing the activation of prodrugs or enhancing inactivation of active agents through their biotransformation (MOC-2). The development of chemosensitizers that are useful in implementing the pharmacological manipulation of these processes constitutes a challenge to modern pharmacology. Nevertheless, the important physiological roles of the most relevant genes involved in MOC-1a, MOC-1b, and MOC-2 make it difficult to prevent the side effects of chemosensitizers. A more attainable goal in this area of pharmacological enquiry is the identification of proteomic profiles that will permit oncologists to accurately predict a lack of response to a given regimen, which would be useful for adapting treatment to the personal situation of each patient.
Collapse
|
29
|
Conseil G, Cole SPC. Two polymorphic variants of ABCC1 selectively alter drug resistance and inhibitor sensitivity of the multidrug and organic anion transporter multidrug resistance protein 1. Drug Metab Dispos 2013; 41:2187-96. [PMID: 24080162 DOI: 10.1124/dmd.113.054213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
In this study we compared the in silico predictions of the effect of ABCC1 nonsynonymous single nucleotide polymorphisms (nsSNPs) with experimental data on MRP1 transport function and response to chemotherapeutics and multidrug resistance protein 1 (MRP1) inhibitors. Vectors encoding seven ABCC1 nsSNPs were stably expressed in human embryonic kidney (HEK) cells, and levels and localization of the mutant MRP1 proteins were determined by confocal microscopy and immunoblotting. The function of five of the mutant proteins was determined using cell-based drug and inhibitor sensitivity and efflux assays, and membrane-based organic anion transport assays. Predicted consequences of the mutations were determined by multiple bioinformatic methods. Mutants C43S and S92F were correctly routed to the HEK cell plasma membrane, but the levels were too low to permit functional characterization. In contrast, levels and membrane trafficking of R633Q, G671V, R723Q, A989T, and C1047S were similar to wild-type MRP1. In cell-based assays, all five mutants were equally effective at effluxing calcein, but only two exhibited reduced resistance to etoposide (C1047S) and vincristine (A989T; C1047S). The GSH-dependent inhibitor LY465803 (LY465803 [N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide)] was less effective at blocking calcein efflux by A989T, but in a membrane-based assay, organic anion transport by A989T and C1047S was inhibited by MRP1 modulators as well as wild-type MRP1. GSH accumulation assays suggest cellular GSH efflux by A989T and C1047S may be impaired. In conclusion, although six in silico analyses consistently predict deleterious consequences of ABCC1 nsSNPs G671V, changes in drug resistance and inhibitor sensitivity were only observed for A989T and C1047S, which may relate to GSH transport differences.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | |
Collapse
|
30
|
Gentile M, Recchia AG, Mazzone C, Lucia E, Vigna E, Morabito F. Perspectives in the treatment of multiple myeloma. Expert Opin Biol Ther 2013; 13 Suppl 1:S1-22. [PMID: 23692500 DOI: 10.1517/14712598.2013.799132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The development of proteasome inhibitor (PI) and immunomodulatory drugs (IMiDs) and advances in supportive care have considerably changed the treatment paradigm of multiple myeloma (MM) and significantly improved survival. Nevertheless, almost all patients show disease relapse and develop drug resistance. AREAS COVERED We review the prognostic stratification and therapeutic strategy for newly diagnosed MM patients. Furthermore, mechanisms of drug resistance are discussed. Data regarding newer drugs, currently undergoing examination, such as PI (carfilzomib, ONX0912, MLN9708, and marizomib), IMiDs (pomalidomide), histone deacetylase inhibitors (vorinostat and panobinostat), kinase inhibitors (temsirolimus, everolimus, and tanespimycin), and immune-based therapies (elotuzumab, siltuximab, MOR03087, and MMBT062) are reported. EXPERT OPINION The use of three to four drug combination therapies including PI and IMiDs has significantly impacted on MM patient outcome. Moreover, new insights into MM biology from high-throughput technologies and availability of newer and more efficacious drugs will continue to influence our approach to MM treatment. In the immediate future molecular subgroup-specific trials using targeted agents may represent a very important step toward evaluating impact of interfering with relevant signaling pathways in MM. With the continued rapid evolution of progress in this field, MM will become a chronic illness having sustained complete response in a significant number of patients.
Collapse
Affiliation(s)
- Massimo Gentile
- Unità Operativa Complessa di Ematologia, Dipartimento Oncoematologico, Azienda Ospedaliera di Cosenza, Viale della Repubblica, 87100 Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Gentile M, Recchia AG, Mazzone C, Morabito F. Emerging biological insights and novel treatment strategies in multiple myeloma. Expert Opin Emerg Drugs 2013; 17:407-38. [PMID: 22920042 DOI: 10.1517/14728214.2012.713345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Survival in multiple myeloma (MM) has improved significantly in the past 10 years due to new treatments, such as thalidomide and lenalidomide (immunomodulatory drugs or IMiDs) bortezomib and advances in supportive care. Nevertheless, almost all MM patients show disease relapse and develop drug resistance. AREAS COVERED The authors review the therapeutic approach for untreated MM patients. Furthermore, the prognostic stratification of patients and the proposed risk-adapted strategy are discussed. Finally, preclinical and clinical data regarding newer antimyeloma agents, currently undergoing examination such as proteasome inhibitors (PIs, carfilzomib), IMiDs (pomalidomide), epigenetic agents (histone deacetylase inhibitors vorinostat and panobinostat), humanized monoclonal antibodies (elotuzumab and MOR03087) and targeted therapies (inhibitors of NF-κB, MAPK, HSP90 and AKT) are reported. EXPERT OPINION MM patient outcome has remarkably improved due to the use of three to four drug combination therapies including PIs and IMiDs, which target the tumor in its bone marrow microenvironment, however MM treatment remains challenging. The use of high-throughput techniques has allowed to discover new insights into MM biology. The identification of candidate therapeutic targets and availability of respective investigative agents will allow for a substantial progress in the development and implementation of personalized medicine in MM.
Collapse
Affiliation(s)
- Massimo Gentile
- Unità Operativa Complessa di Ematologia, Dipartimento Oncoematologico, Azienda Ospedaliera di Cosenza, Viale della Repubblica, 87100 Cosenza, Italy
| | | | | | | |
Collapse
|
32
|
Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol 2012; 82:1008-21. [PMID: 22826468 DOI: 10.1124/mol.112.079129] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Multidrug resistance (MDR), which is mediated by multiple drug efflux ATP-binding cassette (ABC) transporters, is a critical issue in the treatment of acute leukemia, with permeability glycoprotein (P-gp), multidrug resistance-associated protein 1, and breast cancer resistance protein (i.e., ABCG2) consistently being shown to be key effectors of MDR in cell line studies. Studies have demonstrated that intrinsic MDR can arise as a result of specific gene expression profiles and that drug-induced overexpression of P-gp and other MDR proteins can result in acquired resistance, with multiple ABC transporters having been shown to be overexpressed in cell lines selected for resistance to multiple drugs used to treat acute leukemia. Furthermore, numerous anticancer drugs, including agents commonly used for the treatment of acute leukemia (e.g., doxorubicin, vincristine, mitoxantrone, and methotrexate), have been shown to be P-gp substrates or to be susceptible to efflux mediated by other MDR proteins, and multiple clinical studies have demonstrated associations between P-gp or other MDR protein expression and responses to therapy or survival rates in acute leukemia. Here we review the importance of MDR in cancer, with a focus on acute leukemia, and we highlight the need for rapid accurate assessment of MDR status for optimal treatment selection. We also address the latest research on overcoming MDR, from inhibition of P-gp and other MDR proteins through various approaches (including direct antagonism and gene silencing) to the design of novel agents or novel delivery systems for existing therapeutic agents, to evade cellular efflux.
Collapse
Affiliation(s)
- Cindy Q Xia
- Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | |
Collapse
|
33
|
Knez L, Košnik M, Ovčariček T, Sadikov A, Sodja E, Kern I, Cufer T. Predictive value of ABCB1 polymorphisms G2677T/A, C3435T, and their haplotype in small cell lung cancer patients treated with chemotherapy. J Cancer Res Clin Oncol 2012; 138:1551-60. [PMID: 22543673 DOI: 10.1007/s00432-012-1231-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/10/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Multiple drug resistance limits the efficacy of numerous cytotoxic drugs used in the treatment of small cell lung cancer (SCLC). The drug efflux protein ATP-binding cassette transporter B1 (ABCB1) has an important role in this process, and its gene variability may affect chemotherapy outcomes. PATIENTS AND METHODS This study aimed to evaluate the associations between ABCB1 polymorphisms G2677T/A, C3435T, and their haplotype with progression-free survival (PFS) and overall survival (OS) in 177 SCLC patients treated with cisplatin-etoposide or cyclophosphamide-epirubicin-vincristine chemotherapy. To determine the ABCB1 genotype, allelic specific TaqMan(®) probes were used in a RT-PCR . RESULTS Patients carrying the G2677T/A TT + TA + AA genotypes (24 %) or the C3435T CT + TT genotypes (72 %) or the 2677T/A-3435T haplotype (40 %) had a longer PFS (Cox regression, P = 0.052, 0.037 and 0.037, respectively); these associations persisted also in multivariate analyses (Cox regression, P = 0.028, 0.037 and 0.030, respectively). Moreover, patients with the C3435T CT + TT genotypes had a longer OS both in univariate and multivariate analysis (Cox regression, P = 0.022 and 0.028, respectively). A trend toward longer OS was noted for the 2677T/A-3435T haplotype (Cox regression, P = 0.051), but its independent value was not confirmed (Cox regression, P = 0.071). CONCLUSIONS Our study reported a possible predictive value of ABCB1 polymorphisms G2677T/A, C3435T, and their haplotype for longer PFS and OS in Caucasian SCLC patients treated with chemotherapy. However, to be implemented into routine clinical practice, ABCB1 polymorphisms require further validation.
Collapse
Affiliation(s)
- L Knez
- University Hospital Golnik, Golnik 36, 4204, Golnik, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mandery K, Glaeser H, Fromm MF. Interaction of innovative small molecule drugs used for cancer therapy with drug transporters. Br J Pharmacol 2012; 165:345-62. [PMID: 21827448 DOI: 10.1111/j.1476-5381.2011.01618.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Multiple new small molecules such as tyrosine kinase, mammalian target of rapamycin (mTOR) and proteasome inhibitors have been approved in the last decade and are a considerable progress for cancer therapy. Drug transporters are important determinants of drug concentrations in the systemic circulation. Moreover, expression of drug transporters in blood-tissue barriers (e.g. blood-brain barrier) can limit access of small molecules to the tumour (e.g. brain tumour). Finally, transporter expression and (up)regulation in the tumour itself is known to affect local drug concentrations in the tumour tissue contributing to multidrug resistance observed for multiple anticancer agents. This review summarizes the current knowledge on: (i) small molecules as substrates of uptake and efflux transporters; (ii) the impact of transporter deficiency in knockout mouse models on plasma and tissue concentrations; (iii) small molecules as inhibitors of uptake and efflux transporters with possible consequences for drug-drug interactions and the reversal of multidrug resistance; and (iv) on clinical studies investigating the association of polymorphisms in genes encoding drug transporters with pharmacokinetics, outcome and toxicity during treatment with the small molecules.
Collapse
Affiliation(s)
- K Mandery
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
35
|
The single nucleotide polymorphism and haplotype analysis of MDR1 in Jiangsu Han population of China. Biomed Pharmacother 2012; 66:459-63. [PMID: 22902647 DOI: 10.1016/j.biopha.2012.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/11/2012] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to perform the frequency distribution of MDR1 gene SNPs and haplotypes of Jiangsu Han population in China. A total of 225 Jiangsu Han unrelated volunteers were enrolled and genotyped by PCR-ASP method at three loci: C1236T (rs1128503), G2677T/A (rs2032582) and C3435T (rs1045642). In total, C and T were found at locus 1236, with the frequency of 35% and 65%, respectively. The most frequent allele at locus 2677 was G with the frequency of 44%, followed by T (41%) and A (15%). At locus 3435, C was more common (60%) than T (40%). The most common haplotype at loci 1236-2677-3435 was T-T-T (31.84%), at loci 1236-2677 was T-T (37.68%), at loci 2677-3435 was G-C (39.06%), and at loci 1236-3435 was T-T (34.28%). The haplotype linkage disequilibrium study found that all three loci were in linkage disequilibrium, such as T-T at loci 1236-2677, T-T at loci 2677-3435 and C-C at loci 1236-3435 (P<0.01). The dendrogram study indicated that the distribution of MDR1 SNPs in Jiangsu Han population were close to Japan and Malay populations and far away from European countries. These findings could shade new lights in population genetics and anthropology studies of Han-Chinese. It also provides basic data for research on MDR1 gene polymorphism, disease association and drug resistance study.
Collapse
|
36
|
Duggan ST, Keating GM. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma. Drugs 2012; 71:2531-58. [PMID: 22141391 DOI: 10.2165/11207510-000000000-00000] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pegylated liposomal doxorubicin (Caelyx™, Doxil®) represents an improved formulation of conventional doxorubicin, with reduced cardiotoxicity and an improved pharmacokinetic profile. This article reviews the efficacy and tolerability of pegylated liposomal doxorubicin in metastatic breast cancer, progressive ovarian cancer, relapsed or refractory multiple myeloma and AIDS-related Kaposi's sarcoma, as well as summarizing its pharmacological properties. In three randomized, open-label, multicentre trials, monotherapy with pegylated liposomal doxorubicin was as effective as doxorubicin or capecitabine in the first-line treatment of metastatic breast cancer, and as effective as vinorelbine or combination mitomycin plus vinblastine in taxane-refractory metastatic breast cancer. Pegylated liposomal doxorubicin alone was as effective as topotecan or gemcitabine alone in patients with progressive ovarian cancer resistant or refractory to platinum- or paclitaxel-based therapy, according to the results of three randomized multicentre trials. In addition, in patients with progressive ovarian cancer who had received prior platinum-based therapy, progression-free survival was significantly longer with pegylated liposomal doxorubicin plus carboplatin than with paclitaxel plus carboplatin, according to the results of a randomized, open-label multicentre trial. Combination therapy with pegylated liposomal doxorubicin plus bortezomib was more effective than bortezomib alone in patients with relapsed or refractory multiple myeloma, according to the results of a randomized, open-label, multinational trial. Randomized multinational trials also demonstrated the efficacy of pegylated liposomal doxorubicin in patients with advanced AIDS-related Kaposi's sarcoma. Pegylated liposomal doxorubicin exhibited a relatively favourable safety profile compared with conventional doxorubicin and other available chemotherapy agents. The most common treatment-related adverse events included myelosuppression, palmar-plantar erythrodysesthesia and stomatitis, although these are manageable with appropriate supportive measures. To conclude, pegylated liposomal doxorubicin is a useful option in the treatment of various malignancies, including metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma.
Collapse
Affiliation(s)
- Sean T Duggan
- Adis, a Wolters Kluwer Business, Auckland, New Zealand.
| | | |
Collapse
|
37
|
Campa D, Sainz J, Pardini B, Vodickova L, Naccarati A, Rudolph A, Novotny J, Försti A, Buch S, von Schönfels W, Schafmayer C, Völzke H, Hoffmeister M, Frank B, Barale R, Hemminki K, Hampe J, Chang-Claude J, Brenner H, Vodicka P, Canzian F. A comprehensive investigation on common polymorphisms in the MDR1/ABCB1 transporter gene and susceptibility to colorectal cancer. PLoS One 2012; 7:e32784. [PMID: 22396794 PMCID: PMC3292569 DOI: 10.1371/journal.pone.0032784] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 02/02/2012] [Indexed: 02/07/2023] Open
Abstract
ATP Binding Cassette B1 (ABCB1) is a transporter with a broad substrate specificity involved in the elimination of several carcinogens from the gut. Several polymorphic variants within the ABCB1 gene have been reported as modulators of ABCB1-mediated transport. We investigated the impact of ABCB1 genetic variants on colorectal cancer (CRC) risk. A hybrid tagging/functional approach was performed to select 28 single nucleotide polymorphisms (SNPs) that were genotyped in 1,321 Czech subjects, 699 CRC cases and 622 controls. In addition, six potentially functional SNPs were genotyped in 3,662 German subjects, 1,809 cases and 1,853 controls from the DACHS study. We found that three functional SNPs (rs1202168, rs1045642 and rs868755) were associated with CRC risk in the German population. Carriers of the rs1202168_T and rs868755_T alleles had an increased risk for CRC (P(trend) = 0.016 and 0.029, respectively), while individuals bearing the rs1045642_C allele showed a decreased risk of CRC (P(trend) = 0.022). We sought to replicate the most significant results in an independent case-control study of 3,803 subjects, 2,169 cases and 1,634 controls carried out in the North of Germany. None of the SNPs tested were significantly associated with CRC risk in the replication study. In conclusion, in this study of about 8,800 individuals we show that ABCB1 gene polymorphisms play at best a minor role in the susceptibility to CRC.
Collapse
Affiliation(s)
- Daniele Campa
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Pisa, Pisa, Italy
| | - Juan Sainz
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Pardini
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alessio Naccarati
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Novotny
- Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Clinical Research Center, SUS Malmö, Malmö, Sweden
| | - Stephan Buch
- Department of General Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
- POPGEN Biobank Project, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Witigo von Schönfels
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Clemens Schafmayer
- POPGEN Biobank Project, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Hospital of the Ernst Moritz Arndt University, Greifswald, Greifswald, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Frank
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Clinical Research Center, SUS Malmö, Malmö, Sweden
| | - Jochen Hampe
- Department of General Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
Effectively treating patients with multiple myeloma is challenging. The development of therapeutic regimens over the past decade that incorporate the proteasome inhibitor bortezomib and the immunomodulatory drugs thalidomide and lenalidomide has been the cornerstone of improving the outcome of patients with myeloma. Although these treatment regimens have improved patient survival, nearly all patients eventually relapse. Our improved understanding of the biology of the disease and the importance of the microenvironment has translated into ongoing work to help overcome the challenge of relapse. Several classes of agents including next-generation proteasome inhibitors, immunomodulatory agents, selective histone-deacetylase inhibitors, antibody and antitumor immunotherapy approaches are currently undergoing preclinical and clinical evaluation. This Review provides an update on the latest advances in the treatment of multiple myeloma. In particular, we focus on novel therapies including modulating protein homeostasis, kinases inhibitors, targeting accessory cells and cytokines, and immunomodulatory agents. A discussion of the challenges associated with these therapeutic approaches is also presented.
Collapse
|
39
|
Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2011; 27:85-105. [PMID: 22123128 DOI: 10.2133/dmpk.dmpk-11-rv-098] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent pharmacogenomic/pharmacogenetic (PGx) studies have disclosed important roles for drug transporters in the human body. Changes in the functions of drug transporters due to drug/food interactions or genetic polymorphisms, for example, are associated with large changes in pharmacokinetic (PK) profiles of substrate drugs, leading to changes in drug response and side effects. This information is extremely useful not only for drug development but also for individualized treatment. Among drug transporters, the ATP-binding cassette (ABC) transporters are expressed in most tissues in humans, and play protective roles; reducing drug absorption from the gastrointestinal tract, enhancing drug elimination into bile and urine, and impeding the entry of drugs into the central nervous system and placenta. In addition to PK/pharmacodynamic (PD) issues, ABC transporters are reported as etiologic and prognostic factors (or biomarkers) for genetic disorders. Although a consensus has not yet been reached, clinical studies have demonstrated that the PGx of ABC transporters influences the overall outcome of pharmacotherapy and contributes to the pathogenesis and progression of certain disorders. This review explains the impact of PGx in ABC transporters in terms of PK/PD, focusing on P-glycoprotein and breast cancer resistance protein (BCRP).
Collapse
Affiliation(s)
- Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
40
|
Vangsted A, Klausen TW, Vogel U. Genetic variations in multiple myeloma II: association with effect of treatment. Eur J Haematol 2011; 88:93-117. [DOI: 10.1111/j.1600-0609.2011.01696.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Jamieson D, Boddy AV. Pharmacogenetics of genes across the doxorubicin pathway. Expert Opin Drug Metab Toxicol 2011; 7:1201-10. [DOI: 10.1517/17425255.2011.610180] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Riganti C, Voena C, Kopecka J, Corsetto PA, Montorfano G, Enrico E, Costamagna C, Rizzo AM, Ghigo D, Bosia A. Liposome-encapsulated doxorubicin reverses drug resistance by inhibiting P-glycoprotein in human cancer cells. Mol Pharm 2011; 8:683-700. [PMID: 21491921 DOI: 10.1021/mp2001389] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The most frequent drawback of doxorubicin is the onset of drug resistance, due to the active efflux through P-glycoprotein (Pgp). Recently formulations of liposome-encapsulated doxorubicin have been approved for the treatment of tumors resistant to conventional anticancer drugs, but the molecular basis of their efficacy is not known. To clarify by which mechanisms the liposome-encapsulated doxorubicin is effective in drug-resistant cancer cells, we analyzed the effects of doxorubicin and doxorubicin-containing anionic liposomal nanoparticles ("Lipodox") on the drug-sensitive human colon cancer HT29 cells and on the drug-resistant HT29-dx cells. Interestingly, we did not detect any difference in drug accumulation and toxicity between free doxorubicin and Lipodox in HT29 cells, but Lipodox was significantly more effective than doxorubicin in HT29-dx cells, which are rich in Pgp. This effect was lost in HT29-dx cells silenced for Pgp and acquired by HT29 cells overexpressing Pgp. Lipodox was less extruded by Pgp than doxorubicin and inhibited the pump activity. This inhibition was due to a double effect: the liposome shell per se altered the composition of rafts in resistant cells and decreased the lipid raft-associated amount of Pgp, and the doxorubicin-loaded liposomes directly impaired transport and ATPase activity of Pgp. The efficacy of Lipodox was not increased by verapamil and cyclosporin A and was underwent interference by colchicine. Binding assays revealed that Lipodox competed with verapamil for binding Pgp and hampered the interaction of colchicine with this transporter. Site-directed mutagenesis experiments demonstrated that glycine 185 is a critical residue for the direct inhibitory effect of Lipodox on Pgp. Our work describes novel properties of liposomal doxorubicin, investigating the molecular bases that make this formulation an inhibitor of Pgp activity and a vehicle particularly indicated against drug-resistant tumors.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|