1
|
Mouhssine S, Maher N, Kogila S, Cerchione C, Martinelli G, Gaidano G. Current Therapeutic Sequencing in Chronic Lymphocytic Leukemia. Hematol Rep 2024; 16:270-282. [PMID: 38804280 PMCID: PMC11130833 DOI: 10.3390/hematolrep16020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults, is constantly changing. CLL patients can be divided into three risk categories, based on their IGHV mutational status and the occurrence of TP53 disruption and/or complex karyotype. For the first-line treatment of low- and intermediate-risk CLL, both the BCL2 inhibitor venetoclax plus obinutuzumab and the second generation BTK inhibitors (BTKi), namely acalabrutinib and zanubrutinib, are valuable and effective options. Conversely, venetoclax-based fixed duration therapies have not shown remarkable results in high-risk CLL patients, while continuous treatment with acalabrutinib and zanubrutinib displayed favorable outcomes, similar to those obtained in TP53 wild-type patients. The development of acquired resistance to pathway inhibitors is still a clinical challenge, and the optimal treatment sequencing of relapsed/refractory CLL is not completely established. Covalent BTKi-refractory patients should be treated with venetoclax plus rituximab, whereas venetoclax-refractory CLL may be treated with second generation BTKi in the case of early relapse, while venetoclax plus rituximab might be used if late relapse has occurred. On these grounds, here we provide an overview of the current state-of-the-art therapeutic algorithms for treatment-naïve patients, as well as for relapsed/refractory disease.
Collapse
Affiliation(s)
- Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| | - Nawar Maher
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| | - Sreekar Kogila
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| | - Claudio Cerchione
- Hematology Unit, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST IRCCS, 47014 Meldola, Italy;
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Institute of Haematology “L. and A. Seràgnoli”, S. Orsola University Hospital, 40138 Bologna, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| |
Collapse
|
2
|
Cuesta-Mateos C, Brown JR, Terrón F, Muñoz-Calleja C. Of Lymph Nodes and CLL Cells: Deciphering the Role of CCR7 in the Pathogenesis of CLL and Understanding Its Potential as Therapeutic Target. Front Immunol 2021; 12:662866. [PMID: 33841445 PMCID: PMC8024566 DOI: 10.3389/fimmu.2021.662866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
The lymph node (LN) is an essential tissue for achieving effective immune responses but it is also critical in the pathogenesis of chronic lymphocytic leukemia (CLL). Within the multitude of signaling pathways aberrantly regulated in CLL the homeostatic axis composed by the chemokine receptor CCR7 and its ligands is the main driver for directing immune cells to home into the LN. In this literature review, we address the roles of CCR7 in the pathophysiology of CLL, and how this chemokine receptor is of critical importance to develop more rational and effective therapies for this malignancy.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Jennifer R Brown
- Chronic Lymphocytic Leukemia (CLL) Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain.,School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Bhattacharya S, Goyal A, Kaur P, Singh R, Kalra S. Anticancer Drug-induced Thyroid Dysfunction. EUROPEAN ENDOCRINOLOGY 2020; 16:32-39. [PMID: 32595767 DOI: 10.17925/ee.2020.16.1.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy and targeted therapy, though less toxic than conventional chemotherapy, can increase the risk of thyroid dysfunction. Immune checkpoint inhibitors render the cancer cells susceptible to immune destruction, but also predispose to autoimmune disorders like primary hypothyroidism as well as central hypothyroidism secondary to hypophysitis. Tyrosine kinase inhibitors act by blocking vascular endothelial growth factor receptors and their downstream targets. Disruption of the vascular supply from the inhibition of endothelial proliferation damages not only cancer cells but also organs with high vascularity like the thyroid. Interferon-α, interleukin-2 and thalidomide analogues can cause thyroid dysfunction by immune modulation. Alemtuzumab, a monoclonal antibody directed against the cell surface glycoprotein CD52 causes Graves' disease during immune reconstitution. Metaiodobenzylguanidine, combined with 131-iodine, administered as a radiotherapeutic agent for tumours derived from neural crest cells, can cause primary hypothyroidism. Bexarotene can produce transient central hypothyroidism by altering the feedback effect of thyroid hormone on the pituitary gland. Thyroid dysfunction can be managed in the usual manner without a requirement for dose reduction or discontinuation of the implicated agent. This review aims to highlight the effect of various anticancer agents on thyroid function. Early recognition and appropriate management of thyroid disorders during cancer therapy will help to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Alpesh Goyal
- All Indian Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
4
|
D'Rozario J, Bennett SK. Update on the role of venetoclax and rituximab in the treatment of relapsed or refractory CLL. Ther Adv Hematol 2019; 10:2040620719844697. [PMID: 31205643 PMCID: PMC6535706 DOI: 10.1177/2040620719844697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/24/2019] [Indexed: 11/16/2022] Open
Abstract
For the treatment of mature B cell malignancies including chronic lymphocytic leukemia (CLL), the last 5 years has brought major advances in the application of targeted therapies. Whilst monoclonal anti-CD20 agents such as rituximab have a central role in combination with traditional cytotoxic therapy, their combination with novel agents that target the B cell receptor signaling pathway and other intracellular mechanisms of B cell proliferation is a new approach to treatment. Venetoclax is a highly specific novel agent inhibiting the bcl-2 anti-apoptotic pathway and has potent activity in CLL. Its combination with rituximab results in deeper and more durable responses and this regimen is a valuable option in the treatment of relapsed or refractory CLL including adverse prognostic variants such as cases that are fludarabine refractory or harbor the 17p chromosomal deletion. This review centers on the use of venetoclax and rituximab in relapsed or refractory CLL.
Collapse
Affiliation(s)
- James D'Rozario
- Canberra Hospital and Health Service, Garran, Canberra, Australian Capital Territory 2605, Australia
| | - Samuel K Bennett
- Canberra Hospital, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
5
|
Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer 2018; 9:1773-1781. [PMID: 29805703 PMCID: PMC5968765 DOI: 10.7150/jca.24577] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
In the past decades, our knowledge about the relationship between cancer and the immune system has increased considerably. Recent years' success of cancer immunotherapy including monoclonal antibodies (mAbs), cancer vaccines, adoptive cancer therapy and the immune checkpoint therapy has revolutionized traditional cancer treatment. However, challenges still exist in this field. Personalized combination therapies via new techniques will be the next promising strategies for the future cancer treatment direction.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| | - Jibei Chen
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| |
Collapse
|
6
|
Vitale C, Griggio V, Todaro M, Salvetti C, Boccadoro M, Coscia M. Magic pills: new oral drugs to treat chronic lymphocytic leukemia. Expert Opin Pharmacother 2017; 18:411-425. [DOI: 10.1080/14656566.2017.1293655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Candida Vitale
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valentina Griggio
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Maria Todaro
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Salvetti
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mario Boccadoro
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
7
|
A Phase 2 Trial of Fludarabine Combined With Subcutaneous Alemtuzumab for the Treatment of Relapsed/Refractory B-Cell Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:694-8. [DOI: 10.1016/j.clml.2015.07.640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/01/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
|
8
|
Abstract
B-cell receptor (BCR) signaling plays a vital role in B-cell malignancies; Bruton tyrosine kinase is a critical mediator of this signaling. BCR signaling, either constitutively or following antigen binding, leads to activation of several downstream pathways involved in cell survival, proliferation and migration. The efficacy observed in studies of the Bruton tyrosine kinase inhibitor, ibrutinib, confirms that BCR signaling is critical for the growth of B-cell malignancies. Ibrutinib characteristically induces redistribution of malignant B cells from tissues into the peripheral blood and rapid resolution of adenopathy. Furthermore, ibrutinib therapy results in normalization of lymphocyte counts and improvement in cytopenias. Ibrutinib has been shown to have an excellent safety profile and does not cause myelosuppression. Early data from combination studies of ibrutinib with anti-CD20 monoclonal antibodies have shown more rapid responses compared to those seen with ibrutinib monotherapy. Current data strongly support continued clinical evaluation of ibrutinib in B-cell malignancies.
Collapse
Affiliation(s)
- Talha Badar
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
9
|
Mamidi S, Höne S, Teufel C, Sellner L, Zenz T, Kirschfink M. Neutralization of membrane complement regulators improves complement-dependent effector functions of therapeutic anticancer antibodies targeting leukemic cells. Oncoimmunology 2015; 4:e979688. [PMID: 25949896 PMCID: PMC4404820 DOI: 10.4161/2162402x.2014.979688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC) is one of the effector mechanisms mediated by therapeutic anticancer monoclonal antibodies (mAbs). However, the efficacy of antibodies is limited by the resistance of malignant cells to complement attack, primarily due to the over-expression of one or more membrane complement regulatory proteins (mCRPs) CD46, CD55, and CD59. CD20-positive Burkitt lymphoma Raji cells and primary CLL cells are resistant to rituximab (RTX)-induced CDC whereas ofatumumab (OFA) proved to be more efficient in cell killing. Primary CLL cells but not CD52-positive acute lymphoblastic leukemia (ALL) REH cells were sensitive to alemtuzumab (ALM)-induced CDC. Upon combined inhibition on Raji and CLL cells by mCRPs-specific siRNAs or neutralizing antibodies, CDC induced by RTX and by OFA was augmented. Similarly, CDC of REH cells was enhanced after mCRPs were inhibited upon treatment with ALM. All mAbs induced C3 opsonization, which was significantly augmented upon blocking mCRPs. C3 opsonization led to enhanced cell-mediated cytotoxicity of leukemia cells exposed to PBLs or macrophages. Furthermore, opsonized CLL cells were efficiently phagocytized by macrophages. Our results provide conclusive evidence that inhibition of mCRPs expression sensitizes leukemic cells to complement attack thereby enhancing the therapeutic effect of mAbs targeting leukemic cells.
Collapse
Key Words
- ADCC, antibody-dependent cellular cytotoxicity
- ALM, Alemtuzumab
- CDC, complement-dependent cytotoxicity
- CDCC, complement-dependent cellular cytotoxicity
- MAC, membrane attack complex
- NHS, Normal Human Serum
- OFA, Ofatumumab
- PBLs, peripheral blood leukocytes
- RTX, Rituximab
- TRX, Trastuzumab
- alemtuzumab
- chronic lymphocytic leukemia
- complement regulatory proteins
- complement-dependent cytotoxicity
- mCRP, membrane-bound complement regulatory protein
- ofatumumab
- opsonization
- rituximab
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Srinivas Mamidi
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Simon Höne
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Claudia Teufel
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Leopold Sellner
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | - Thorsten Zenz
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | | |
Collapse
|
10
|
Eketorp Sylvan S, Lundin J, Ipek M, Palma M, Karlsson C, Hansson L. Alemtuzumab (anti-CD52 monoclonal antibody) as single-agent therapy in patients with relapsed/refractory chronic lymphocytic leukaemia (CLL)—a single region experience on consecutive patients. Ann Hematol 2014; 93:1725-33. [DOI: 10.1007/s00277-014-2105-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|