1
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
2
|
Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer: Focus on malignant glioma. Clin Exp Pharmacol Physiol 2021; 48:445-454. [PMID: 33496065 DOI: 10.1111/1440-1681.13466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Dequalinium chloride has been known as one kind of antibiotic that displays a broad antimicrobial spectrum and has been clinically proven to be very safe. In recent years, studies have shown that dequalinium chloride can inhibit the growth of malignant tumours, and reports were mainly used for solid tumours. Glioblastoma is the most common malignant neuroepithelial tumour of the central nervous system in adults, and the prognosis of glioblastoma is poor as it has a high resistance to apoptosis. This review summarizes the current understanding of dequalinium chloride-induced cancer cell apoptosis and its potential role in glioblastoma resistance and progression. Particularly, we focus on dequalinium chloride as it exerts a wide range of anti-cancer activity through its ability to target and accumulate in the mitochondria, and it effectively inhibits the growth of glioblastoma cells in vitro and vivo. Dequalinium chloride is an inhibitor of XIAP and can also act as a mitochondrial targeting agent, which gives it an interesting perspective regarding recent advances in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and foot surgery, The affiliated hospital of QingDao university, ShangDong, China
| | - Shuai Zhao
- Department of Anesthesiology, Bonn University, Bonn, Germany
| | - Fan Chen
- Department of Neurosurgery, The affiliated hospital of QingDao university, ShangDong, China
| |
Collapse
|
3
|
Bailly C. Medicinal applications and molecular targets of dequalinium chloride. Biochem Pharmacol 2021; 186:114467. [PMID: 33577890 DOI: 10.1016/j.bcp.2021.114467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
For more than 60 years dequalinium chloride (DQ) has been used as anti-infective drug, mainly to treat local infections. It is a standard drug to treat bacterial vaginosis and an active ingredient of sore-throat lozenges. As a lipophilic bis-quaternary ammonium molecule, the drug displays membrane effects and selectively targets mitochondria to deplete DNA and to block energy production in cells. But beyond its mitochondriotropic property, DQ can interfere with the correct functioning of diverse proteins. A dozen of DQ protein targets have been identified and their implication in the antibacterial, antiviral, antifungal, antiparasitic and anticancer properties of the drug is discussed here. The anticancer effects of DQ combine a mitochondrial action, a selective inhibition of kinases (PKC-α/β, Cdc7/Dbf4), and a modulation of Ca2+-activated K+ channels. At the bacterial level, DQ interacts with different multidrug transporters (QacR, AcrB, EmrE) and with the transcriptional regulator RamR. Other proteins implicated in the antiviral (MPER domain of gp41 HIV-1) and antiparasitic (chitinase A from Vibrio harveyi) activities have been identified. DQ also targets α -synuclein oligomers to restrict protofibrils formation implicated in some neurodegenerative disorders. In addition, DQ is a typical bolaamphiphile molecule, well suited to form liposomes and nanoparticules useful for drug entrapment and delivery (DQAsomes and others). Altogether, the review highlights the many pharmacological properties and therapeutic benefits of this old 'multi-talented' drug, which may be exploited further. Its multiple sites of actions in cells should be kept in mind when using DQ in experimental research.
Collapse
|
4
|
Guo Y, Li X, He Z, Ma D, Zhang Z, Wang W, Xiong J, Kuang X, Wang J. HDAC3 Silencing Enhances Acute B Lymphoblastic Leukaemia Cells Sensitivity to MG-132 by Inhibiting the JAK/Signal Transducer and Activator of Transcription 3 Signaling Pathway. Chemotherapy 2020; 65:85-100. [PMID: 32966974 DOI: 10.1159/000500713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE HDAC3, which is associated with smurf2, has been shown to be associated with poor prognosis in B-ALL. This study examined the efficacy of targeting HDAC3 combined with MG-132 as a possible therapeutic strategy for B-ALL patients. METHODS Real-time PCR and western blot were used to measure the expression of smurf2 and HDAC3 from B-ALL patients bone marrow samples. Sup-B15 and CCRF-SB cells were treated with MG-132, small interfering RNA of smurf2 or HDAC3. A plasmid designed to up-regulate smurf2 expression was transfected into B-ALL cells. Flow cytometry and western blot were used to measure variation due to these treatments in terms of apoptosis and cell cycle arrest. RESULTS Expression of Smurf2 and HDAC3 mRNA were inversely related in B-ALL patients. Up-regulation of smurf2 or MG-132 influenced HDAC3, further inhibiting the JAK/signal transducer and activator of transcription 3 (STAT3) signal pathway and inducing apoptosis in B-ALL cells. When we treated Sup-B15 and CCRF-SB cells with siHDAC3 and MG-132 for 24 h, silencing HDAC3 enhanced the apoptosis rate induced by MG-132 in B-ALL cells and further inhibited the JAK/STAT3 pathway. Furthermore, MG-132 was observed to cause G2/M phase arrest in B-ALL cells and inhibited the JAK/STAT3 pathway, leading to apoptosis. CONCLUSIONS Silencing of HDAC3 enhanced the sensitivity of B-ALL cells to MG-132. The combination of targeting HDAC3 and MG-132 may provide a new avenue for clinical treatment of acute B lymphocytic leukaemia and improve the poor survival of leukaemia patients.
Collapse
Affiliation(s)
- Yongling Guo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hematology, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, China
| | - Xinyao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhengchang He
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, China
| | - Zhaoyuan Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Weili Wang
- College of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Xiong
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, China
| | - Xinyi Kuang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, China,
| |
Collapse
|
5
|
Liu S, Cai X, Xia L, Jiang C, Chen P, Wang X, Zhang B, Zhao HY. Chloroquine exerts antitumor effects on NB4 acute promyelocytic leukemia cells and functions synergistically with arsenic trioxide. Oncol Lett 2017; 15:2024-2030. [PMID: 29434902 DOI: 10.3892/ol.2017.7488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023] Open
Abstract
Chloroquine (CQ) has been confirmed to exhibit antitumor effects on different types of cancer cell, but whether it exerts the same effect on acute promyelocytic leukemia (APL) cells remains to be confirmed. In the present study, the effects of various concentrations of CQ on the growth, apoptosis and cell cycle distribution of NB4 cells, as well as the potential mechanisms underlying these effects, were examined. The combined effect of CQ and arsenic trioxide (ATO) on the growth of NB4 cells was also determined. The results of the present study demonstrated that CQ treatment inhibited cell proliferation, and induced mitochondrial pathway apoptosis and S phase arrest in a dose-dependent manner by regulating apoptosis- and cell cycle-related proteins. CQ and ATO had a synergistic effect on the growth inhibition of NB4 cells, which may have been induced through the inhibition of autophagy. In conclusion, the results of the present study indicated that CQ exhibits a cytotoxic effect on NB4 cells and has a synergistic effect when combined with ATO, which thereby improves the curative effect of ATO on APL.
Collapse
Affiliation(s)
- Shousheng Liu
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiuyu Cai
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Liangping Xia
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Chang Jiang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Ping Chen
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaopai Wang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Bei Zhang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Hong Yun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
6
|
Ma R, Li T, Cao M, Si Y, Wu X, Zhao L, Yao Z, Zhang Y, Fang S, Deng R, Novakovic VA, Bi Y, Kou J, Yu B, Yang S, Wang J, Zhou J, Shi J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis 2016; 7:e2283. [PMID: 27362801 PMCID: PMC5108337 DOI: 10.1038/cddis.2016.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA-histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL.
Collapse
Affiliation(s)
- R Ma
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - T Li
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - M Cao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Y Si
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - X Wu
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - L Zhao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Z Yao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Y Zhang
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - S Fang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - R Deng
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - V A Novakovic
- Department of Research, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| | - Y Bi
- Department of Cardiology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Kou
- Department of Cardiology of the Second Hospital, Harbin Medical University, Harbin, China
| | - B Yu
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - S Yang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - J Wang
- Department of Hematology of the Second Hospital, Harbin Medical University, Harbin, China
| | - J Zhou
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Shi
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- Department of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|