1
|
Shang Q, Bai L, Cheng Y, Suo P, Hu G, Yan C, Wang Y, Zhang X, Xu L, Liu K, Huang X. Outcomes and prognosis of haploidentical haematopoietic stem cell transplantation in children with FLT3-ITD mutated acute myeloid leukaemia. Bone Marrow Transplant 2024; 59:824-831. [PMID: 38443705 DOI: 10.1038/s41409-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
The presence of internal tandem duplication mutations in the FMS-like tyrosine kinase 3 receptor (FLT3-ITD) is a poor prognostic predictor in paediatric patients with acute myeloid leukaemia (AML). We evaluated the treatment outcomes and prognostic factors of 45 paediatric patients with FLT3-ITD AML who achieved complete remission before haploidentical haematopoietic stem cell transplantation (haplo-HSCT) at our institution from 2012 to 2021. Among the 45 patients, the overall survival (OS), event‑free survival (EFS), and cumulative incidence of relapse (CIR) rates were 74.9% ± 6.6%, 64.1% ± 7.2%, and 31.4% ± 7.1%, respectively, with 48.8 months of median follow-up. Univariate and multivariate analyses associated positive minimal residual disease (MRD) at pre-HSCT and non-remission (NR) after introduce 1 with inferior long-term survival. The 100-day cumulative incidence of grade II-IV acute graft-versus-host disease (aGVHD) was 35.6% ± 5.2%, and that of grade III-IV aGVHD was 15.6% ± 3.0% The overall 4-year cumulative incidence of chronic graft-versus-host disease after transplantation was 35.7% ± 9.8%, respectively. In conclusion, haplo-HSCT may be a feasible strategy for paediatric patients with FLT3-ITD AML, and pre-HSCT MRD status and NR after introduce 1 significantly affected the outcomes.
Collapse
Affiliation(s)
- Qianwen Shang
- Department of Paediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Lu Bai
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Yifei Cheng
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Pan Suo
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Guanhua Hu
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Chenhua Yan
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Yu Wang
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Xiaohui Zhang
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Lanping Xu
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Kaiyan Liu
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Xiaojun Huang
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China.
| |
Collapse
|
2
|
Suzuki K, Hama A, Okuno Y, Xu Y, Narita A, Yoshida N, Muramatsu H, Nishio N, Kato K, Kojima S, Yoo KH, Takahashi Y. A retrospective analysis of gene fusions and treatment outcomes in pediatric acute megakaryoblastic leukemia without Down syndrome. Haematologica 2024; 109:1936-1940. [PMID: 38299674 PMCID: PMC11141654 DOI: 10.3324/haematol.2023.283760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Aichi
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Aichi
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi
| | - Nobuhiro Nishio
- Department of Advanced Medicine, Nagoya University Hospital, Aichi
| | - Koji Kato
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Aichi
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi.
| |
Collapse
|
3
|
Du Y, Yang L, Qi S, Chen Z, Sun M, Wu M, Wu B, Tao F, Xiong H. Clinical Analysis of Pediatric Acute Megakaryocytic Leukemia With CBFA2T3-GLIS2 Fusion Gene. J Pediatr Hematol Oncol 2024; 46:96-103. [PMID: 38315896 PMCID: PMC10898546 DOI: 10.1097/mph.0000000000002822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in non-Down syndrome acute megakaryocytic leukemia (AMKL), which is associated with extremely poor clinical outcome. The presence of this fusion gene is associated with resistance to high-intensity chemotherapy, including hematopoietic stem cell transplantation (HSCT), and a high cumulative incidence of relapse frequency. The clinical features and clinical effects of China Children's Leukemia Group-acute myeloid leukemia (AML) 2015/2019 regimens and haploidentical HSCT (haplo-HSCT) for treatment of 6 children harboring the CBFA2T3-GLIS2 fusion gene between January 2019 and December 2021 were retrospectively analyzed. The 6 patients included 4 boys and 2 girls with a median disease-onset age of 19.5 months (range: 6-67 mo) who were diagnosed with AMKL. Flow cytometry demonstrated CD41a, CD42b, and CD56 expression and lack of HLA-DR expression in all 6 patients. All the children were negative for common leukemia fusion genes by reverse transcription polymerase chain reaction, but positive for the CBFA2T3-GLIS2 fusion gene by next-generation sequencing and RNA sequencing. All patients received chemotherapy according to China Children's Leukemia Group-AML 2015/2019 regimens, and 4 achieved complete remission. Four children underwent haplo-HSCT with posttransplant cyclophosphamide-based conditioning; 3 had minimal residual disease negative (minimal residual disease <0.1%) confirmed by flow cytometry at the end of the follow-up, with the remaining patient experiencing relapse at 12 months after transplantation. Transcriptome RNA sequencing is required for the detection of the CBFA2T3-GLIS2 fusion gene and for proper risk-based allocation of pediatric patients with AML in future clinical strategies. Haplo-HSCT with posttransplant cyclophosphamide-based conditioning may improve survival in children with AMKL harboring the fusion gene.
Collapse
MESH Headings
- Male
- Female
- Child
- Humans
- Infant
- Child, Preschool
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/therapy
- Leukemia, Megakaryoblastic, Acute/diagnosis
- Retrospective Studies
- Neoplasm, Residual
- Leukemia, Myeloid, Acute/therapy
- Hematopoietic Stem Cell Transplantation
- Cyclophosphamide
- Recurrence
- Repressor Proteins
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
Collapse
Affiliation(s)
- Yu Du
- Department of Hematology and Oncology
| | - Li Yang
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Qi
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi Chen
- Department of Hematology and Oncology
| | - Ming Sun
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wu
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wu
- Department of Hematology and Oncology
| | - Fang Tao
- Department of Hematology and Oncology
| | - Hao Xiong
- Department of Hematology and Oncology
| |
Collapse
|
4
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Gündoğdu F, Agaimy A, Aytaç S, Hazar V, Üner A, Kösemehmetoğlu K. Myeloid sarcoma with RBM15::MRTFA (MKL1) mimicking vascular neoplasm. Virchows Arch 2024:10.1007/s00428-024-03766-z. [PMID: 38374236 DOI: 10.1007/s00428-024-03766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Extramedullary involvement of acute myeloid leukemia (AML), aka myeloid sarcoma, is a rare phenomenon in acute megakaryoblastic leukemia with RBM15:: MRTFA(MKL1) fusion, which might mimic non-hematologic malignancies. A 7-month-old infant presented with leukocytosis, hepatosplenomegaly, multiple lymphadenopathies, and a solid mass in the right thigh. Initially, the patient was diagnosed with a malignant vascular tumor regarding the expression of vascular markers from the biopsy of the right thigh lesion that was performed after the inconclusive bone marrow biopsy. The second bone marrow biopsy, which was performed due to the partial response to sarcoma treatment, showed hypercellular bone marrow with CD34 and CD61-positive spindle cell infiltration and > 20% basophilic blasts with cytoplasmic blebs. RNA sequencing of soft tissue biopsy revealed the presence of RBM15::MRTFA(MKL1) fusion. Based on these findings, myeloid sarcoma/AML with RBM15::MRTFA(MKL1) fusion diagnosis was made. AML with RBM15::MRTFA(MKL1) fusion can initially present as extramedullary lesions and might cause misdiagnosis of non-hematologic malignancies.
Collapse
Affiliation(s)
- Fatma Gündoğdu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Abbas Agaimy
- Department of Pathology, Erlangen University, Erlangen, Germany
| | - Selin Aytaç
- Department of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Volkan Hazar
- Department of Pediatric Oncology, Akdeniz University, Antalya, Türkiye
| | - Ayşegül Üner
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Kemal Kösemehmetoğlu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye.
| |
Collapse
|
6
|
Bai L, Zhang ZX, Hu GH, Cheng YF, Suo P, Wang Y, Yan CH, Sun YQ, Chen YH, Chen H, Liu KY, Xu LP, Huang XJ. Long-term follow-up of haploidentical haematopoietic stem cell transplantation in paediatric patients with high-risk acute myeloid leukaemia: Report from a single centre. Br J Haematol 2024; 204:585-594. [PMID: 37658699 DOI: 10.1111/bjh.19086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Data from 200 children with high-risk acute myeloid leukaemia who underwent their first haploidentical haematopoietic stem cell transplantation (haplo-HSCT) between 2015 and 2021 at our institution were analysed. The 4-year overall survival (OS), event-free survival (EFS) and cumulative incidence of relapse (CIR) were 71.9%, 62.3% and 32.4% respectively. The 100-day cumulative incidences of grade II-IV and III-IV acute graft-versus-host disease (aGVHD) were 41.1% and 9.5% respectively. The 4-year cumulative incidence of chronic GVHD (cGVHD) was 56.1%, and that of moderate-to-severe cGVHD was 27.3%. Minimal residual disease (MRD)-positive (MRD+) status pre-HSCT was significantly associated with lower survival and a higher risk of relapse. The 4-year OS, EFS and CIR differed significantly between patients with MRD+ pre-HSCT (n = 97; 63.4%, 51.4% and 41.0% respectively) and those with MRD-negative (MRD-) pre-HSCT (n = 103; 80.5%, 73.3% and 23.8% respectively). Multivariate analysis also revealed that acute megakaryoblastic leukaemia without Down syndrome (non-DS-AMKL) was associated with extremely poor outcomes (hazard ratios and 95% CIs for OS, EFS and CIR: 3.110 (1.430-6.763), 3.145 (1.628-6.074) and 3.250 (1.529-6.910) respectively; p-values were 0.004, 0.001 and 0.002 respectively). Thus, haplo-HSCT can be a therapy option for these patients, and MRD status pre-HSCT significantly affects the outcomes. As patients with non-DS-AMKL have extremely poor outcomes, even with haplo-HSCT, a combination of novel therapies is urgently needed.
Collapse
Affiliation(s)
- Lu Bai
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Zhi-Xiao Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Guan-Hua Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yi-Fei Cheng
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Pan Suo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Chen-Hua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yu-Qian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yu-Hong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Huan Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Peking-Tsinghua Center for Life Science, Chinese Academic of Medical Sciences, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Zhang W, Dun J, Li H, Liu J, Chen H, Yu H, Xu J, Zhou F, Qiu Y, Hao J, Hu Q, Wu X. Analysis 33 patients of non-DS-AMKL with or without acquired trisomy 21 from multiple centers and compared to 118 AML patients. Hematology 2023; 28:2231731. [PMID: 37522469 DOI: 10.1080/16078454.2023.2231731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Acute megakaryoblastic leukemia (AMKL) without Down syndrome (non-DS-AMKL) usually a worse outcome than DS-AMKL. Acquired trisomy 21(+21) was one of the most common cytogenetic abnormalities in non-DS-AMKL. Knowledge of the difference in the clinical characteristics and prognosis between non-DS-AMKL with +21 and those without +21 is limited. OBJECTIVE Verify the clinical characteristics and prognosis of non-DS-AMKL with +21. METHOD We retrospectively analyzed 33 non-DS-AMKL pediatric patients and 118 other types of AML, along with their clinical manifestations, laboratory data, and treatment response. RESULTS Compared with AMKL without +21, AMKL with +21 has a lower platelet count (44.04 ± 5.01G/L) at onset (P > 0.05). Differences in remission rates between AMKL and other types of AML were not significant. Acquired trisomy 8 in AMKL was negatively correlated with the long-term OS rate (P < 0.05), while +21 may not be an impact factor. Compared with the other types of AML, AMKL has a younger onset age (P < 0.05), with a mean of 22.27 months. Anemia, hemorrhage, lymph node enlargement, lower white blood cell, and complex karyotype were more common in AMKL (P < 0.05). AMKL has a longer time interval between onset to diagnosis (53.61 ± 71.15 days) (P < 0.05), and patients with a diagnosis delay ≥3 months always presented as thrombocytopenia or pancytopenia initially. CONCLUSIONS Due to high heterogeneity, high misdiagnosis rate, and myelofibrosis, parts of AMKL may take a long time to be diagnosed, requiring repeated bone marrow punctures. Complex karyotype was common in AMKL. +21 may not be a promising indicator of a poor prognosis.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianxin Dun
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Li
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingzhen Liu
- Department of Pediatrics, The Central Hospital of Enshi Autonomous Prefecture, Enshi, People's Republic of China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiawei Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yining Qiu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinjin Hao
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Niktoreh N, Weber L, Walter C, Karimifard M, Hoffmeister LM, Breiter H, Thivakaran A, Soldierer M, Drexler HG, Schaal H, Sendker S, Reinhardt D, Schneider M, Hanenberg H. Understanding WT1 Alterations and Expression Profiles in Hematological Malignancies. Cancers (Basel) 2023; 15:3491. [PMID: 37444601 DOI: 10.3390/cancers15133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
WT1 is a true chameleon, both acting as an oncogene and tumor suppressor. As its exact role in leukemogenesis is still ambiguous, research with model systems representing natural conditions surrounding the genetic alterations in WT1 is necessary. In a cohort of 59 leukemia/lymphoma cell lines, we showed aberrant expression for WT1 mRNA, which does not always translate into protein levels. We also analyzed the expression pattern of the four major WT1 protein isoforms in the cell lines and primary AML blasts with/without WT1 mutations and demonstrated that the presence of mutations does not influence these patterns. By introduction of key intronic and exonic sequences of WT1 into a lentiviral expression vector, we developed a unique tool that can stably overexpress the four WT1 isoforms at their naturally occurring tissue-dependent ratio. To develop better cellular model systems for WT1, we sequenced large parts of its gene locus and also other important myeloid risk factor genes and revealed previously unknown alterations. Functionally, inhibition of the nonsense-mediated mRNA decay machinery revealed that under natural conditions, the mutated WT1 alleles go through a robust degradation. These results offer new insights and model systems regarding the characteristics of WT1 in leukemia and lymphoma.
Collapse
Affiliation(s)
- Naghmeh Niktoreh
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lisa Weber
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christiane Walter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Mahshad Karimifard
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lina Marie Hoffmeister
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hannah Breiter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aniththa Thivakaran
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maren Soldierer
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hans Günther Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stephanie Sendker
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus Schneider
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Liu YC, Geyer JT. Pediatric Hematopathology in the Era of Advanced Molecular Diagnostics: What We Know and How We Can Apply the Updated Classifications. Pathobiology 2023; 91:30-44. [PMID: 37311434 PMCID: PMC10857803 DOI: 10.1159/000531480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Koulmane Laxminarayana SL, Kohli S, Agrohi J, Belurkar S. Pediatric Non-Down Syndrome Acute Megakaryoblastic Leukemia With Unusual Immunophenotype. Cureus 2023; 15:e35965. [PMID: 36911590 PMCID: PMC9999050 DOI: 10.7759/cureus.35965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts expressing platelet-specific surface antigens. 4%-16% of childhood AMLs are AMKL. Childhood AMKL is usually associated with Down syndrome (DS). It is 500 times more common in patients with DS when compared to the general population. In contrast, non-DS-AMKL is much rarer. We describe a case of de novo non-DS-AMKL in a teenage girl child who presented with a history of excessive tiredness, fever, abdominal pain for three months, and vomiting for four days. She had lost appetite, and weight. On examination she was pale; there was no clubbing, hepatosplenomegaly or lymphadenopathy. There were no dysmorphic features or neurocutaneous markers. Laboratory tests showed bicytopenia (Hb: 6.5g/dL, total WBC count: 700/µL, platelet count: 216,000/ µL, Reticulocyte %: 0.42) and 14% blasts on the peripheral blood smear. Platelet clumps and anisocytosis were also noted. Bone marrow aspirate showed a few hypocellular particles with dilute cell trails but showed 42% blasts. Mature megakaryocytes showed marked dyspoiesis. Flow cytometry on bone marrow aspirate showed myeloblasts and megakaryoblasts. Karyotyping showed 46 XX. Hence, a final diagnosis of non-DS-AMKL was established. She was treated symptomatically. However, she was discharged on request. Interestingly, the expression of erythroid markers such as CD36 and lymphoid markers like CD7 is usually seen in DS-AMKL and not in non-DS-AMKL. AMKL is treated with AML-directed chemotherapies. Although complete remission rates are similar to other AML subtypes, overall survival is only about 18-40 weeks.
Collapse
Affiliation(s)
| | - Saksham Kohli
- Department of Pathology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Udupi, IND
| | - Jhalak Agrohi
- Department of Pathology, Kasturba Medical College, Manipal, Manipal academy of Higher Education, Udupi, IND
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College, Manipal, Manipal academy of Higher Education, Udupi, IND
| |
Collapse
|
11
|
Hama A, Taga T, Tomizawa D, Muramatsu H, Hasegawa D, Adachi S, Yoshida N, Noguchi M, Sato M, Okada K, Koh K, Mitsui T, Takahashi Y, Miyamura T, Hashii Y, Kato K, Atsuta Y, Okamoto Y. Haematopoietic cell transplantation for children with acute megakaryoblastic leukaemia without Down syndrome. Br J Haematol 2023; 201:747-756. [PMID: 36786154 DOI: 10.1111/bjh.18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Patients with acute megakaryoblastic leukaemia of Down syndrome (DS-AMKL) have an excellent survival rate; however, patients with non-DS-AMKL experience poor outcomes. Therefore, this study retrospectively analysed 203 children with non-DS-AMKL who underwent their first haematopoietic cell transplantation (HCT) from 1986 to 2015 using a nationwide Japanese HCT registry data to assess HCT outcomes for non-DS-AMKL. The 5-year overall survival (OS) and event-free survival (EFS) rates were 43% and 38% respectively. The 5-year OS rate was significantly higher for patients who underwent HCT in the first complete remission (CR1, 72%) than for those in the second CR (CR2, 23%) and non-CR (16%) (p < 0.001), and for those from a human leukocyte antigen (HLA)-matched (52%) than for those from an HLA-mismatched donor (27%) (p < 0.001). Multivariate analysis for OS revealed that HCT in CR2 and non-CR was a significant risk factor (hazard ratio, 5.86; 95% confidence interval, 3.56-9.53; p < 0.001). The 3-year EFS in patients who received HCT in CR1 using reduced-intensity conditioning (RIC, 35%) was significantly lower than in those using myeloablative conditioning (busulfan-based, 71%; total body irradiation-based, 58%) (p < 0.001). Risk stratification in patients with non-DS-AMKL should be established to determine HCT indication in CR1.
Collapse
Affiliation(s)
- Asahito Hama
- Department of Haematology and Oncology, Children's Medical Centre, Japanese Red Cross Aichi Medical Centre Nagoya First Hospital, Nagoya, Japan
| | - Takashi Taga
- Department of Paediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Tomizawa
- Division of Leukaemia and Lymphoma, Children's Cancer Centre, National Centre for Child Health and Development, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Paediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiichiro Hasegawa
- Department of Haematology/Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Souichi Adachi
- Department of Human Health Science, Kyoto University, Kyoto, Japan
| | - Nao Yoshida
- Department of Haematology and Oncology, Children's Medical Centre, Japanese Red Cross Aichi Medical Centre Nagoya First Hospital, Nagoya, Japan
| | - Maiko Noguchi
- Department of Paediatrics, National Hospital Organization Kyushu Cancer Centre, Fukuoka, Japan
| | - Maho Sato
- Department of Haematology/Oncology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keiko Okada
- Department of Paediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Katsuyoshi Koh
- Department of Haematology/Oncology, Saitama Children's Medical Centre, Saitama, Japan
| | - Tetsuo Mitsui
- Department of Paediatrics, Yamagata University Hospital, Yamagata, Japan
| | - Yoshiyuki Takahashi
- Department of Paediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Miyamura
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Hashii
- Department of Paediatrics, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Kato
- Central Japan Cord Blood Bank, Seto, Japan
| | - Yoshiko Atsuta
- Japanese Data Centre for Haematopoietic Cell Transplantation, Nagakute, Japan.,Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yasuhiro Okamoto
- Department of Paediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
12
|
Messiaen J, Uyttebroeck A, Michaux L, Vandenberghe P, Boeckx N, Jacobs SA. t(1;7;22)(p13;q21;q13) is a novel 3-way variant of t(1;22)(p13;q13) neonatal acute megakaryoblastic leukemia: A case report. Mol Clin Oncol 2023; 18:18. [PMID: 36798463 PMCID: PMC9926329 DOI: 10.3892/mco.2023.2614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/01/2021] [Indexed: 02/01/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare disease, occurring mostly in infants and young children. The chromosomal translocation t(1;22)(p13;q13), resulting in the RBM15-MKL1 fusion gene, is a recurrent and diagnostic translocation in infants with AMKL. The present case report describes a case of a newborn girl, without Down's syndrome, with congenital AMKL. At birth, the infant had hepatosplenomegaly and the peripheral blood count revealed anemia, thrombopenia and leukocytosis, with 28% blasts. Immunophenotyping demonstrated blasts positive for CD34, CD61 and CD42b. Karyotyping of these blasts (R-banding) showed a hitherto unreported chromosomal translocation, t(1;7;22)(p13;q21;q13), a 3-way variant of the t(1;22)(p13;q13) variant. Fluorescent in situ hybridization analysis confirmed the presence of the RBM15-MKL1 fusion gene.
Collapse
Affiliation(s)
- Julie Messiaen
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium,Department of Pediatric Hematology and Oncology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, 3000 Leuven, Belgium,Pediatric Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Lucienne Michaux
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium,Department of Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Vandenberghe
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium,Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Nancy Boeckx
- Laboratory of Clinical Bacteriology and Mycology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium,Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sandra A. Jacobs
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, 3000 Leuven, Belgium,Pediatric Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium,Correspondence to: Professor Sandra A. Jacobs, Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Huang J, Hu G, Suo P, Bai L, Cheng Y, Wang Y, Zhang X, Liu K, Sun Y, Xu L, Kong J, Yan C, Huang X. Unmanipulated haploidentical hematopoietic stem cell transplantation for pediatric de novo acute megakaryoblastic leukemia without Down syndrome in China: A single-center study. Front Oncol 2023; 13:1116205. [PMID: 36874138 PMCID: PMC9978202 DOI: 10.3389/fonc.2023.1116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Background AMKL without DS is a rare but aggressive hematological malignant disease in children, and it is associated with inferior outcomes. Several researchers have regarded pediatric AMKL without DS as high-risk or at least intermediate-risk AML and proposed that upfront allogenic hematopoietic stem cell transplantation (HSCT) in first complete remission might improve long-term survival. Patients and method We conducted a retrospective study with twenty-five pediatric (< 14 years old) AMKL patients without DS who underwent haploidentical HSCT in the Peking University Institute of Hematology, Peking University People's Hospital from July 2016 to July 2021. The diagnostic criteria of AMKL without DS were adapted from the FAB and WHO: ≥ 20% blasts in the bone marrow, and those blasts expressed at least one or more of the platelet glycoproteins: CD41, CD61, or CD42. AMKL with DS and therapy related AML was excluded. Children without a suitable closely HLA-matched related or unrelated donor (donors with more than nine out of 10 matching HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ loci), were eligible to receive haploidentical HSCT. Definition was adapted from international cooperation group. All statistical tests were conducted with SPSS v.24 and R v.3.6.3. Results The 2-year OS was 54.5 ± 10.3%, and the EFS was 50.9 ± 10.2% in pediatric AMKL without DS undergoing haplo-HSCT. Statistically significantly better EFS was observed in patients with trisomy 19 than in patients without trisomy 19 (80 ± 12.6% and 33.3 ± 12.2%, respectively, P = 0.045), and OS was better in patients with trisomy 19 but with no statistical significance (P = 0.114). MRD negative pre-HSCT patients showed a better OS and EFS than those who were positive (P < 0.001 and P = 0.003, respectively). Eleven patients relapsed post HSCT. The median time to relapse post HSCT was 2.1 months (range: 1.0-14.4 months). The 2-year cumulative incidence of relapse (CIR) was 46.1 ± 11.6%. One patient developed bronchiolitis obliterans and respiratory failure and died at d + 98 post HSCT. Conclusion AMKL without DS is a rare but aggressive hematological malignant disease in children, and it is associated with inferior outcomes. Trisomy 19 and MRD negative pre-HSCT might contribute to a better EFS and OS. Our TRM was low, haplo-HSCT might be an option for high-risk AMKL without DS.
Collapse
Affiliation(s)
- Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guanhua Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Pan Suo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lu Bai
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yifei Cheng
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - XiaoHui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - KaiYan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - YuQian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - LanPing Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jun Kong
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - ChenHua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| |
Collapse
|
14
|
Gao L, Lu J, Li J, Hu Y, Lu Y, Du W, Hu S. Lineage switch in a pediatric patient with KMT2A-MLLT3 from acute megakaryoblastic leukemia to T cell acute lymphoblastic leukemia at the fourth relapse after allo-HSCT: with literature review. Int J Hematol 2022; 117:781-785. [PMID: 36472792 DOI: 10.1007/s12185-022-03504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
We present a patient with acute megakaryoblastic leukemia (AMKL) harboring KMT2A-MLLT3 that converted to T cell acute lymphoblastic leukemia (T-ALL) at her fourth relapse. A 4-year-old girl developed AMKL with multiple swollen lymph nodes. She exhibited several recurrences in the bone marrow and died of septic shock after her fourth relapse. Bone marrow cells at the initial diagnosis and at all four relapses had the same KMT2A-MLLT3 fusion transcript. She also developed a somatic mutation (c.7177C > T p.Q2393X) of NOTCH1 at the fourth relapse. This sequential phenotypic and cytogenetic study may yield valuable insights into the mechanism of AMKL to T-ALL lineage switch and possible implications for treatment selection.
Collapse
Affiliation(s)
- Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Ye Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Weiwei Du
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Zhang A, Liu L, Zong S, Chen X, Liu C, Chang L, Chen X, Yang W, Guo Y, Zhang L, Zou Y, Chen Y, Zhang Y, Ruan M, Zhu X. Pediatric non–Down’s syndrome acute megakaryoblastic leukemia patients in China: A single center's real-world analysis. Front Oncol 2022; 12:940725. [PMID: 36267971 PMCID: PMC9577933 DOI: 10.3389/fonc.2022.940725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Non-Down’s syndrome acute megakaryocytic leukemia (non-DS-AMKL) is a subtype of childhood acute myeloid leukemia (AML), whose prognosis, prognostic factors and treatment recommendations have not yet to be defined in children. We conducted a retrospective study with 65 newly diagnosed non-DS-AMKL children from August 2003 to June 2020 to investigate the clinical impact of factors and clinical outcome. Among all 65 patients, 47 of them were treated at our center who received three different regimens due to time point of admission (CAMS-another, CAMS-2009 and CAMS-2016 protocol), and the efficacy were compared. Patients with newly diagnosed non-DS-AMKL accounted for 7.4% of pediatric AML cases. The median age of the patients was 18 months at diagnosis, and over 90% of them were under three-years-old. The overall survival (OS) rates were 33.3% ± 1.7%, 66.7% ± 24.4% and 74.2% ± 4.0% for three groups (CAMS-another, CAMS-2009 and CAMS-2016 regimen), respectively. In CAMS-2016 group, the complete remission (CR) rate after induction was 67.7% (21/31), while the total CR rate after all phases of chemotherapy was 80.6% (25/31). The 2-year survival probability did not significantly improve in patients underwent HSCT when compared with non-HSCT group (75.0% ± 4.7% vs. 73.9% ± 4.6%, p=0.680). Those who had a “dry tap” during BM aspiration at admission had significantly worse OS than those without “dry tap” (33.3% ± 8.6% vs. 84.0% ± 3.6%, p=0.006). Moreover, the results also revealed that patients with CD34+ had significantly lower OS (50.0% ± 6.7% vs. 89.5% ± 3.5%, p=0.021), whereas patients with CD36+ had significantly higher OS than those who were negative (85.0% ± 4.0% vs. 54.5% ± 6.6%, p=0.048). In conclusion, intensive chemotherapy resulted in improved prognosis of non-DS-AMKL children and subclassification may base on “dry tap” and immunophenotypic. Although some progress has been made, outcomes of non-DS-AMKL children remain unsatisfactory, especially in HSCT group, when compared with other AML types.
Collapse
Affiliation(s)
- Aoli Zhang
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lipeng Liu
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Suyu Zong
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyan Chen
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chao Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixian Chang
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Ruan
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- *Correspondence: Min Ruan, ; Xiaofan Zhu,
| | - Xiaofan Zhu
- Department of Pediatric Hematology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- *Correspondence: Min Ruan, ; Xiaofan Zhu,
| |
Collapse
|
16
|
Qi K, Hu X, Yu X, Cheng H, Wang C, Wang S, Wang Y, Li Y, Cao J, Pan B, Wu Q, Qiao J, Zeng L, Li Z, Xu K, Fu C. Targeting cyclin-dependent kinases 4/6 inhibits survival of megakaryoblasts in acute megakaryoblastic leukaemia. Leuk Res 2022; 120:106920. [PMID: 35872339 DOI: 10.1016/j.leukres.2022.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.
Collapse
Affiliation(s)
- Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xueting Hu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chunqing Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yanjie Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
17
|
Interactive Video Games as a Method to Increase Physical Activity Levels in Children Treated for Leukemia. Healthcare (Basel) 2022; 10:healthcare10040692. [PMID: 35455869 PMCID: PMC9025872 DOI: 10.3390/healthcare10040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the beneficial effect of exercise, children treated for cancer do not engage in sufficient physical activity. It is necessary to search for attractive forms of physical activity, including interactive video games (IVGs). The aim of this study was to verify the effectiveness of the rehabilitation model developed by the authors based on the use of IVGs in children undergoing leukemia treatment. The study included a group of 21 children aged 7–13 years (12 boys, 9 girls) undergoing treatment for acute lymphoblastic leukemia (ALL) (n = 13) and acute myeloid leukemia (AML) (n = 8). The children were randomly assigned to an intervention group and a control group. To assess the level of cardiorespiratory fitness (CRF), each child participated in a Cardiopulmonary Exercise Test. Daily physical activity was assessed using the HBSC questionnaire. The study also used the Children’s Effort Rating Table Scale (CERT) to assess the intensity of physical effort. The children in the intervention group participated in 12 sessions of. The study participants managed to complete all stages of a progressive training program, which confirmed the feasibility of such physical effort by patients with cancer. Pediatric patients reported that the IVG training required a light to moderate physical effort despite high values of energy expenditure (EE).
Collapse
|
18
|
Zheng Y, Huang Y, Le S, Zheng H, Hua X, Chen Z, Feng X, Li C, Zheng M, Xu H, He Y, He X, Li J, Hu J. High EVI1 Expression Predicts Adverse Outcomes in Children With De Novo Acute Myeloid Leukemia. Front Oncol 2021; 11:712747. [PMID: 34589425 PMCID: PMC8474639 DOI: 10.3389/fonc.2021.712747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023] Open
Abstract
Background A high ecotropic viral integration site 1 (EVI1) expression (EVI1high) is an independent prognostic factor in adult acute myeloid leukemia (AML). However, little is known of the prognostic value of EVI1high in pediatric AML. This study aimed to examine the biological and prognostic significance of EVI1high in uniformly treated pediatric patients with AML from a large cohort of seven centers in China. Methods A diagnostic assay was developed to determine the relative EVI1 expression using a single real-time quantitative polymerase chain reaction in 421 newly diagnosed pediatric AML patients younger than 14 years from seven centers in southern China. All patients were treated with a uniform protocol, but only 383 patients were evaluated for their treatment response. The survival data were included in the subsequent analysis (n = 35 for EVI1high, n = 348 for EVI1low). Results EVI1high was found in 9.0% of all 421 pediatric patients with de novo AML. EVI1high was predominantly found in acute megakaryoblastic leukemia (FAB M7), MLL rearrangements, and unfavorable cytogenetic aberrance, whereas it was mutually exclusive with t (8; 21), inv (16)/t (16; 16), CEBPA, NPM1, or C-KIT mutations. In the univariate Cox regression analysis, EVI1high had a significantly adverse 5-year event-free survival (EFS) and overall survival (OS) [hazard ratio (HR) = 1.821 and 2.401, p = 0.036 and 0.005, respectively]. In the multivariate Cox regression analysis, EVI1high was an independent prognostic factor for the OS (HR = 2.447, p = 0.015) but not EFS (HR = 1.556, p = 0.174). Furthermore, EVI1high was an independent adverse predictor of the OS and EFS of patients with MLL rearrangements (univariate analysis: HR = 9.921 and 7.253, both p < 0.001; multivariate analysis: HR = 7.186 and 7.315, p = 0.005 and 0.001, respectively). Hematopoietic stem cell transplantation (HSCT) in first complete remission (CR1) provided EVI1high patients with a tendential survival benefit when compared with chemotherapy as a consolidation (5-year EFS: 68.4% vs. 50.8%, p = 0.26; 5-year OS: 65.9% vs. 54.8%, p = 0.45). Conclusion It could be concluded that EVI1high can be detected in approximately 10% of pediatric AML cases. It is predominantly present in unfavorable cytogenetic subtypes and predicts adverse outcomes. Whether pediatric patients with EVI1high AML can benefit from HSCT in CR1 needs to be researched further.
Collapse
Affiliation(s)
- Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yan Huang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaohua Le
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hao Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xueling Hua
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zaisheng Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Southern Medical University/Nanfang Hospital, Guangzhou, China
| | - Chunfu Li
- Nanfang-Chunfu Children's Institute of Hematology & Oncology, TaiXin Hospital, Dongguan, China
| | - Mincui Zheng
- Hematology and Oncology, Hunan Children's Hospital, Changsha, China
| | - Honggui Xu
- Department of Pediatric Hematology & Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yingyi He
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiangling He
- Pediatrics, People's Hospital of Hunan Province, Changsha, China
| | - Jian Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
19
|
Al-Kershi S, Golnik R, Flasinski M, Waack K, Rasche M, Creutzig U, Dworzak M, Reinhardt D, Klusmann JH. Recommendations for Diagnosis and Treatment of Children with Transient Abnormal Myelopoiesis (TAM) and Myeloid Leukemia in Down Syndrome (ML-DS). KLINISCHE PADIATRIE 2021; 233:267-277. [PMID: 34407551 DOI: 10.1055/a-1532-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Children with Down syndrome are at a high risk of developing transient abnormal myelopoiesis (TAM; synonym: TMD) or myeloid leukemia (ML-DS). While most patients with TAM are asymptomatic and go into spontaneous remission without a need for therapy, around 20% of patients die within the first six months due to TAM-related complications. Another 20-30% of patients progress from TAM to ML-DS. ML-DS patients are particularly vulnerable to therapy-associated toxicity, but the prognosis of relapsed ML-DS is extremely poor - thus, ML-DS therapy schemata must strive for a balance between appropriate efficacy (to avoid relapses) and treatment-related toxicity. This guideline presents diagnostic and therapeutic strategies for TAM and ML-DS based on the experience and results of previous clinical studies from the BFM working group, which have helped reduce the risk of early death in symptomatic TAM patients using low-dose cytarabine, and which have achieved excellent cure rates for ML-DS using intensity-reduced treatment protocols.
Collapse
Affiliation(s)
- Sina Al-Kershi
- Clinic for Pediatrics, University Hospital Frankfurt, Frankfurt, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Golnik
- Clinic for Pediatrics, University Hospital Frankfurt, Frankfurt, Germany
| | - Marius Flasinski
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Hospital Tauberbischofsheim, Tauberbischofsheim, Germany
| | - Katharina Waack
- Pediatrics III, Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Mareike Rasche
- Pediatrics III, Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Ursula Creutzig
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michael Dworzak
- Department of Pediatrics, St. Anna Children's Hospital and Children's Cancer Research Institute, Wien, Austria
| | - Dirk Reinhardt
- Pediatrics III, Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
20
|
[Clinical features and prognosis of pediatric acute megakaryocytic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021. [PMID: 34130784 PMCID: PMC8213996 DOI: 10.7499/j.issn.1008-8830.2101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the clinical features and prognosis of children with acute megakaryocytic leukemia (AMKL) and the clinical effect of acute myeloid leukemia 03 (AML03) regimen for the treatment of pediatric AMKL. METHODS The clinical data were collected from 47 children with AMKL who were diagnosed from May 2011 to December 2019. The treatment outcomes and prognostic factors were analyzed. The Kaplan-Meier method and the log-rank test were used for survival analysis. RESULTS Among the 47 children with AMKL, 22 with non-Down syndrome-AMKL were treated by the AML03 regimen, with a median follow-up time of 11.4 months. For the 22 non-Down syndrome-AMKL patients, the remission rate of bone marrow cytology was 85% and the negative rate of minimal residual disease (MRD) was 79% after induction Ⅱ, with a 2-year overall survival (OS) rate of (50±13)% and a 2-year event-free survival (EFS) rate of (40±12)%. The group with positive immunophenotypic marker CD56 had significantly lower 2-year EFS and OS rates than the group with negative CD56 (P < 0.05). The group without remission of bone marrow cytology after induction Ⅱ had significantly lower 2-year EFS and OS rates than the group with remission (P < 0.05). The group with positive MRD after induction Ⅱ had a significantly lower 2-year EFS rate than the group with negative MRD (P < 0.05). There was no significant difference in 2-year OS and EFS rates between the patients with transplantation and those without transplantation (P > 0.05). CONCLUSIONS Children with AMKL tend to have a low remission rate and a poor prognosis. Positive immunophenotypic marker CD56, bone marrow cytology during early treatment response, and MRD results are important factors influencing the prognosis. Allogeneic hematopoietic stem cell transplantation has no significant effect on the prognosis of AMKL.
Collapse
|
21
|
Shimada A. Profile of down syndrome–associated malignancies: Epidemiology, clinical features and therapeutic aspects. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Van Weelderen RE, Klein K, Natawidjaja MD, De Vries R, Kaspers GJ. Outcome of pediatric acute myeloid leukemia (AML) in low- and middle-income countries: a systematic review of the literature. Expert Rev Anticancer Ther 2021; 21:765-780. [PMID: 33779466 DOI: 10.1080/14737140.2021.1895756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Survival rates of pediatric acute myeloid leukemia (AML) in low- and middle-income countries (LMICs) seem extremely poor, and the available literature on the matter is scarce. Accordingly, there is a limited understanding of poor treatment outcomes seen in this population.Areas covered: We provide an overview of the available literature with respect to treatment outcomes of pediatric AML in LMICs yielding poor outcomes compared to high-income countries. Moreover, treatment outcomes vary markedly between LMICs. In addition, there is a wide variation among studies in how treatment outcomes are reported and analyzed.Expert opinion: The substantially inferior treatment outcomes of pediatric AML in LMICs emphasize the unprecedented importance of global initiatives and international collaborations to improve the survival of these patients. A coordinated approach is necessary to carry out country-specific situational analyses. These analyses will result in operational plans on how to structurally implement childhood cancer registries, align healthcare infrastructure, build on capacities, and provide universal health coverage in LMICs. In addition, we strongly recommend that, in the future, LMICs document, analyze, and publish pediatric AML treatment outcomes in a more structured and uniform manner.
Collapse
Affiliation(s)
- Romy E Van Weelderen
- Emma Children's Hospital, Amsterdam UMC, Pediatric Oncology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kim Klein
- Emma Children's Hospital, Amsterdam UMC, Pediatric Oncology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meyrina D Natawidjaja
- Emma Children's Hospital, Amsterdam UMC, Pediatric Oncology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ralph De Vries
- Medical Library, Vrije Universiteit, Amsterdam, the Netherlands
| | - Gertjan Jl Kaspers
- Emma Children's Hospital, Amsterdam UMC, Pediatric Oncology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
23
|
Wang Y, Lu A, Jia Y, Zuo Y, Zhang L. Outcome and Prognostic Features in Pediatric Acute Megakaryoblastic Leukemia Without Down Syndrome: A Retrospective Study in China. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:e301-e308. [PMID: 33257285 DOI: 10.1016/j.clml.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acute megakaryoblastic leukemia (AMKL) is a biologically heterogeneous subtype of acute myeloid leukemia that originates from megakaryocytes. Patients with AMKL with non-Down syndrome (DS) had a poorer prognosis. However, clear prognostic indicators and treatment recommendations for this subgroup remain controversial. PATIENTS AND METHODS Herein, we performed a retrospective study on 40 patients (age ≤ 18 years) with non-Down syndrome AMKL at our institution. We assessed the effect of different prognostic factors, such as their cytogenetic abnormalities, early treatment response, and the role of hematopoietic stem cell transplantation (HSCT) as post-remission treatment on the outcomes. RESULTS The complete remission (CR) rate of the patients was 57.9% and 81.1%, respectively, at the end of induction therapy 1 and 2. The overall survival (OS) and event-free survival rates at 2 years were 41% ± 13% and 41% ± 10%, respectively. An analysis of the cytogenetic features showed that patients with +21 or hyperdiploid (> 50 chromosomes) had significantly better OS than those in other cytogenetic subgroups (Plog-rank = .048 and Plog-rank = .040, respectively). Besides cytogenetics, an excellent early treatment response (CR and minimal residual disease < 1% after induction therapy 1) also provided a significant survival benefit in univariate analysis in our study. However, multivariate analysis indicated that allogeneic HSCT was the only independent prognostic marker (relative risk, 11.192; 95% confidence interval, 2.045-61.241; P = .005 for OS and relative risk, 5.400; 95% confidence interval, 1.635-17.832; P = .006 for event-free survival, respectively). CONCLUSION AMKL in patients with non-Down syndrome has a poor outcome. With poor OS but CR rates comparable with other acute myeloid leukemia subtypes, allogenic HSCT may be a better option for post-remission therapy than conventional chemotherapy, especially for those having a poor response to induction therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yingxi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
24
|
Hack T, Bertram S, Blair H, Börger V, Büsche G, Denson L, Fruth E, Giebel B, Heidenreich O, Klein-Hitpass L, Kollipara L, Sendker S, Sickmann A, Walter C, von Neuhoff N, Hanenberg H, Reinhardt D, Schneider M, Rasche M. Exposure of Patient-Derived Mesenchymal Stromal Cells to TGFB1 Supports Fibrosis Induction in a Pediatric Acute Megakaryoblastic Leukemia Model. Mol Cancer Res 2020; 18:1603-1612. [PMID: 32641517 DOI: 10.1158/1541-7786.mcr-20-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Bone marrow fibrosis (BMF) is a rare complication in acute leukemia. In pediatrics, it predominantly occurs in acute megakaryoblastic leukemia (AMKL) and especially in patients with trisomy 21, called myeloid leukemia in Down syndrome (ML-DS). Defects in mesenchymal stromal cells (MSC) and cytokines specifically released by the myeloid blasts are thought to be the main drivers of fibrosis in the bone marrow niche (BMN). To model the BMN of pediatric patients with AMKL in mice, we first established MSCs from pediatric patients with AMKL (n = 5) and ML-DS (n = 9). Healthy donor control MSCs (n = 6) were generated from unaffected children and adolescents ≤18 years of age. Steady-state analyses of the MSCs revealed that patient-derived MSCs exhibited decreased adipogenic differentiation potential and enrichment of proliferation-associated genes. Importantly, TGFB1 exposure in vitro promoted early profibrotic changes in all three MSC entities. To study BMF induction for longer periods of time, we created an in vivo humanized artificial BMN subcutaneously in immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice, using a mixture of MSCs, human umbilical vein endothelial cell, and Matrigel. Injection of AMKL blasts as producers of TGFB1 into this BMN after 8 weeks induced fibrosis grade I/II in a dose-dependent fashion over a time period of 4 weeks. Thus, our study developed a humanized mouse model that will be instrumental to specifically examine leukemogenesis and therapeutic targets for AMKL blasts in future. IMPLICATIONS: TGFB1 supports fibrosis induction in a pediatric AMKL model generated with patient-derived MSCs. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/10/1603/F1.large.jpg.
Collapse
Affiliation(s)
- Theresa Hack
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Stefanie Bertram
- Department of Pathology, University Hospital Essen, Essen, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Guntram Büsche
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Lora Denson
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Enrico Fruth
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Stephanie Sendker
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Christiane Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Markus Schneider
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany.
| | - Mareike Rasche
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany.
| |
Collapse
|
25
|
Downregulation of MIR100HG Induces Apoptosis in Human Megakaryoblastic Leukemia Cells. Indian J Hematol Blood Transfus 2020; 37:232-239. [PMID: 33867729 DOI: 10.1007/s12288-020-01324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/18/2020] [Indexed: 02/01/2023] Open
Abstract
Long noncoding ribonucleic acids (lncRNAs) are ribonucleic acid (RNA) molecules longer than 200 nucleotides without protein-coding capacity. Several studies have shown that lncRNAs play a pivotal role in the initiation, maintenance, and progression of acute myeloid leukemia (AML), which could make them a promising candidate in the diagnosis and treatment of leukemia. Acute Megakaryoblastic leukemia (AMKL) is a rare form of AML with a poor prognosis and low survival. It has been reported that lncRNA MIR100HG is involved several types of malignancies. In the present study, MIR100HG was downregulated in a human acute megakaryoblastic leukemia cell line (M-07e) using Antisense LNA GapmeRs. In order to assess the expression level of MIR100HG, cell viability, apoptosis, and necrosis (late apoptosis), quantitative reverse transcription polymerase chain reaction (qRT-PCR), Methyl-thiazol Tetrazolium assay, AnnexinV, and propidium iodide staining was performed at different time points after the transfection. In addition, the expression level of TGFβ was evaluated by qRT-PCR. Our results revealed that inhibition of MIR100HG might serve as a new method for inhibition of the proliferation of AMKL cells and therefore, could be a promising approach in medicine for targeted therapy in AMKL.
Collapse
|
26
|
Saito Y, Makita S, Chinen S, Kito M, Fujino T, Ida H, Hosoba R, Tanaka T, Fukuhara S, Munakata W, Suzuki T, Maruyama D, Miyagi-Maeshima A, Matsushita H, Izutsu K. Acute megakaryoblastic leukaemia with t(1;22)(p13·3;q13·1)/RBM15-MKL1 in an adult patient following a non-mediastinal germ cell tumour. Br J Haematol 2020; 190:e329-e332. [PMID: 32572949 DOI: 10.1111/bjh.16900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yo Saito
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan.,Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan.,Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Makita
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Shotaro Chinen
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Momoko Kito
- Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Fujino
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Hanae Ida
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Rika Hosoba
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Tanaka
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Suzuki
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Hiromichi Matsushita
- Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
27
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
28
|
Acute Myeloid Neoplasms. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Terui K, Toki T, Taga T, Iwamoto S, Miyamura T, Hasegawa D, Moritake H, Hama A, Nakashima K, Kanezaki R, Kudo K, Saito AM, Horibe K, Adachi S, Tomizawa D, Ito E. Highly sensitive detection of GATA1 mutations in patients with myeloid leukemia associated with Down syndrome by combining Sanger and targeted next generation sequencing. Genes Chromosomes Cancer 2019; 59:160-167. [PMID: 31606922 DOI: 10.1002/gcc.22816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) is characterized by a predominance of acute megakaryoblastic leukemia, the presence of GATA1 mutations and a favorable outcome. Because DS children can also develop conventional acute myeloid leukemia with unfavorable outcome, detection of GATA1 mutations is important for diagnosis of ML-DS. However, myelofibrosis and the significant frequency of dry taps have hampered practical screening of GATA1 mutations using bone marrow (BM) samples. In response to those problems, 82 patients were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-D11 study. GATA1 mutations were analyzed by Sanger sequencing (SS) using genomic DNA (gDNA) from BM and cDNA from peripheral blood (PB) followed by targeted next-generation sequencing (NGS) using pooled diagnostic samples. BM and PB samples were obtained from 71 (87%) and 82 (100%) patients, respectively. GATA1 mutations were detected in 46 (56%) and 58 (71%) patients by SS using BM gDNA and PB cDNA, respectively. Collectively, GATA1 mutations were identified in 73/82 (89%) patients by SS. Targeted NGS detected GATA1 mutations in 74/82 (90%) patients. Finally, combining the results of SS with those of targeted NGS, GATA1 mutations were identified in 80/82 (98%) patients. These results indicate that SS using BM gDNA and PB cDNA is a rapid and useful method for screening for GATA1 mutations in ML-DS patients. Thus, a combination of SS and targeted NGS is a sensitive and useful method to evaluate the actual incidence and clinical significance of GATA1 mutations in ML-DS patients.
Collapse
Affiliation(s)
- Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St Luke's International Hospital, Tokyo, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Department of Reproductive and Developmental Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
30
|
Mutated WT1, FLT3-ITD, and NUP98-NSD1 Fusion in Various Combinations Define a Poor Prognostic Group in Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:1609128. [PMID: 31467532 PMCID: PMC6699323 DOI: 10.1155/2019/1609128] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29) or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence of WT1 mutation, NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.
Collapse
|
31
|
Sas V, Blag C, Zaharie G, Puscas E, Lisencu C, Andronic-Gorcea N, Pasca S, Petrushev B, Chis I, Marian M, Dima D, Teodorescu P, Iluta S, Zdrenghea M, Berindan-Neagoe I, Popa G, Man S, Colita A, Stefan C, Kojima S, Tomuleasa C. Transient leukemia of Down syndrome. Crit Rev Clin Lab Sci 2019; 56:247-259. [PMID: 31043105 DOI: 10.1080/10408363.2019.1613629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Childhood leukemia is mostly a "developmental accident" during fetal hematopoiesis and may require multiple prenatal and postnatal "hits". The World Health Organization defines transient leukemia of Down syndrome (DS) as increased peripheral blood blasts in neonates with DS and classifies this type of leukemia as a separate entity. Although it was shown that DS predisposes children to myeloid leukemia, neither the nature of the predisposition nor the associated genetic lesions have been defined. Acute myeloid leukemia of DS is a unique disease characterized by a long pre-leukemic, myelodysplastic phase, unusual chromosomal findings and a high cure rate. In the present manuscript, we present a comprehensive review of the literature about clinical and biological findings of transient leukemia of DS (TL-DS) and link them with the genetic discoveries in the field. We address the manuscript to the pediatric generalist and especially to the next generation of pediatric hematologists.
Collapse
Affiliation(s)
- Valentina Sas
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristina Blag
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gabriela Zaharie
- c Department of Neonatology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Emil Puscas
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cosmin Lisencu
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Andronic-Gorcea
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Irina Chis
- e Department of Physiology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mirela Marian
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Delia Dima
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Patric Teodorescu
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sabina Iluta
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mihnea Zdrenghea
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- g MedFuture Research Center for Advanced Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gheorghe Popa
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sorin Man
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Anca Colita
- h Department of Pediatrics , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,i Department of Pediatrics , Fundeni Clinical Institute , Bucharest , Romania
| | - Cristina Stefan
- j African Organization for Research and Training in Cancer , Cape Town , South Africa
| | - Seiji Kojima
- k Department of Pediatrics , Nagoya University Graduate School of Medicine , Nagoya , Japan.,l Center for Advanced Medicine and Clinical Research , Nagoya University Hospital , Nagoya , Japan
| | - Ciprian Tomuleasa
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania.,m Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
32
|
Zając-Spychała O, Skalska-Sadowska J, Wachowiak J, Szmydki-Baran A, Hutnik Ł, Matysiak M, Pierlejewski F, Młynarski W, Czyżewski K, Dziedzic M, Wysocki M, Zalas-Więcek P, Bartnik M, Ociepa T, Urasiński T, Małas Z, Badowska W, Gamrot-Pyka Z, Woszczyk M, Tomaszewska R, Szczepański T, Irga-Jaworska N, Drożyńska E, Urbanek-Dądela A, Karolczyk G, Płonowski M, Krawczuk-Rybak M, Frączkiewicz J, Salamonowicz M, Chybicka A, Stolpa W, Sobol-Milejska G, Chełmecka-Wiktorczyk L, Balwierz W, Zak I, Gryniewicz-Kwiatkowska O, Gietka A, Dembowska-Bagińska B, Semczuk K, Dzierżanowska-Fangrat K, Musiał J, Chaber R, Kowalczyk J, Styczyński J. Infections in children with acute myeloid leukemia: increased mortality in relapsed/refractory patients. Leuk Lymphoma 2019; 60:3028-3035. [PMID: 31132917 DOI: 10.1080/10428194.2019.1616185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this nationwide study was to describe the epidemiology and profile of bacterial infections (BI), invasive fungal disease (IFD) and viral infections (VI) in patients with de novo and relapsed/refractory (rel/ref) acute myeloid leukemia (AML). Within the studied group of 250 children with primary AML, at least one infectious complication (IC) was diagnosed in 76.0% (n = 190) children including 85.1% (n = 504) episodes of BI, 8.3% (n = 49) - IFD and 6.6% (n = 39) - VI. Among 61 patients with rel/ref AML, at least one IC was found in 67.2% (n = 41) of children including 78.8% (n = 78) of BI, 14.1% (n = 14) of IFD and 7.1% (n = 7) of VI. In all AML patients, within BI Gram-negative strains were predominant. Half of these strains were multi-drug resistant. Characteristics of IFD and VI were comparable for de novo and rel/ref AML. The infection-related mortality was significantly higher, while survival from infection was significantly lower in patients with rel/ref disease.
Collapse
Affiliation(s)
- Olga Zając-Spychała
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Anna Szmydki-Baran
- Department of Pediatric Hematology and Oncology, Medical University, Warszawa, Poland
| | - Łukasz Hutnik
- Department of Pediatric Hematology and Oncology, Medical University, Warszawa, Poland
| | - Michał Matysiak
- Department of Pediatric Hematology and Oncology, Medical University, Warszawa, Poland
| | - Filip Pierlejewski
- Department of Pediatric Oncology, Hematology and Diabetology, Medical University, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatric Oncology, Hematology and Diabetology, Medical University, Lodz, Poland
| | - Krzysztof Czyżewski
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Magdalena Dziedzic
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Mariusz Wysocki
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Patrycja Zalas-Więcek
- Department of Microbiology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Magdalena Bartnik
- Department of Pediatrics and Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Ociepa
- Department of Pediatrics and Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Urasiński
- Department of Pediatrics and Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Zofia Małas
- Division of Pediatric Hematology and Oncology, Children Hospital, Olsztyn, Poland
| | - Wanda Badowska
- Division of Pediatric Hematology and Oncology, Children Hospital, Olsztyn, Poland
| | - Zuzanna Gamrot-Pyka
- Division of Pediatric Hematology and Oncology, Chorzow Pediatric and Oncology Center, Chorzow, Poland
| | - Mariola Woszczyk
- Division of Pediatric Hematology and Oncology, Chorzow Pediatric and Oncology Center, Chorzow, Poland
| | - Renata Tomaszewska
- Department of Pediatric Hematology and Oncology, Silesian Medical University, Zabrze, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Silesian Medical University, Zabrze, Poland
| | - Nina Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University, Gdansk, Poland
| | - Elżbieta Drożyńska
- Department of Pediatrics, Hematology and Oncology, Medical University, Gdansk, Poland
| | | | - Grażyna Karolczyk
- Division of Pediatric Hematology and Oncology, Children Hospital, Kielce, Poland
| | - Marcin Płonowski
- Department of Pediatric Oncology and Hematology, Medical University, Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University, Bialystok, Poland
| | - Jowita Frączkiewicz
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | - Malgorzata Salamonowicz
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | - Alicja Chybicka
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | - Weronika Stolpa
- Division of Pediatric Oncology, Hematology and Chemotherapy, Department of Pediatrics, Silesian Medical University, Katowice, Poland
| | - Grazyna Sobol-Milejska
- Division of Pediatric Oncology, Hematology and Chemotherapy, Department of Pediatrics, Silesian Medical University, Katowice, Poland
| | - Liliana Chełmecka-Wiktorczyk
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Iwona Zak
- Department of Microbiology, University Children's Hospital, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | | | - Aneta Gietka
- Department of Oncology, Children's Memorial Health Institute, Warszawa, Poland
| | | | - Katarzyna Semczuk
- Department of Microbiology, Children's Memorial Health Institute, Warszawa, Poland
| | | | - Jakub Musiał
- Department of Pediatric Oncohematology, Children Hospital, Rzeszow, Poland
| | - Radoslaw Chaber
- Department of Pediatric Oncohematology, Children Hospital, Rzeszow, Poland
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical University, Lublin, Poland
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| |
Collapse
|
33
|
De Marchi F, Araki M, Komatsu N. Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Rev Hematol 2019; 12:285-293. [PMID: 30991862 DOI: 10.1080/17474086.2019.1609351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Acute megakaryoblastic leukemia (AMegL) is a rare hematological neoplasm most often diagnosed in children and is commonly associated with Down's syndrome (DS). Although AMegLs are specifically characterized and typically diagnosed by megakaryoblastic expansion, recent advancements in molecular analysis have highlighted the heterogeneity of this disease, with specific cytogenic and genetic alterations characterizing different disease subtypes. Areas covered: This review will focus on describing recurrent molecular variations in both DS and non-DS pediatric AMegL, their role in promoting leukemogenesis, their association with different clinical aspects and prognosis, and finally, their influence on future treatment strategies with a number of specific drugs beyond conventional chemotherapy already under development. Expert opinion: Deep understanding of the genetic and molecular landscape of AMegL will lead to better and more precise disease classification in terms of diagnosis, prognosis, and possible targeted therapies. Development of new therapeutic approaches based on these molecular characteristics will hopefully improve AMegL patient outcomes.
Collapse
Affiliation(s)
- Federico De Marchi
- a Department of Hematology , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Marito Araki
- b Department of Transfusion Medicine and Stem Cell Regulation , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Norio Komatsu
- a Department of Hematology , Juntendo University Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|
34
|
Masetti R, Guidi V, Ronchini L, Bertuccio NS, Locatelli F, Pession A. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol 2019; 138:132-138. [PMID: 31092368 DOI: 10.1016/j.critrevonc.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/30/2023] Open
Abstract
Pediatric non-Down-syndrome acute megakaryoblastic leukemia (non-DS-AMKL) is a heterogeneous subtype of leukemia that has historically been associated with poor prognosis. Until the advent of large-scale genomic sequencing, the management of patients with non-DS-AMKL was very difficult due to the absence of reliable biological prognostic markers. The sequencing of large cohort of pediatric non-DS-AMKL samples led to the discovery of novel genetic aberrations, including high-frequency fusions, such as CBFA2T3-GLIS2 and NUP98-KDM5 A, as well as less frequent aberrations, such as HOX rearrangements. These new insights into the genetic landscape of pediatric non-DS-AMKL has allowed refining the risk-group stratification, leading to important changes in the prognostic scenario of these patients. This review summarizes the most important molecular pathogenic mechanisms of pediatric non-DS-AMKL. A critical discussion on how novel genetic abnormalities have refined the risk profile assessment and changed the management of these patients in clinical practice is also provided.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Vanessa Guidi
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy.
| | - Laura Ronchini
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Nicola Salvatore Bertuccio
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Maarouf N, Mahmoud S, Khedr R, Lehmann L, Shaaban K, Ibrahim S, Fahmy S, Hassanain O, Nader N, Elhaddad A. Outcome of Childhood Acute Megakaryoblastic Leukemia: Children’s Cancer Hospital Egypt 57357 Experience. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e142-e152. [DOI: 10.1016/j.clml.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 11/24/2022]
|
36
|
Masetti R, Bertuccio SN, Pession A, Locatelli F. CBFA2T3-GLIS2-positive acute myeloid leukaemia. A peculiar paediatric entity. Br J Haematol 2018; 184:337-347. [PMID: 30592296 PMCID: PMC6590351 DOI: 10.1111/bjh.15725] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The scenario of paediatric acute myeloid leukaemia (AML), particularly non‐Down syndrome acute megakaryoblastic leukaemia (non‐DS‐AMKL), has been recently revolutionized by the advent of large‐scale, genomic sequencing technologies. In this changing landscape, a significantly relevant discovery has been represented by the identification of the CBFA2T3‐GLIS2 fusion gene, which is the result of a cryptic inversion of chromosome 16. It is the most frequent chimeric oncogene identified to date in non‐DS‐AMKL, although it seems not to be exclusively restricted to the French‐American‐British M7 subgroup. The CBFA2T3‐GLIS2 fusion gene characterizes a subtype of leukaemia that is specific to paediatrics, having never been identified in adults. It characterizes an extremely aggressive leukaemia, as the presence of this fusion is associated with a grim outcome in almost all of the case series reported, with overall survival rates ranging between 15% and 30%. Although the molecular basis that underlies this leukaemia subtype is still far from being completely elucidated, unique functional properties induced by CBFA2T3‐GLIS2 in the leukaemogenesis driving process have been recently identified. We here review the peculiarities of CBFA2T3‐GLIS2‐positive AML, describing its intriguing clinical and biological behaviour and providing some challenging targeting opportunities.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Salvatore N Bertuccio
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
Rau RE, Loh ML. Using genomics to define pediatric blood cancers and inform practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:286-300. [PMID: 30504323 PMCID: PMC6245969 DOI: 10.1182/asheducation-2018.1.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, there has been exponential growth in the number of genome sequencing studies performed across a spectrum of human diseases as sequencing technologies and analytic pipelines improve and costs decline. Pediatric hematologic malignancies have been no exception, with a multitude of next generation sequencing studies conducted on large cohorts of patients in recent years. These efforts have defined the mutational landscape of a number of leukemia subtypes and also identified germ-line genetic variants biologically and clinically relevant to pediatric leukemias. The findings have deepened our understanding of the biology of many childhood leukemias. Additionally, a number of recent discoveries may positively impact the care of pediatric leukemia patients through refinement of risk stratification, identification of targetable genetic lesions, and determination of risk for therapy-related toxicity. Although incredibly promising, many questions remain, including the biologic significance of identified genetic lesions and their clinical implications in the context of contemporary therapy. Importantly, the identification of germ-line mutations and variants with possible implications for members of the patient's family raises challenging ethical questions. Here, we review emerging genomic data germane to pediatric hematologic malignancies.
Collapse
Affiliation(s)
- Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
38
|
Kayser S, Levis MJ. Clinical implications of molecular markers in acute myeloid leukemia. Eur J Haematol 2018; 102:20-35. [PMID: 30203623 DOI: 10.1111/ejh.13172] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The recently updated World Health Organization (WHO) Classification of myeloid neoplasms and leukemia reflects the fact that research in the underlying pathogenic mechanisms of acute myeloid leukemia (AML) has led to remarkable advances in our understanding of the disease. Gene mutations now allow us to explore the enormous diversity among cytogenetically defined subsets of AML, particularly the large subset of cytogenetically normal AML. Despite the progress in unraveling the tumor genome, only a small number of recurrent mutations have been incorporated into risk-stratification schemes and have been proven to be clinically relevant, targetable lesions. We here discuss the utility of molecular markers in AML in prognostication and treatment decision making, specifically highlighting the aberrations included in the current WHO classification.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
39
|
Foster JH, Williams CL, Elghetany MT, Liu P, Krance RA, Bertuch AA, Gramatges MM. Monozygotic twins with non-Down syndrome associated MLL-rearranged hematologic malignancy and megakaryoblastic differentiation. Leuk Lymphoma 2018; 60:1083-1086. [DOI: 10.1080/10428194.2018.1516883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jennifer H. Foster
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Chris L. Williams
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Mohamed Tarek Elghetany
- Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
- Department of Pathology, Division of Anatomic Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Krance
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Alison A. Bertuch
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Maria Monica Gramatges
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| |
Collapse
|
40
|
Klairmont MM, Hoskoppal D, Yadak N, Choi JK. The Comparative Sensitivity of Immunohistochemical Markers of Megakaryocytic Differentiation in Acute Megakaryoblastic Leukemia. Am J Clin Pathol 2018; 150:461-467. [PMID: 30052718 DOI: 10.1093/ajcp/aqy074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Immunohistochemistry (IHC) staining of core biopsy sections often plays an essential role in the diagnosis of acute megakaryoblastic leukemia (AMKL). The goal of this study was to define the relative sensitivities of commonly used stains for markers of megakaryocytic differentiation. METHODS The sensitivities of IHC stains for CD42b, CD61, and von Willebrand factor (vWF) were compared in 32 cases of pediatric AMKL. RESULTS The sensitivities of CD42b, CD61, and vWF were 90.6%, 78.1% and 62.5%, respectively. When CD42b and CD61 were used together, the combined sensitivity increased to 93.6%. There were no cases in which vWF was positive when both CD42b and CD61 were negative. CONCLUSIONS CD42b can reliably be used as a solitary first-line marker for blasts of megakaryocytic lineage, whereas CD61 may be reserved for infrequent cases that are CD42b negative. There is no role for the routine use of vWF when CD42b and CD61 are available.
Collapse
Affiliation(s)
- Matthew M Klairmont
- Department of Pathology, University of Tennessee Health Science Center, Memphis
| | - Deepthi Hoskoppal
- Department of Pathology, University of Tennessee Health Science Center, Memphis
| | - Nour Yadak
- Department of Pathology, University of Tennessee Health Science Center, Memphis
| | - John Kim Choi
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
41
|
Teyssier AC, Lapillonne H, Pasquet M, Ballerini P, Baruchel A, Ducassou S, Fenneteau O, Petit A, Cuccuini W, Ragu C, Preudhomme C, Mercher T, Sirvent N, Leverger G. Acute megakaryoblastic leukemia (excluding Down syndrome) remains an acute myeloid subgroup with inferior outcome in the French ELAM02 trial. Pediatr Hematol Oncol 2017; 34:425-427. [PMID: 29303660 DOI: 10.1080/08880018.2017.1414905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the outcome of 27 children with de novo acute megakaryoblastic leukemia (AMKL) (excluding Down syndrome) enrolled in the French multicenter prospective study ELAM02 (2005-2011). There was no difference in gender, initial leukocyte count, CNS involvement, and complete remission rate (88.9%), as compared to other acute myeloid leukemia (AML) subtypes. AMKL patients had a significantly poorer outcome (5-year overall survival 54% [CI 95% 33%-71%] than children with other AML subtypes (5-year overall survival 73% [CI 95% 68%-77%] p = 0.02). Gender, age, CNS leukemia, hyperleukocytosis, complete remission or cytogenetic subgroups were not significant prognostic factors of disease-free survival. AMKL (excluding Down syndrom) remains an AML subgroup with inferior outcome.
Collapse
Affiliation(s)
- Anne-Charlotte Teyssier
- a Department of Pediatric Onco-Hematology , University Hospital Arnaud de Villeneuve , Montpellier , France
| | - Hélène Lapillonne
- b Hematology Laboratory, Armand Trousseau Hospital, APHP , Paris , France
| | - Marlene Pasquet
- c Department of Pediatric Onco-Hematology , University Hospital Purpan , Toulouse , France
| | - Paola Ballerini
- b Hematology Laboratory, Armand Trousseau Hospital, APHP , Paris , France
| | - André Baruchel
- d Department of Pediatric Hematology , Robert-Debré Hospital, APHP , Paris , France
| | - Stephane Ducassou
- e Department of Pediatric Onco-Hematology , University Hospital , Bordeaux , France
| | - Odile Fenneteau
- f Hematology Laboratory, Robert-Debré Hospital, APHP , Paris , France
| | - Arnaud Petit
- g Department of Pediatric Hematology , Armand Trousseau Hospital, APHP , Paris , France
| | - Wendy Cuccuini
- h Hematology Laboratory, Saint-Louis Hospital, APHP , Paris , France
| | - Christine Ragu
- g Department of Pediatric Hematology , Armand Trousseau Hospital, APHP , Paris , France
| | - Claude Preudhomme
- i U837 INSERM and Hematology Laboratory, University Hospital of Lille , France
| | - Thomas Mercher
- j U985 INSERM, Institut Gustave Roussy , Villejuif , France
| | - Nicolas Sirvent
- a Department of Pediatric Onco-Hematology , University Hospital Arnaud de Villeneuve , Montpellier , France
| | - Guy Leverger
- g Department of Pediatric Hematology , Armand Trousseau Hospital, APHP , Paris , France
| |
Collapse
|
42
|
Therapy reduction in patients with Down syndrome and myeloid leukemia: the international ML-DS 2006 trial. Blood 2017; 129:3314-3321. [DOI: 10.1182/blood-2017-01-765057] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
Key Points
Reducing therapy intensity in the ML-DS 2006 trial did not impair the excellent prognosis in ML-DS compared with the historical control. Early treatment response and gain of chromosome 8 are independent prognostic factors.
Collapse
|
43
|
Hara Y, Shiba N, Ohki K, Tabuchi K, Yamato G, Park MJ, Tomizawa D, Kinoshita A, Shimada A, Arakawa H, Saito AM, Kiyokawa N, Tawa A, Horibe K, Taga T, Adachi S, Taki T, Hayashi Y. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 2017; 56:394-404. [DOI: 10.1002/gcc.22444] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yusuke Hara
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Norio Shiba
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Kentaro Ohki
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatric Hematology and Oncology Research; National Research Institute for Child Health and Development; Tokyo Japan
| | - Ken Tabuchi
- Department of Pediatrics; Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital; Tokyo Japan
| | - Genki Yamato
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Myoung-ja Park
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma; Children's Cancer Center, National Center for Child Health and Development; Tokyo Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics; St Marianna University School of Medicine; Kawasaki Japan
| | - Akira Shimada
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - Hirokazu Arakawa
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Akiko M. Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research; National Research Institute for Child Health and Development; Tokyo Japan
| | - Akio Tawa
- Department of Pediatrics; National Hospital Organization Osaka National Hospital; Osaka Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Takashi Taga
- Department of Pediatrics; Shiga University of Medical Science; Otsu Japan
| | - Souichi Adachi
- Department of Human Health Sciences Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics; Kyoto Prefectural University of Medicine Graduate School of Medical Science; Kyoto Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
- Gunma Red Cross Blood Center; Maebashi Japan
| |
Collapse
|
44
|
Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 2017; 49:451-456. [PMID: 28112737 DOI: 10.1038/ng.3772] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) in which cells morphologically resemble abnormal megakaryoblasts. While rare in adults, AMKL accounts for 4-15% of newly diagnosed childhood AML cases. AMKL in individuals without Down syndrome (non-DS-AMKL) is frequently associated with poor clinical outcomes. Previous efforts have identified chimeric oncogenes in a substantial number of non-DS-AMKL cases, including RBM15-MKL1, CBFA2T3-GLIS2, KMT2A gene rearrangements, and NUP98-KDM5A. However, the etiology of 30-40% of cases remains unknown. To better understand the genomic landscape of non-DS-AMKL, we performed RNA and exome sequencing on specimens from 99 patients (75 pediatric and 24 adult). We demonstrate that pediatric non-DS-AMKL is a heterogeneous malignancy that can be divided into seven subgroups with varying outcomes. These subgroups are characterized by chimeric oncogenes with cooperating mutations in epigenetic and kinase signaling genes. Overall, these data shed light on the etiology of AMKL and provide useful information for the tailoring of treatment.
Collapse
|
45
|
Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood 2016; 127:3424-30. [PMID: 27114462 DOI: 10.1182/blood-2016-01-695551] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/14/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic abnormalities and early treatment response are the main prognostic factors in acute myeloid leukemia (AML). Acute megakaryoblastic leukemia (AMKL) is a rare subtype of AML. Deep sequencing has identified CBFA2T3/GLIS2 and NUP98/KDM5A as recurrent aberrations, occurring in similar frequencies as RBM15/MKL1 and KMT2A-rearrangements. We studied whether these cytogenetic aberrations can be used for risk group stratification. To assess frequencies and outcome parameters of recurrent cytogenetic aberrations in AMKL, samples and clinical data of patients treated by the Associazione Italiana Ematologia Oncologia Pediatrica, Berlin-Frankfurt-Munster Study Group, Children's Oncology Group, Dutch Childhood Oncology Group, and the Saint Louis Hôpital were collected, enabling us to screen 153 newly diagnosed pediatric AMKL cases for the aforementioned aberrations and to study their clinical characteristics and outcome. CBFA2T3/GLIS2 was identified in 16% of the cases; RBM15/MKL1, in 12%; NUP98/KDM5A and KMT2A rearrangements, in 9% each; and monosomy 7, in 6%. These aberrations were mutually exclusive. RBM15/MKL1-rearranged patients were significantly younger. No significant differences in sex and white blood cell count were found. NUP98/KDM5A, CBFA2T3/GLIS2, KMT2A-rearranged lesions and monosomy 7 (NCK-7) independently predicted a poor outcome, compared with RBM15/MKL1-rearranged patients and those with AMKL not carrying these molecular lesions. NCK-7-patients (n = 61) showed a 4-year probability of overall survival of 35 ± 6% vs 70 ± 5% in the RBM15/MKL1-other groups (n = 92, P < .0001) and 4-year probability of event-free survival of 33 ± 6% vs 62 ± 5% (P = .0013), the 4-year cumulative incidence of relapse being 42 ± 7% and 19 ± 4% (P = .003), respectively. We conclude that these genetic aberrations may be used for risk group stratification of pediatric AMKL and for treatment tailoring.
Collapse
|
46
|
Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 2015. [PMID: 26215111 DOI: 10.1182/blood-2015-02-629204] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Comprehensive clinical studies of patients with acute megakaryoblastic leukemia (AMKL) are lacking. We performed an international retrospective study on 490 patients (age ≤18 years) with non-Down syndrome de novo AMKL diagnosed from 1989 to 2009. Patients with AMKL (median age 1.53 years) comprised 7.8% of pediatric AML. Five-year event-free (EFS) and overall survival (OS) were 43.7% ± 2.7% and 49.0% ± 2.7%, respectively. Patients diagnosed in 2000 to 2009 were treated with higher cytarabine doses and had better EFS (P = .037) and OS (P = .003) than those diagnosed in 1989 to 1999. Transplantation in first remission did not improve survival. Cytogenetic data were available for 372 (75.9%) patients: hypodiploid (n = 18, 4.8%), normal karyotype (n = 49, 13.2%), pseudodiploid (n = 119, 32.0%), 47 to 50 chromosomes (n = 142, 38.2%), and >50 chromosomes (n = 44, 11.8%). Chromosome gain occurred in 195 of 372 (52.4%) patients: +21 (n = 106, 28.5%), +19 (n = 93, 25.0%), +8 (n = 77, 20.7%). Losses occurred in 65 patients (17.5%): -7 (n = 13, 3.5%). Common structural chromosomal aberrations were t(1;22)(p13;q13) (n = 51, 13.7%) and 11q23 rearrangements (n = 38, 10.2%); t(9;11)(p22;q23) occurred in 21 patients. On the basis of frequency and prognosis, AMKL can be classified to 3 risk groups: good risk-7p abnormalities; poor risk-normal karyotypes, -7, 9p abnormalities including t(9;11)(p22;q23)/MLL-MLLT3, -13/13q-, and -15; and intermediate risk-others including t(1;22)(p13;q13)/OTT-MAL (RBM15-MKL1) and 11q23/MLL except t(9;11). Risk-based innovative therapy is needed to improve patient outcomes.
Collapse
|