1
|
Nakagawa T, Santos J, Nasamran CA, Sen P, Sadat S, Monther A, Bendik J, Ebisumoto K, Hu J, Preissl S, Guo T, Vavinskaya V, Fisch KM, Califano JA. Defining the relationship of salivary gland malignancies to novel cell subpopulations in human salivary glands using single nucleus RNA-sequencing. Int J Cancer 2024; 154:1492-1503. [PMID: 37971144 DOI: 10.1002/ijc.34790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Salivary glands have essential roles in maintaining oral health, mastication, taste and speech, by secreting saliva. Salivary glands are composed of several types of cells, and each cell type is predicted to be involved in the carcinogenesis of different types of cancers including adenoid cystic carcinoma (ACC), acinic cell carcinoma (AciCC), salivary duct carcinoma (SDC), myoepithelial carcinoma (MECA) and other histology. In our study, we performed single nucleus RNA-seq on three human salivary gland samples to clarify the gene expression profile of each complex cellular component of the salivary glands and related these expression patterns to expression found in salivary gland cancers (SGC) to infer cell of origin. By single nucleus RNA-seq, salivary gland cells were stratified into four clusters: acinar cells, ductal cells 1, ductal cells 2 and myoepithelial cells/stromal cells. The localization of each cell group was verified by IHC of each cluster marker gene, and one group of ductal cells was found to represent intercalated ductal cells labeled with HES1. Furthermore, in comparison with SGC RNA-seq data, acinar cell markers were upregulated in AciCC, but downregulated in ACC and ductal cell markers were upregulated in SDC but downregulated in MECA, suggesting that markers of origin are highly expressed in some SGC. Cell type expressions in specific SGC histology are similar to those found in normal salivary gland populations, indicating a potential etiologic relationship.
Collapse
Affiliation(s)
- Takuya Nakagawa
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jessica Santos
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Prakriti Sen
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Abdula Monther
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Joseph Bendik
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Koji Ebisumoto
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jingjing Hu
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Theresa Guo
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Vera Vavinskaya
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Morris VS, Ghazi H, Fletcher DM, Guinn BA. A Direct Comparison, and Prioritisation, of the Immunotherapeutic Targets Expressed by Adult and Paediatric Acute Myeloid Leukaemia Cells: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:9667. [PMID: 37298623 PMCID: PMC10253696 DOI: 10.3390/ijms24119667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by impaired myeloid differentiation resulting in an accumulation of immature blasts in the bone marrow and peripheral blood. Although AML can occur at any age, the incidence peaks at age 65. The pathobiology of AML also varies with age with associated differences in incidence, as well as the frequency of cytogenetic change and somatic mutations. In addition, 5-year survival rates in paediatrics are 60-75% but fall to 5-15% in older AML patients. This systematic review aimed to determine whether the altered genes in AML affect the same molecular pathways, indifferent of patient age, and, therefore, whether patients could benefit from the repurposing drugs or the use of the same immunotherapeutic strategies across age boundaries to prevent relapse. Using a PICO framework and PRISMA-P checklist, relevant publications were identified using five literature databases and assessed against an inclusion criteria, leaving 36 articles, and 71 targets for therapy, for further analysis. QUADAS-2 was used to determine the risk of bias and perform a quality control step. We then priority-ranked the list of cancer antigens based on predefined and pre-weighted objective criteria as part of an analytical hierarchy process used for dealing with complex decisions. This organized the antigens according to their potential to act as targets for the immunotherapy of AML, a treatment that offers an opportunity to remove residual leukaemia cells at first remission and improve survival rates. It was found that 80% of the top 20 antigens identified in paediatric AML were also within the 20 highest scoring immunotherapy targets in adult AML. To analyse the relationships between the targets and their link to different molecular pathways, PANTHER and STRING analyses were performed on the 20 highest scoring immunotherapy targets for both adult and paediatric AML. There were many similarities in the PANTHER and STRING results, including the most prominent pathways being angiogenesis and inflammation mediated by chemokine and cytokine signalling pathways. The coincidence of targets suggests that the repurposing of immunotherapy drugs across age boundaries could benefit AML patients, especially when used in combination with conventional therapies. However, due to cost implications, we would recommend that efforts are focused on ways to target the highest scoring antigens, such as WT1, NRAS, IDH1 and TP53, although in the future other candidates may prove successful.
Collapse
Affiliation(s)
- Vanessa S. Morris
- Department of Chemistry and Biochemistry, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Hanya Ghazi
- Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, Kingston upon Hull HU6 7RX, UK;
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, Kingston upon Hull HU6 7RX, UK;
| |
Collapse
|
3
|
Tian C, Li Y, Wang L, Si J, Zheng Y, Kang J, Wang Y, You MJ, Zheng G. Blockade of FGF2/FGFR2 partially overcomes bone marrow mesenchymal stromal cells mediated progression of T-cell acute lymphoblastic leukaemia. Cell Death Dis 2022; 13:922. [PMID: 36333298 PMCID: PMC9636388 DOI: 10.1038/s41419-022-05377-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The development of acute lymphoblastic leuakemia (ALL) is partly attributed to the effects of bone marrow (BM) microenvironment, especially mesenchymal stromal cells (MSCs), which interact bilaterally with leukaemia cells, leading to ALL progression. In order to find MSCs-based microenvironment targeted therapeutic strategies, Notch1-induced T-cell ALL (T-ALL) mice models were used and dynamic alterations of BM-MSCs with increased cell viability during T-ALL development was observed. In T-ALL mice derived stroma-based condition, leukaemia cells showed significantly elevated growth capacity indicating that MSCs participated in leukaemic niche formation. RNA sequence results revealed that T-ALL derived MSCs secreted fibroblast growth factor 2 (FGF2), which combined with fibroblast growth factor receptor 2 (FGFR2) on leukaemia cells, resulting in activation of PI3K/AKT/mTOR signalling pathway in leukaemia cells. In vitro blocking the interaction between FGF2 and FGFR2 with BGJ398 (infigratinib), a FGFR1-3 kinase inhibitor, or knockdown FGF2 in MSCs by interference caused deactivation of PI3K/AKT/mTOR pathway and dysregulations of genes associated with cell cycle and apoptosis in ALL cells, leading to decrease of leukaemia cells. In mouse model received BGJ398, overall survival was extended and dissemination of leukaemia cells in BM, spleen, liver and peripheral blood was decreased. After subcutaneous injection of primary human T-ALL cells with MSCs, tumour growth was suppressed when FGF2/FGFR2 was interrupted. Thus, inhibition of FGF2/FGFR2 interaction appears to be a valid strategy to overcome BM-MSCs mediated progression of T-ALL, and BGJ398 could indeed improve outcomes in T-ALL, which provide theoretical basis of BGJ398 as a BM microenvironment based therapeutic strategy to control disease progression.
Collapse
Affiliation(s)
- Chen Tian
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yueyang Li
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Lina Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Junqi Si
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Yaxin Zheng
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Junnan Kang
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Yafei Wang
- grid.411918.40000 0004 1798 6427Department of hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - M. James You
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77479 USA
| | - Guoguang Zheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
4
|
Abnormal bone marrow microenvironment: the “harbor” of acute lymphoblastic leukemia cells. BLOOD SCIENCE 2021; 3:29-34. [PMID: 35402834 PMCID: PMC8975096 DOI: 10.1097/bs9.0000000000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Bone marrow (BM) microenvironment regulates and supports the production of blood cells which are necessary to maintain homeostasis. In analogy to normal hematopoiesis, leukemogenesis is originated from leukemic stem cells (LSCs) which gives rise to more differentiated malignant cells. Leukemia cells occupy BM niches and reconstruct them to support leukemogenesis. The abnormal BM niches are the main sanctuary of LSCs where they can evade chemotherapy-induced death and acquire drug resistance. In this review, we focus on the protective effects of BM niche cells on acute lymphoblastic leukemia cells.
Collapse
|
5
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
6
|
Aithal MGS, Rajeswari N. Bacoside A Induced Sub-G0 Arrest and Early Apoptosis in Human Glioblastoma Cell Line U-87 MG through Notch Signaling Pathway. Brain Tumor Res Treat 2019; 7:25-32. [PMID: 31062528 PMCID: PMC6504756 DOI: 10.14791/btrt.2019.7.e21] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a worst prognosis of less than one year despite advance treatment facilities. Among various signaling pathway genes displaying genetic modifications, aberrant expression of Notch pathway genes is frequent in GBM offering novel therapeutic targets. Herbal extracts having anticancer properties are used in adjuvant therapy that is safe and affordable as compared to chemotherapeutics. Bacopa monnieri has been used for the development of brain cells because of its neuroprotective properties. Its anticancer properties have shown to be promising in cancer treatment. Methods The anticancer properties of Bacoside A, an active and abundant component of Bacopa monnieri was assessed on U-87 MG cell line and its effects on expression of Notch pathway genes were studied. Cell cycle arrest and apoptosis were studied using flow cytometry. Expression of Notch pathway genes comprising of Notch receptors (notch1, notch2, notch3 and notch4), ligands (jagged1 and jagged2), a component of gamma-secretase complex (APH1A) and downstream target (HES1) were evaluated by quantitative real-time PCR. Results Bacoside A exhibited considerable cytotoxicity on U-87 MG cells inducing cell cycle arrest and apoptosis. Cell cycle analysis revealed a significant arrest of 39.21% cells in sub-G0 phase at 80 µg/mL concentration, increasing to 53.21% at a higher concentration of 100 µg/mL. The fraction of early apoptotic cells in control was low (3.48%) that increased substantially to 31.36% and 41.11% after 80 µg/mL and 100 µg/mL of Bacoside A treatment respectively. Additionally, the expression of notch1 gene decreased after exposure to Bacoside A with a fold change of 0.05, whereas HES1 gene expression was increased by 25 fold. Conclusion These data indicate that Bacoside A has a possible anticancer activity that could be inducing cell cycle arrest and apoptosis through Notch pathway in GBM in vitro.
Collapse
Affiliation(s)
- Madhuri G S Aithal
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
| | - Narayanappa Rajeswari
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India.
| |
Collapse
|
7
|
Eskandari S, Yazdanparast R. Overexpression of Hes1 is involved in sensitization of K562 cells to Imatinib. J Cell Biochem 2018; 120:10128-10136. [PMID: 30548309 DOI: 10.1002/jcb.28296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 01/26/2023]
Abstract
Tyrosine kinase inhibitor (TKI)-based therapy has created promising results among much chronic myeloid leukemia (CML) patients. Imatinib as a relatively specific inhibitor of Bcr-Abl is at present one of the undisputed therapeutic agent for newlydiagnosed patients with CML. However, the occurrence of imatinib-resistance enlightens the urgent need to identify other therapeutic agents against CML. Juglone (5-hydroxy-2-methyl-1, 4-naphthoquinone) exerts cytotoxic effects against various human cancer cell lines. However, the mechanisms through which Juglone induces anticancer effects in CML especially in comparison with imatinib treatment remain unknown. Our results revealed that Juglone-inhibited K562 cells growth through inducing apoptosis. Based on our Western blot analyses, Juglone significantly reduced p-Akt levels and increased the expression level of Forkhead box O1 (FoxO1) and FoxO3a proteins. Moreover, hairy/enhancer of split-1 (Hes1) protein, overexpressed under the influence of Juglone, is apparently involved in Juglone-induced apoptosis among K562 cells. Conversely, treatment with imatinib attenuated Hes1 protein expression. Considering the different functional mechanism of Juglone compared with imatinib, it seems that Juglone treatment could be a useful alternative strategy for the treatment of patients with imatinib-resistance.
Collapse
Affiliation(s)
- Sedigheh Eskandari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Gurczynski SJ, Zhou X, Flaherty M, Wilke CA, Moore BB. Bone marrow transplant-induced alterations in Notch signaling promote pathologic Th17 responses to γ-herpesvirus infection. Mucosal Immunol 2018; 11:881-893. [PMID: 29044226 PMCID: PMC5906203 DOI: 10.1038/mi.2017.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
Idiopathic pneumonia syndrome (IPS) is a common, often fatal, complication following hematopoietic stem cell transplantation (HSCT) characterized by severe pneumonitis and interstitial fibrosis. Fully reconstituted syngeneic bone marrow transplant (BMT) mice infected with murine γ-herpesvirus-68 develop interleukin-17 (IL-17)-driven pneumonitis and fibrosis, which mimics clinical manifestations of IPS. We found CD103+ and CD11b+ dendritic cells (DCs) are selectively deficient for the Notch ligand, DLL4, following BMT and CD4+ T cells isolated from lungs and spleens of infected BMT mice display Notch signaling defects. Mice transplanted with CD4-Cre-driven dominant-negative Notch transcriptional regulator Mastermind-Like (CD4-Cre-DNMAML (CCD) mice) bone marrow displayed elevated IL-17 and transforming growth factor-β (TGF β) in the lungs, a further expansion of T-helper type 17 (Th17) cells, and developed more fibrosis than wild-type (WT)-BMT mice. Culture of BMT lung leukocytes with recombinant Notch ligand, DLL4, restored Notch signaling and decreased production of IL-17. Adoptive transfer of CD11c+ DCs could restore Th1 and limit Th17 in WT-BMT but not CCD-BMT mice, indicating that a specific DC/CD4+ T-cell Notch interaction modulates IL-17 production following reconstitution in syngeneic BMT mice. Given recent clinical observations showing that patients with pulmonary complications post-transplant harbor occult herpesvirus infections, these data provide mechanistic insight and suggest potential therapies for these devastating conditions.
Collapse
Affiliation(s)
- Stephen J. Gurczynski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhou
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Melanie Flaherty
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Carol A. Wilke
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI
| | - Bethany B. Moore
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, MI,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Huang XY, Gan RH, Xie J, She L, Zhao Y, Ding LC, Su BH, Zheng DL, Lu YG. The oncogenic effects of HES1 on salivary adenoid cystic carcinoma cell growth and metastasis. BMC Cancer 2018; 18:436. [PMID: 29665790 PMCID: PMC5904989 DOI: 10.1186/s12885-018-4350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Our previous study demonstrated a close relationship between NOTCH signaling pathway and salivary adenoid cystic carcinoma (SACC). HES1 is a well-known target gene of NOTCH signaling pathway. The purpose of the present study was to further explore the molecular mechanism of HES1 in SACC. Methods Comparative transcriptome analyses by RNA-Sequencing (RNA-Seq) were employed to reveal NOTCH1 downstream gene in SACC cells. Immunohistochemical staining was used to detect the expression of HES1 in clinical samples. After HES1-siRNA transfected into SACC LM cells, the cell proliferation and cell apoptosis were tested by suitable methods; animal model was established to detect the change of growth ability of tumor. Transwell and wound healing assays were used to evaluate cell metastasis and invasion. Results We found that HES1 was strongly linked to NOTCH signaling pathway in SACC cells. The immunohistochemical results implied the high expression of HES1 in cancerous tissues. The growth of SACC LM cells transfected with HES1-siRNAs was significantly suppressed in vitro and tumorigenicity in vivo by inducing cell apoptosis. After HES1 expression was silenced, the SACC LM cell metastasis and invasion ability was suppressed. Conclusions The results of this study demonstrate that HES1 is a specific downstream gene of NOTCH1 and that it contributes to SACC proliferation, apoptosis and metastasis. Our findings serve as evidence indicating that HES1 may be useful as a clinical target in the treatment of SACC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4350-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Jian Xie
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Lin She
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Yong Zhao
- Department of Pathology, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China
| | - Lin-Can Ding
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Bo-Hua Su
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Da-Li Zheng
- Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China. .,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China.
| |
Collapse
|
10
|
Momparler RL, Côté S, Momparler LF, Idaghdour Y. Inhibition of DNA and Histone Methylation by 5-Aza-2'-Deoxycytidine (Decitabine) and 3-Deazaneplanocin-A on Antineoplastic Action and Gene Expression in Myeloid Leukemic Cells. Front Oncol 2017; 7:19. [PMID: 28261562 PMCID: PMC5309231 DOI: 10.3389/fonc.2017.00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations play an important role in the development of acute myeloid leukemia (AML) by silencing of genes that suppress leukemogenesis and differentiation. One of the key epigenetic changes in AML is gene silencing by DNA methylation. The importance of this alteration is illustrated by the induction of remissions in AML by 5-aza-2′-deoxycytidine (5-AZA-CdR, decitabine), a potent inhibitor of DNA methylation. However, most patients induced into remission by 5-AZA-CdR will relapse, suggesting that a second agent should be sought to increase the efficacy of this epigenetic therapy. An interesting candidate for this purpose is 3-deazaneplanocin A (DZNep). This analog inhibits EZH2, a histone methyltransferase that trimethylates lysine 27 histone H3 (H3K27me3), a marker for gene silencing. This second epigenetic silencing mechanism also plays an important role in leukemogenesis as shown in preclinical studies where DZNep exhibits potent inhibition of colony formation by AML cells. We reported previously that 5-AZA-CdR in combination with DZNep exhibits a synergistic antineoplastic action against human HL-60 AML cells and the synergistic activation of several tumor suppressor genes. In this report, we showed that this combination also induced a synergistic activation of apoptosis in HL-60 cells. The synergistic antineoplastic action of 5-AZA-CdR plus DZNep was also observed on a second human myeloid leukemia cell line, AML-3. In addition, 5-AZA-CdR in combination with the specific inhibitors of EZH2, GSK-126, or GSK-343, also exhibited a synergistic antineoplastic action on both HL-60 and AML-3. The combined action of 5-AZA-CdR and DZNep on global gene expression in HL-60 cells was investigated in greater depth using RNA sequencing analysis. We observed that this combination of epigenetic agents exhibited a synergistic activation of hundreds of genes. The synergistic activation of so many genes that suppress malignancy by 5-AZA-CdR plus DZNep suggests that epigenetic gene silencing by DNA and histone methylation plays a major role in leukemogenesis. Targeting DNA and histone methylation is a promising approach that merits clinical investigation for the treatment of AML.
Collapse
Affiliation(s)
- Richard L Momparler
- Département de Pharmacologie, Université de Montréal, Montreal, QC, Canada; Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine, Montréal, QC, Canada
| | - Sylvie Côté
- Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine , Montréal, QC , Canada
| | - Louise F Momparler
- Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine , Montréal, QC , Canada
| | - Youssef Idaghdour
- Department of Biology, New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| |
Collapse
|
11
|
Wei J, Zhang L, Ren L, Zhang J, Yu Y, Wang J, Duan J, Peng C, Sun Z, Zhou X. Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:26-36. [PMID: 27939630 DOI: 10.1016/j.envpol.2016.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Our previous research showed that endosulfan triggers the extrinsic coagulation pathway by damaging endothelial cells and causes hypercoagulation of blood. To identify the mechanism of endosulfan-impaired endothelial cells, we treated human umbilical vein endothelial cells (HUVECs) with different concentrations of endosulfan, with and without an inhibitor for Notch, N-[N-(3, 5-difluorophenacetyl)-1-alanyl]S-Phenylglycinet-butylester (DAPT, 20 μM), or a reactive oxygen species (ROS) scavenger, N-Acetyl-l-cysteine (NAC, 3 mM), for 24 h. The results showed that endosulfan could inhibit cell viability/proliferation by increasing the release of lactate dehydrogenase (LDH), arresting the cell cycle in both S and G2/M phases, and inducing apoptosis in HUVECs. We also found that endosulfan can damage microfilaments, microtubules, and nuclei; arrest mitosis; remarkably increase the expressions of Dll4, Notch1, Cleaved-Notch1, Jagged1, Notch4, Hes1, and p21; and significantly induce ROS and malondialdehyde production in HUVECs. The presence of DAPT antagonized the above changes of cycle arrest, proliferation inhibition, and expressions of Dll4, Notch1, Cleaved-Notch1, Hes1, and p21 caused by endosulfan; however, NAC could attenuate LDH release; ROS and malondialdehyde production; apoptosis; and the expression levels of Dll4, Notch1, Cleaved-Notch1, Notch4, and Hes1 induced by endosulfan. These results demonstrated that endosulfan inhibited proliferation through the Notch signaling pathway as a result of oxidative stress. In addition, endosulfan can damage the cytoskeleton and block mitosis, which may add another layer of toxic effects on endothelial cells.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Member of Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, 4108, Brisbane, QLD, Australia
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China.
| |
Collapse
|
12
|
Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia. PLoS One 2017; 12:e0169128. [PMID: 28060870 PMCID: PMC5218480 DOI: 10.1371/journal.pone.0169128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic stem cell disorders characterized by defects in myeloid differentiation and increased proliferation of neoplastic hematopoietic precursor cells. Outcomes for patients with AML remain poor, highlighting the need for novel treatment options. Aberrant epigenetic regulation plays an important role in the pathogenesis of AML, and inhibitors of DNA methyltransferase or histone deacetylase (HDAC) enzymes have exhibited activity in preclinical AML models. Combination studies with HDAC inhibitors plus DNA methyltransferase inhibitors have potential beneficial clinical activity in AML, however the toxicity profiles of non-selective HDAC inhibitors in the combination setting limit their clinical utility. In this work, we describe the preclinical development of selective inhibitors of HDAC1 and HDAC2, which are hypothesized to have improved safety profiles, for combination therapy in AML. We demonstrate that selective inhibition of HDAC1 and HDAC2 is sufficient to achieve efficacy both as a single agent and in combination with azacitidine in preclinical models of AML, including established AML cell lines, primary leukemia cells from AML patient bone marrow samples and in vivo xenograft models of human AML. Gene expression profiling of AML cells treated with either an HDAC1/2 inhibitor, azacitidine, or the combination of both have identified a list of genes involved in transcription and cell cycle regulation as potential mediators of the combinatorial effects of HDAC1/2 inhibition with azacitidine. Together, these findings support the clinical evaluation of selective HDAC1/2 inhibitors in combination with azacitidine in AML patients.
Collapse
|
13
|
Wang F, Wang Z, Gu X, Cui J. miR-940 Upregulation Suppresses Cell Proliferation and Induces Apoptosis by Targeting PKC-δ in Ovarian Cancer OVCAR3 Cells. Oncol Res 2017; 25:107-114. [PMID: 28081739 PMCID: PMC7840778 DOI: 10.3727/096504016x14732772150145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer remains as one of the most threatening malignancies for females in the world. This study investigated the pivotal role of miR-940 in the progression of ovarian cancer and to reveal the possible molecular mechanism of its action. Ovarian cancer OVCAR3 cells were transfected with the miR-940 vector, miR-940 inhibitor, and/or small interfering RNA (siRNA) targeting PKC-δ (si-PKC-δ), respectively. After transfection, cell viability and cell apoptosis were analyzed, as well as cell proliferation and apoptosis-related protein expression. Compared to the control, miR-940 upregulation suppressed cell viability but induced cell apoptosis. miR-940 upregulation increased the expression of p27, Hes1, survivin, and caspase 3, but decreased the expression of PKC-δ. In addition, elevated cell viability induced by the miR-940 inhibitor was significantly decreased by knockdown of PKC-δ, and reduced cell apoptosis induced by the miR-940 inhibitor was increased by knockdown of PKC-δ. Taken together, the results of our study suggest that upregulation of miR-940 may function as a suppressor in the progression of ovarian cancer by inhibiting cell proliferation and inducing apoptosis by targeting PKC-δ. This study may provide a basis for the possible application of miR-940 in illustrating the molecular pathogenic mechanism of ovarian cancer.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhihong Wang
- Department of Obstetrics and Gynecology Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xiaoli Gu
- Department of Obstetrics and Gynecology Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
14
|
Zhang S, Schneider LS, Vick B, Grunert M, Jeremias I, Menche D, Müller R, Vollmar AM, Liebl J. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget 2016; 6:43508-28. [PMID: 26496038 PMCID: PMC4791247 DOI: 10.18632/oncotarget.6180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/07/2015] [Indexed: 12/31/2022] Open
Abstract
Prognosis for patients suffering from T-ALL is still very poor and new strategies for T-ALL treatment are urgently needed. Our study shows potent anti-leukemic effects of the myxobacterial V-ATPase inhibitor Archazolid A. Archazolid A reduced growth and potently induced death of leukemic cell lines and human leukemic samples. By inhibiting lysosomal acidification, Archazolid A blocked activation of the Notch pathway, however, this was not the mechanism of V-ATPase inhibition relevant for cell death induction. In fact, V-ATPase inhibition by Archazolid A decreased the anti-apoptotic protein survivin. As underlying mode of action, this work is in line with recent studies from our group demonstrating that Archazolid A induced S-phase cell cycle arrest by interfering with the iron metabolism in leukemic cells. Our study provides evidence for V-ATPase inhibition as a potential new therapeutic option for T-ALL.
Collapse
Affiliation(s)
- Siwei Zhang
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University, Munich, Germany
| | - Lina S Schneider
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University, Munich, Germany
| | - Binje Vick
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Grunert
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Irmela Jeremias
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.,Department of Oncology/Hematology, Dr. von Haunersches Kinderspital, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Bonn, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University, Munich, Germany
| | - Johanna Liebl
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
15
|
Tian C, You MJ, Yu Y, Zhu L, Zheng G, Zhang Y. MicroRNA-9 promotes proliferation of leukemia cells in adult CD34-positive acute myeloid leukemia with normal karyotype by downregulation of Hes1. Tumour Biol 2015; 37:7461-71. [PMID: 26678889 DOI: 10.1007/s13277-015-4581-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a group of heterogeneous hematopoietic malignancies sustained by leukemic stem cells (LSCs) that can resist treatment. Previously, we found that low expression of Hes1 was a poor prognostic factor for AML. However, the activation status of Hes1 and its regulation in LSCs and leukemic progenitors (LPs) as well as normal hematopoietic stem cells (HSCs) in Hes1-low AML patients have not been elucidated. In this study, the expression of Hes1 in LSCs and LPs was analyzed in adult CD34(+) Hes1-low AML with normal karyotype and the upstream microRNA (miRNA) regulators were screened. Our results showed that the level of either Hes1 or p21 was lower in LSCs or LPs than in HSCs whereas the level of miR-9 was highest in LPs and lowest in HSCs. An inverse correlation was observed in the expression of Hes1 and miR-9. Furthermore, we validated miR-9 as one of the regulators of Hes1 by reporter gene analysis. Knockdown of miR-9 by lentivirus infection suppressed the proliferation of AML cells by the induction of G0 arrest and apoptosis in vitro. Moreover, knockdown of miR-9 resulted in decreased circulating leukemic cell counts in peripheral blood and bone marrow, attenuated splenomegaly, and prolonged survival in a xenotransplant mouse model. Our results indicate that the miR-9 plays an important role in supporting AML cell growth and survival by downregulation of Hes1 and that miR-9 has potential as a therapeutic target for treating AML.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antigens, CD34/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Down-Regulation
- Female
- Follow-Up Studies
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Karyotype
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Staging
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factor HES-1/genetics
- Transcription Factor HES-1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Chen Tian
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - M James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yong Yu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Lei Zhu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China.
| | - Yizhuo Zhang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|