1
|
Yuan R, Xu ZJ, Zhang SK, Cao XY, Dai AG, Song L. New evidence for a role of DANCR in cancers: a comprehensive review. J Transl Med 2024; 22:569. [PMID: 38877534 PMCID: PMC11177382 DOI: 10.1186/s12967-024-05246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.
Collapse
Affiliation(s)
- Rong Yuan
- School of Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
| | - Zhao-Jun Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Sheng-Kang Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Xian-Ya Cao
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| | - Lan Song
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
2
|
McCormick BJ, Imran H. Spontaneous Remission of Acute Lymphoblastic Leukemia Following Candida tropicalis Fungemia. Cureus 2024; 16:e62435. [PMID: 39011219 PMCID: PMC11249080 DOI: 10.7759/cureus.62435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Spontaneous remission (SR) in acute lymphoblastic leukemia (ALL) is a poorly understood phenomenon that has been sporadically reported in medical literature for over a century, and the molecular and immunologic mechanisms of remission pose interesting clinical questions. Furthermore, the often-transient nature of these remissions poses a challenge to physicians in formulating an approach to treatment. We report on a rare case of Candida tropicalis sepsis in a three-year-old female with high-risk ALL who received less than two months of treatment prior to sepsis and subsequent SR.
Collapse
Affiliation(s)
| | - Hamayun Imran
- Pediatric Hematology/Oncology, University of South Alabama, Mobile, USA
| |
Collapse
|
3
|
Wang H, Lian X, Wang K, Wang S. WWP2 binds to NKRF, enhances the NF-κB signaling, and promotes malignant phenotypes of acute myeloid leukemia cells. Biochem Cell Biol 2024; 102:85-95. [PMID: 37921219 DOI: 10.1139/bcb-2022-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the hematological malignancies with a high recurrence rate. WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) is identified as a pivotal regulator of tumor progression. This study aimed to assess the possible role of WWP2 in AML. Analysis of the GEPIA database indicated an elevated WWP2 expression in AML. We established stable WWP2-overexpressed or WWP2-silenced cells using lentivirus loaded with cDNA encoding WWP2 mRNA or shRNA targeting WWP2. Notably, WWP2 overexpression facilitated cell proliferation and cell cycle progression, which was manifested as the increase of colony formation number, S-phase percentage and cell cycle related protein levels. As observed, WWP2 knockdown presented opposite effects, leading to inhibition of tumorigenicity. Strikingly, WWP2 knockdown induced apoptosis, accompanied by upregulation of pro-apoptosis proteins cleaved caspase-9, Bax and cleaved caspase-3 and downregulation of anti-apoptosis protein Bcl-2. Functionally, we further confirmed that WWP2 overexpression enhanced the NF-κB signaling and upregulated the levels of downstream genes, which may contribute to aggravating the development of AML. More importantly, by co-immunoprecipitation assay, we verified that WWP2 bound to NF-κB-repressing factor (NKRF) and promoted NKRF ubiquitylation. Dramatically, NKRF overexpression abolished the role of WWP2 in facilitating the process of AML. Overall, our observations confirm that WWP2 exerts a critical role in the tumorigenicity of AML, and NKRF is regarded as an essential factor in the WWP2-mediated AML progression. WWP2 may be proposed as a promising target of AML.
Collapse
Affiliation(s)
- Hongjia Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Lian
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kexin Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuye Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
CD277 agonist enhances the immunogenicity of relapsed/refractory acute myeloid leukemia towards Vδ2 + T cell cytotoxicity. Ann Hematol 2022; 101:2195-2208. [PMID: 35920929 DOI: 10.1007/s00277-022-04930-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/20/2022] [Indexed: 11/01/2022]
Abstract
Relapse and refractoriness remain the major obstacles in clinical treatment of acute myeloid leukemia (AML). Efficacy of current therapeutic strategies for relapsed/refractory (R/R) AML is generally unsatisfying. Vδ2+ T cells have become an attractive candidate for immunotherapy of various types of tumors. However, the results were not exciting in some pilot studies utilizing Vδ2 cell-based protocols to treat R/R AML. Functional receptors on Vδ2 cells and immunogenic ligands on leukemia cells are both critical to the anti-AML effect of Vδ2 cells, which have not been characterized in the context of R/R AML. CD277 can bind to phosphoantigens and promote the activation of Vδ2 cells. Anti-CD277 (clone 20.1) monoclonal antibody (20.1 mAb) has been identified as an agonist of CD277. Whether 20.1 mAb sensitizes R/R AML cells awaits investigation. Herein, we showed that the expressions of activating receptors on Vδ2 cells and CD277 on leukemia cells were deficient in patients with R/R AML. While agonists for NKG2D and TRAIL ligands did not increase the immunogenicity of R/R AML cells, 20.1 mAb significantly enhanced the cytotoxicity of Vδ2 cells on the drug-resistant human AML cell line and different types of primary AML cells from R/R patients. The sensitizing effect of 20.1 mAb was dependent on inducing degranulation of Vδ2 cells. These findings suggest a decisive role of CD277 in mediating the recognition of R/R AML cells by Vδ2+ T cells. CD277 agonist combining adoptive transfer of Vδ2+ T cells may improve the efficacy in the treatment of R/R AML.
Collapse
|
5
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
6
|
Lei W, Lin J, Liu F, Chen N. Long noncoding RNA GAS6 antisense RNA1 silencing attenuates the tumorigenesis of acute myeloid leukemia cells through targeting microRNA-370-3p/Tetraspanin3 axis. Clin Hemorheol Microcirc 2021; 78:69-81. [PMID: 33523043 DOI: 10.3233/ch-201039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Acute myeloid leukemia (AML) is a type of hematologic malignancy. This study was attempt to explore the effect of long noncoding RNA GAS6 antisense RNA1 (GAS6-AS1) on pediatric AML and the regulation mechanisms. METHODS GAS6-AS1, microRNA-370-3p (miR-370-3p), and Tetraspanin3 (TSPAN3) expression in bone marrow (BM) tissues and cells was determined by qRT-PCR. The correlation between GAS6-AS1 and clinicopathological features of pediatric patients with AML was assessed. In vitro, viability and migration and invasion of AML cells were evaluated via MTT and transwell assays, respectively. Interactions among GAS6-AS1, miR-370-3p, and TSPAN3 were revealed by dual-luciferase reporter assays. Western blot was applied to confirm the protein expression of TSPAN3. RESULTS GAS6-AS1 and TSPAN3 expression was elevated in BM tissues of pediatric patients with AML and AML cells, but miR-370-3p expression was reduced. GAS6-AS1 expression was positively related to French-American-British (FAB) classification in pediatric patients with AML. In vitro, GAS6-AS1 deficiency restrained the viability, migration, and invasion of AML cells. Additionally, GAS6-AS1 mediated miR-370-3p expression indeed and TSPAN3 was identified as a target of miR-370-3p. Furthermore, miR-370-3p overexpression repressed the protein expression of TSPAN3. The feedback experiments demonstrated that miR-370-3p inhibition or TSPAN3 overexpression mitigated the suppressive effect of sh-GAS6-AS1 on the tumorigenesis of AML cells. CONCLUSION GAS6-AS1 silencing restrained AML cell viability, migration, and invasion by targeting miR-370-3p/TSPAN3 axis, affording a novel therapeutic target for pediatric AML.
Collapse
Affiliation(s)
- Weijuan Lei
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Juanjuan Lin
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Fang Liu
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Nina Chen
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
7
|
Xie G, Huang B, Sun Y, Wu C, Han Y. RWSF-BLP: a novel lncRNA-disease association prediction model using random walk-based multi-similarity fusion and bidirectional label propagation. Mol Genet Genomics 2021; 296:473-483. [PMID: 33590345 DOI: 10.1007/s00438-021-01764-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of studies and experiments have demonstrated that long noncoding RNAs (lncRNAs) have a massive impact on various biological processes. Predicting potential associations between lncRNAs and diseases not only can improve our understanding of the molecular mechanisms of human diseases but also can facilitate the identification of biomarkers for disease diagnosis, treatment, and prevention. However, identifying such associations through experiments is costly and demanding, thereby prompting researchers to develop computational methods to complement these experiments. In this paper, we constructed a novel model called RWSF-BLP (a novel lncRNA-disease association prediction model using Random Walk-based multi-Similarity Fusion and Bidirectional Label Propagation), which applies an efficient random walk-based multi-similarity fusion (RWSF) method to fuse different similarity matrices and utilizes bidirectional label propagation to predict potential lncRNA-disease associations. Leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold-CV) were implemented in the evaluation RWSF-BLP performance. Results showed that, RWSF-BLP has reliable AUCs of 0.9086 and 0.9115 ± 0.0044 under the framework of LOOCV and 5-fold-CV and outperformed other four canonical methods. Case studies on lung cancer and leukemia demonstrated that potential lncRNA-disease associations can be predicted through our method. Therefore, our method can accurately infer potential lncRNA-disease associations and may be a good choice in future biomedical research.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Bin Huang
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Yuping Sun
- School of Computer Science, Guangdong University of Technology, Guangzhou, China.
| | - Changhai Wu
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Yuqiong Han
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Dong Y, Lin L, Zeng C, He Z, Xu H. CD3D has the Potential to be a Prognostic Factor for Endometrial Carcinoma and an Indicator of Tumor Immune Microenvironment Regulation: a Study based on TCGA Data Mining. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zhang R, Mou N, Pu YD, Li Q, Jiang YY, Yuan T, Deng Q. [Overexpression of NKG2D-CD3ζ in NY-ESO-1 TCR-T cells enhanced cytotoxicity to acute myeloid leukemia cells in vitro]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:946-950. [PMID: 33333701 PMCID: PMC7767805 DOI: 10.3760/cma.j.issn.0253-2727.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - N Mou
- Shanghai Genbase Biotechnology Co., Ltd. Shanghai 201206, China
| | - Y D Pu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Y Y Jiang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - T Yuan
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
10
|
Wang N, Feng Y, Xie J, Han H, Dong Q, Wang W. Long Non-Coding RNA ZNF667-AS1 Knockdown Curbs Liver Metastasis in Acute Myeloid Leukemia by Regulating the microRNA-206/AKAP13 Axis. Cancer Manag Res 2020; 12:13285-13300. [PMID: 33380835 PMCID: PMC7767707 DOI: 10.2147/cmar.s269258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Zinc finger protein 667-antisense RNA 1 (ZNF667-AS1), a long non-coding RNA (lncRNA), plays important parts in tumorigenesis and development of esophageal squamous cell carcinoma, but its function in acute myeloid leukemia (AML) is unknown. Our goal here was to probe the functional mechanism of ZNF667-AS1 in AML by mediating microRNA-206 (miR-206)/A-kinase anchoring protein 13 (AKAP13) axis. MATERIALS AND METHODS The bone marrow samples from AML patients and controls were selected for microarray analysis to select significantly upregulated lncRNAs. Next, effects of ZNF667-AS1 on cell aggressiveness of AML were assessed after delivery of cells with siRNA against ZNF667-AS1. Subcellular fractionation location assay and FISH experiments were used to determine ZNF667-AS1 localization in cells. Dual-luciferase experiments detect the targeting relationships among ZNF667-AS1, miR-206 and AKAP13. Finally, tumor growth and metastasis were evaluated in vivo to determine the relevance of ZNF667-AS1/miR-206/AKAP13 axis. RESULTS The expression of ZNF667-AS1 was upregulated in AML patients, which predicted poor prognosis. Downregulation of ZNF667-AS1 reduced cell proliferation, invasion, tumorigenesis and metastasis. miR-206 inhibitor reversed the repressive role of ZNF667-AS1 knockdown in cell proliferation, invasion and tumorigenesis, while AKAP13 silencing flattened the stimulative role of miR-206 inhibitor in AML malignant aggressiveness. Mechanistically, we demonstrated that ZNF667-AS1 functioned as a molecular sponge for miR-206. In addition, we observed that Wnt/β-catenin pathway was suppressed by ZNF667-AS1 knockdown. CONCLUSION ZNF667-AS1 potentiated AML progression by targeting the miR-206/AKAP13 axis. This indicates ZNF667-AS 1 inhibition may act as a prospective therapeutic option for the treatment of AML.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Yanping Feng
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Jinye Xie
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Hui Han
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Qian Dong
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Weijia Wang
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| |
Collapse
|
11
|
Wu H, Zhao H, Chen L. Deoxyshikonin Inhibits Viability and Glycolysis by Suppressing the Akt/mTOR Pathway in Acute Myeloid Leukemia Cells. Front Oncol 2020; 10:1253. [PMID: 32850379 PMCID: PMC7427633 DOI: 10.3389/fonc.2020.01253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Deoxyshikonin was reported to exhibit an anti-tumor effect in colorectal cancer. However, no studies are available to illustrate the effect of deoxyshikonin on acute myeloid leukemia (AML). The effects of deoxyshikonin on viability, apoptosis, caspase-3/7 activity, and cytochrome (Cyt) C expression were evaluated by Cell Counting Kit-8 assay, flow cytometry analysis, caspase-3/7 activity assay, and western blot analysis, respectively. Glucose consumption and lactate production were measured to determine the glycolysis level. The expression of pyruvate kinase M2 (PKM2) was detected by quantitative real-time polymerase chain reaction and western blot analysis. The results showed that deoxyshikonin inhibited cell viability and increased the apoptotic rate, the caspase-3/7 activity, and the Cyt C protein level in AML cells in a dose-dependent manner. Additionally, deoxyshikonin concentration-dependently decreased glucose consumption, lactate production, and PKM2 expression in AML cells. Deoxyshikonin inactivated the protein kinase B (Akt)/mammalian target of the rapamycin (mTOR) pathway. The activation of the Akt/mTOR pathway reversed the effects of deoxyshikonin on viability, apoptosis, and glycolysis in AML cells. In conclusion, deoxyshikonin dampened the viability and the glycolysis of AML cells by suppressing PKM2 via inactivation of the Akt/mTOR signaling.
Collapse
Affiliation(s)
- Huijuan Wu
- Telemedicine and Connected Health Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Li Chen
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
12
|
Ma Y, Chen S, Chen M, Ren X, Patel N, Liu W, Huang H, Zhou R, Zhang K, Goodin S, Li D, Zheng X. Combination of diethyldithiocarbamate with 12-O-tetradecanoyl phorbol-13-acetate inhibits the growth of human myeloid leukemia HL-60 cells in vitro and in xenograft model. Biosci Biotechnol Biochem 2020; 84:2069-2076. [PMID: 32640883 DOI: 10.1080/09168451.2020.1789837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
12-O-tetradecanoylphorbol-13-acetate (TPA), is a major active constituent of the seed oil of Croton tiglium L., has pharmacological activity for the treatment of acute myeloid leukemia patients. Diethyldithiocarbamate (DTC) is a potent inhibitor of NF-κB show activity of anticancer. In this study, we determined the effect of DTC and TPA in combination on HL-60 cells cultured in vitro and in vivo. In this study, we have shown that DTC and TPA synergistically inhibited the growth of HL-60 cells and strongly induced apoptosis in the cells. Mechanistic studies showed that the combined effects of DTC and TPA were associated with a decrease in Bcl-2. The animal experiment showed that the combination of DTC and TPA more potently inhibited the growth of HL-60 tumors than either agent alone. Our results indicate that the administration of TPA and DTC in combination may be an effective strategy for inhibiting the growth of acute myeloid leukemia cells.
Collapse
Affiliation(s)
- Yuran Ma
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Shaohua Chen
- Department of Otolaryngology, Guangdong Provincial People's Hospital , Guangzhou, China
| | - Min Chen
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Xiang Ren
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Nandini Patel
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey , Piscataway, NJ, USA
| | - Wenfeng Liu
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Huarong Huang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology , Guangzhou, China
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey , Piscataway, NJ, USA
| | - Kun Zhang
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Susan Goodin
- Department of Pharmacology, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ, USA
| | - Dongli Li
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Xi Zheng
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey , Piscataway, NJ, USA
| |
Collapse
|
13
|
Ma L, Wang YY, Jiang P. LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/β-catenin signaling. Biochem Biophys Res Commun 2020; 527:654-661. [PMID: 32423818 DOI: 10.1016/j.bbrc.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to involve in a variety of cancers. Our present study aimed to explore the exact roles of lncRNA LINC00909 (LINC00909) in the progression of pediatric acute myeloid leukemia (AML) and to study the potential molecular mechanism. In this study, the levels of LINC00909 were observed to be distinctly upregulated in AML patients and cell lines. Higher levels of LINC00909 were associated with FAB classification, cytogenetics and poorer prognosis. Functionally, knockdown of LINC00909 suppressed cell viabilities, migration and invasion, and promoted apoptosis of NB4 and HL-60 cells. Mechanistically, we demonstrated that LINC00909 functioned as a molecular sponge for miR-625. In addition, we observed that Wnt/β-catenin signaling pathway was suppressed by LINC00909 knockdown. Moreover, miR-625 levels were dramatically decreased in AML cells when Wnt/β-catenin signaling was activated. Overall, our findings identified a new AML-related lncRNA LINC00909 which may represent a novel biomarker and a potential therapeutic target of AML.
Collapse
Affiliation(s)
- Lei Ma
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Yan-Yan Wang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Peng Jiang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
14
|
Wang Z, Liu W, Wang L, Gao P, Li Z, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. Enhancing the antitumor activity of an engineered TRAIL-coated oncolytic adenovirus for treating acute myeloid leukemia. Signal Transduct Target Ther 2020; 5:40. [PMID: 32327638 PMCID: PMC7181830 DOI: 10.1038/s41392-020-0135-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
The use of oncolytic viruses has emerged as a promising therapeutic approach due to the features of these viruses, which selectively replicate and destroy tumor cells while sparing normal cells. Although numerous oncolytic viruses have been developed for testing in solid tumors, only a few have been reported to target acute myeloid leukemia (AML) and overall patient survival has remained low. We previously developed the oncolytic adenovirus rAd5pz-zTRAIL-RFP-SΔ24E1a (A4), which carries the viral capsid protein IX linked to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and results in increased infection of cancer cells and improved tumor targeting. To further improve the therapeutic potential of A4 by enhancing the engagement of virus and leukemia cells, we generated a new version of A4, zA4, by coating A4 with additional soluble TRAIL that is fused with a leucine zipper-like dimerization domain (zipper). ZA4 resulted in enhanced infectivity and significant inhibition of the proliferation of AML cells from cell lines and primary patient samples that expressed moderate levels of TRAIL-related receptors. ZA4 also elicited enhanced anti-AML activity in vivo compared with A4 and an unmodified oncolytic adenoviral vector. In addition, we found that the ginsenoside Rh2 upregulated the expression of TRAIL receptors and consequently enhanced the antitumor activity of zA4. Our results indicate that the oncolytic virus zA4 might be a promising new agent for treating hematopoietic malignancies such as AML.
Collapse
Affiliation(s)
- Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Peng Gao
- Department of Hematology, Jilin Province People's Hospital, Changchun, 130021, China
| | - Zhe Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Acute myeloid leukemia immune escape by epigenetic CD48 silencing. Clin Sci (Lond) 2020; 134:261-271. [PMID: 31922199 DOI: 10.1042/cs20191170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disorder of hemopoietic stem cells. AML can escape immunosurveillance of natural killer (NK) by gene mutation, fusions and epigenetic modification. The mechanism of AML immune evasion is not clearly understood. Here we show that CD48 high expression is a favorable prognosis factor that is down-regulated in AML patients, which can help AML evade from NK cell recognition and killing. Furthermore, we demonstrate that CD48 expression is regulated by methylation and that a hypomethylating agent can increase the CD48 expression, which increases the NK cells killing in vitro. Finally, we show that CD48 high expression can reverse the AML immune evasion and activate NK cells function in vivo. The present study suggests that a combination the hypomethylating agent and NK cell infusion could be a new strategy to cure AML.
Collapse
|
16
|
Ni J, Wu Y, Qi F, Li X, Yu S, Liu S, Feng J, Zheng Y. Screening the Cancer Genome Atlas Database for Genes of Prognostic Value in Acute Myeloid Leukemia. Front Oncol 2020; 9:1509. [PMID: 32039005 PMCID: PMC6990132 DOI: 10.3389/fonc.2019.01509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Object: To identify genes of prognostic value which associated with tumor microenvironment (TME) in acute myeloid leukemia (AML). Methods and Materials: Level 3 AML patients gene transcriptome profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Clinical characteristics and survival data were extracted from the Genomic Data Commons (GDC) tool. Then, limma package was utilized for normalization processing. ESTIMATE algorithm was used for calculating immune, stromal and ESTIMATE scores. We examined the distribution of these scores in Cancer and Acute Leukemia Group B (CALGB) cytogenetics risk category. Kaplan-Meier (K-M) curves were used to evaluate the relationship between immune scores, stromal scores, ESTIMATE scores and overall survival. We performed clustering analysis and screened differential expressed genes (DEGs) by using heatmaps, volcano plots and Venn plots. After pathway enrichment analysis and gene set enrichment analysis (GESA), protein-protein interaction (PPI) network was constructed and hub genes were screened. We explore the prognostic value of hub genes by calculating risk scores (RS) and processing survival analysis. Finally, we verified the expression level, association of overall survival and gene interactions of hub genes in the Vizome database. Results: We enrolled 173 AML samples from TCGA database in our study. Higher immune score was associated with higher risk rating in CALGB cytogenetics risk category (P = 0.0396) and worse overall survival outcomes (P = 0.0224). In Venn plots, 827 intersect genes were screened with differential analysis. Functional enrichment clustering analysis revealed a significant association between intersect genes and the immune response. After PPI network, 18 TME-related hub genes were identified. RS was calculated and the survival analysis results revealed that high RS was related with poor overall survival (P < 0.0001). Besides, the survival receiver operating characteristic curve (ROC) showed superior predictive accuracy (area under the curve = 0.725). Finally, the heatmap from Vizome database demonstrated that 18 hub genes showed high expression in patient samples. Conclusion: We identified 18 TME-related genes which significantly associated with overall survival in AML patients from TCGA database.
Collapse
Affiliation(s)
- Jie Ni
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shaorong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Wang Z, Shi Y, Liu H, Liang Z, Zhu Q, Wang L, Tang B, Miao S, Ma N, Cen X, Ren H, Dong Y. Establishment and characterization of a DOT1L inhibitor-sensitive human acute monocytic leukemia cell line YBT-5 with a novel KMT2A-MLLT3 fusion. Hematol Oncol 2019; 37:617-625. [PMID: 31701557 DOI: 10.1002/hon.2686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 11/07/2022]
Abstract
Immortalized cell lines are useful for deciphering the pathogenesis of acute leukemia and developing novel therapeutic agents against this malignancy. In this study, a new human myeloid leukemia cell line YBT-5 was established. After more than 1-year cultivation from the bone marrow of a patient with acute monocytic leukemia, YBT cell line was established. Then a subclone, YBT-5, was isolated from YBT using single cell sorting. Morphological and cytogenetical characterizations of the YBT-5 cell line were determined by cytochemical staining, flow cytometry analysis, and karyotype analysis. Molecular features were identified by transcriptomic analysis and reverse transcription-polymerase chain reaction. To establish a tumor model, 5 × 106 YBT-5 cells were injected subcutaneously in nonobese diabetic/severe combined immune-deficiency (NOD/SCID) mice. DOT1L has been proposed as a potential therapeutic target for KMT2A-related leukemia; therefore, to explore the potential application of this new cell line, its sensitivity to a specific DOT1L inhibitor, EPZ004777 was measured ex vivo. The growth of YBT-5 does not depend on granulocyte-macrophage colony-stimulating factor. Cytochemical staining showed that α-naphthyl acetate esterase staining was positive and partially inhibited by sodium fluoride, while peroxidase staining was negative. Flow cytometry analysis of YBT-5 cells showed positive myeloid and monocytic markers. Karyotype analysis of YBT-5 showed 48,XY,+8,+8. The breakpoints between KMT2A exon 10 and exon 11 (KMT2A exon 10/11) and MLLT3 exon 5 and exon 6 (MLLT3 exon 5/6) were identified, which was different from all known breakpoint locations, and a novel fusion transcript KMT2A exon 10/MLLT3 exon 6 was formed. A tumor model was established successfully in NOD/SCID mice. EPZ004777 could inhibit the proliferation and induce the differentiation of YBT-5 cells. Therefore, a new acute monocytic leukemia cell line with clear biological and molecular features was established and may be used in the research and development of new agents targeting KMT2A-associated leukemia.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yongjin Shi
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qiang Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Lihong Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shengchao Miao
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ning Ma
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
18
|
Identification of prognostic genes in the acute myeloid leukemia immune microenvironment based on TCGA data analysis. Cancer Immunol Immunother 2019; 68:1971-1978. [PMID: 31650199 DOI: 10.1007/s00262-019-02408-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Acute myeloid leukemia (AML) is a common and lethal hematopoietic malignancy that is highly dependent on the bone marrow (BM) microenvironment. Infiltrating immune and stromal cells are important components of the BM microenvironment and significantly influence the progression of AML. This study aimed to elucidate the value of immune/stromal cell-associated genes for AML prognosis by integrated bioinformatics analysis. We obtained expression profiles from The Cancer Genome Atlas (TCGA) database and used the ESTIMATE algorithm to calculate immune scores and stromal scores; we then identified differentially expressed genes (DEGs) based on these scores. Overall survival analysis was applied to reveal common DEGs of prognostic value. Subsequently, we conducted a functional enrichment analysis, generated a protein-protein interaction (PPI) network and performed an interrelation analysis of immune system processes, showing that these genes are mainly associated with the immune/inflammatory response. Finally, eight genes (CD163, CYP27A1, KCNA5, PPM1J, FOLR1, IL1R2, MYOF, VSIG2) were verified to be significantly associated with AML prognosis in the Gene Expression Omnibus (GEO) database. In summary, we identified key microenvironment-related genes that affect the outcomes of AML patients and might serve as therapeutic targets.
Collapse
|
19
|
Acute myeloid leukemia-induced T-cell suppression can be reversed by inhibition of the MAPK pathway. Blood Adv 2019; 3:3038-3051. [PMID: 31648326 PMCID: PMC6849941 DOI: 10.1182/bloodadvances.2019000574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) remains difficult to treat due to mutational heterogeneity and the development of resistance to therapy. Targeted agents, such as MEK inhibitors, may be incorporated into treatment; however, the impact of MEK inhibitors on the immune microenvironment in AML is not well understood. A greater understanding of the implications of MEK inhibition on immune responses may lead to a greater understanding of immune evasion and more rational combinations with immunotherapies. This study describes the impact of trametinib on both T cells and AML blast cells by using an immunosuppressive mouse model of AML and primary patient samples. We also used a large AML database of functional drug screens to understand characteristics of trametinib-sensitive samples. In the mouse model, trametinib increased T-cell viability and restored T-cell proliferation. Importantly, we report greater proliferation in the CD8+CD44+ effector subpopulation and impaired activation of CD8+CD62L+ naive cells. Transcriptome analysis revealed that trametinib-sensitive samples have an inflammatory gene expression profile, and we also observed increased programmed cell death ligand 1 (PD-L1) expression on trametinib-sensitive samples. Finally, we found that trametinib consistently reduced PD-L1 and PD-L2 expression in a dose-dependent manner on the myeloid population. Altogether, our data present greater insight into the impact of trametinib on the immune microenvironment and characteristics of trametinib-sensitive patient samples.
Collapse
|
20
|
Shi J, Dai R, Chen Y, Guo H, Han Y, Zhang Y. LncRNA LINP1 regulates acute myeloid leukemia progression via HNF4α/AMPK/WNT5A signaling pathway. Hematol Oncol 2019; 37:474-482. [PMID: 31325181 DOI: 10.1002/hon.2651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/02/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
LncRNAs play critical roles in various pathophysiological and biological processes, such as protein translation, RNA splicing, and epigenetic modification. Indeed, abundant evidences demonstrated that lncRNA act as competing endogenous RNAs (ceRNAs) to participate in tumorigenesis. However, little is known about the underlying function of lncRNA in nonhomologous end joining (NHEJ) pathway 1 (LINP1) in pediatric and adolescent acute myeloid leukemia (AML). The expression of LINP1 was examined in AML patient samples by qRT-PCR. Cell proliferation was examined by CCK-8 and Edu assays. β-Galactosidase senescence assay, mGlucose uptake assay, lactate production assay, and Gene Ontology (GO) analysis were performed for functional analysis. We found that LINP1 was significantly overexpressed in AML patients at diagnosis, whereas downregulated after complete remission (CR). Furthermore, knockdown of LINP1 expression remarkably suppressed glucose uptake and AML cell maintenance. Mechanistically, LINP1 was found to inhibit the glucose metabolism by suppressing the expression of HNF4a. Both LINP1 and HNF4a knockdown reduced the expression levels of AMPK phosphorylation and WNT5A, indicating for the first time that LINP1 strengthened the HNF4a-AMPK/WNT5A signaling pathway involved in cell glucose metabolism modulation and AML cell survival. Taken together, our results indicated that LINP1 promotes the malignant phenotype of AML cells and stimulates glucose metabolism, which can be regarded as a potential prognostic marker and therapeutic target for AML.
Collapse
Affiliation(s)
- Jie Shi
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqin Dai
- Department of intensive care unit, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Chen
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Honggang Guo
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Han
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin Zhang
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Allogeneic haemopoietic transplantation for acute myeloid leukaemia in second complete remission: a registry report by the Acute Leukaemia Working Party of the EBMT. Leukemia 2019; 34:87-99. [PMID: 31363160 DOI: 10.1038/s41375-019-0527-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/15/2019] [Accepted: 06/06/2019] [Indexed: 11/08/2022]
Abstract
Allogeneic haemopoietic cell transplant (allo-HCT) may be curative in acute myeloid leukaemia (AML) in second complete remission (CR2) but the impact of reduced intensity (RIC) versus myeloablative conditioning (MAC) is uncertain. The Acute Leukaemia Working Party of the European Society for Blood and Bone Marrow Transplantation Registry studied an AML CR2 cohort characterised by age ≥ 18 years, first allo-HCT 2007-2016, available cytogenetic profile at diagnosis, donors who were matched family, volunteer unrelated with HLA antigen match 10/10 or 9/10 or haplo-identical. The 1879 eligible patients included 1010 (54%) MAC allo-HCT recipients. In patients <50 years (y), two year outcomes for MAC vs RIC allo-HCT were equivalent with leukaemia-free survival (LFS) 54% for each, overall survival (OS), 61% vs 62%, non-relapse mortality (NRM) 18% vs 15% and graft versus host disease relapse-free survival (GRFS) 38% vs 42%. In patients ≥50 y, 2 y outcomes for MAC vs RIC allo-HCT were equivalent for LFS 52% vs 49%, OS 58% vs 55% and GRFS 42.4% vs 36%. However, NRM was significantly inferior after MAC allo-HCT, 27% vs 19% (P = 0.01) despite worse cGVHD after RIC-allo (32% vs 39%). These data support the need for ongoing prospective study of conditioning intensity and GVHD mitigation in AML.
Collapse
|
22
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
23
|
Loew A, Köhnke T, Rehbeil E, Pietzner A, Weylandt KH. A Role for Lipid Mediators in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20102425. [PMID: 31100828 PMCID: PMC6567850 DOI: 10.3390/ijms20102425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Bone Marrow
- Disease Progression
- Fatty Acids, Omega-3/immunology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/immunology
- Fatty Acids, Omega-6/therapeutic use
- Fatty Acids, Unsaturated
- Hematologic Neoplasms/drug therapy
- Hematopoiesis
- Humans
- Immunity, Innate/drug effects
- Immunotherapy
- Inflammation
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Lipids/immunology
- Lipids/therapeutic use
- Neoplasms/drug therapy
- Prognosis
- Tumor Microenvironment
Collapse
Affiliation(s)
- Andreas Loew
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Thomas Köhnke
- Department of Internal Medicine III, University of Munich, 81377 Munich, Germany.
| | - Emma Rehbeil
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Anne Pietzner
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Karsten-H Weylandt
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
- Medical Department, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
24
|
Di Tucci C, Capone C, Galati G, Iacobelli V, Schiavi MC, Di Donato V, Muzii L, Panici PB. Immunotherapy in endometrial cancer: new scenarios on the horizon. J Gynecol Oncol 2019; 30:e46. [PMID: 30887763 PMCID: PMC6424849 DOI: 10.3802/jgo.2019.30.e46] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023] Open
Abstract
This extensive review summarizes clinical evidence on immunotherapy and targeted therapy currently available for endometrial cancer (EC) and reports the results of the clinical trials and ongoing studies. The research was carried out collecting preclinical and clinical findings using keywords such as immune environment, tumor infiltrating lymphocytes, programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) expression, immune checkpoint inhibitors, anti-PD-1/PD-L1 antibodies and others' on PubMed. Finally, we looked for the ongoing immunotherapy trials on ClinicalTrials.gov. EC is the fourth most common malignancy in women in developed countries. Despite medical and surgical treatments, survival has not improved in the last decade and death rates have increased for uterine cancer in women. Therefore, identification of clinically significant prognostic risk factors and formulation of new rational therapeutic regimens have great significance for enhancing the survival rate and improving the outcome in patients with advanced or metastatic disease. The identification of genetic alterations, including somatic mutations and microsatellite instability, and the definition of intracellular signaling pathways alterations that have a major role in in tumorigenesis is leading to the development of new therapeutic options for immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Carmela Capone
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Giulia Galati
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Valentina Iacobelli
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Michele C Schiavi
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Violante Di Donato
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Ludovico Muzii
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| |
Collapse
|
25
|
Liu Y, Feng X, Zhao H, Xuan Z, Wang L. A Novel Network-Based Computational Model for Prediction of Potential LncRNA⁻Disease Association. Int J Mol Sci 2019; 20:ijms20071549. [PMID: 30925672 PMCID: PMC6480945 DOI: 10.3390/ijms20071549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies have shown that long non-coding RNAs (lncRNAs) are involved in many biological processes and play important roles in a variety of complex human diseases. Developing effective computational models to identify potential relationships between lncRNAs and diseases can not only help us understand disease mechanisms at the lncRNA molecular level, but also promote the diagnosis, treatment, prognosis, and prevention of human diseases. For this paper, a network-based model called NBLDA was proposed to discover potential lncRNA⁻disease associations, in which two novel lncRNA⁻disease weighted networks were constructed. They were first based on known lncRNA⁻disease associations and topological similarity of the lncRNA⁻disease association network, and then an lncRNA⁻lncRNA weighted matrix and a disease⁻disease weighted matrix were obtained based on a resource allocation strategy of unequal allocation and unbiased consistence. Finally, a label propagation algorithm was applied to predict associated lncRNAs for the investigated diseases. Moreover, in order to estimate the prediction performance of NBLDA, the framework of leave-one-out cross validation (LOOCV) was implemented on NBLDA, and simulation results showed that NBLDA can achieve reliable areas under the ROC curve (AUCs) of 0.8846, 0.8273, and 0.8075 in three known lncRNA⁻disease association datasets downloaded from the lncRNADisease database, respectively. Furthermore, in case studies of lung cancer, leukemia, and colorectal cancer, simulation results demonstrated that NBLDA can be a powerful tool for identifying potential lncRNA⁻disease associations as well.
Collapse
Affiliation(s)
- Yang Liu
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410000, China.
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411100, China.
| | - Xiang Feng
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410000, China.
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411100, China.
| | - Haochen Zhao
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411100, China.
| | - Zhanwei Xuan
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411100, China.
| | - Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410000, China.
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411100, China.
| |
Collapse
|
26
|
Bewersdorf JP, Stahl M, Zeidan AM. Are we witnessing the start of a therapeutic revolution in acute myeloid leukemia? Leuk Lymphoma 2019; 60:1354-1369. [DOI: 10.1080/10428194.2018.1546854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Liu Y, Bewersdorf JP, Stahl M, Zeidan AM. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Rev 2018; 34:67-83. [PMID: 30553527 DOI: 10.1016/j.blre.2018.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Immunotherapy has revolutionized therapy in both solid and liquid malignancies. The ability to cure acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) with an allogeneic hematopoietic stem cell transplant (HSCT) is proof of concept for the application of immunotherapy in AML and MDS. However, outside of HSCT, only the anti-CD33 antibody drug conjugate gemtuzumab ozogamicin is currently approved as an antibody-targeted therapy for AML. Several avenues of immunotherapeutic drugs are currently in different stages of clinical development. Here, we review recent advances in antibody-based therapy, immune checkpoint inhibitors, vaccines and adoptive cell-based therapy for patients with AML and MDS. First, we discuss different antibody constructs. Immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein-1 (PD-1) and CD47 as well as peptide, dendritic cell and dendritic/AML cell-based vaccines are reviewed next. Lastly, adoptive cell-based therapy including chimeric antigen receptor (CAR)-T cell and NK cell therapy is discussed.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medicine, Section of Hematologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Pei X, Huang X. New approaches in allogenic transplantation in AML. Semin Hematol 2018; 56:147-154. [PMID: 30926091 DOI: 10.1053/j.seminhematol.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/19/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder with high morbidity and mortality. Allogeneic stem cell transplantation (allo-SCT) is an effective, and sometimes the only, curative postremission therapy for AML patients. Based on genetic risk classification, the published data have suggested that allo-SCT be recommended for high- and most intermediate-risk AML but not for low-risk AML in first complete remission (CR1). Recently, the role of allo-SCT in low-risk AML in CR1 is being established with the development of a risk-directed, minimal residual disease-based strategy. Though human leukocyte antigen-matched sibling transplantation remains the preferred therapeutic option for AML, modern approaches and developments pre-, peri- and post-transplant have facilitated other transplant modalities, especially haploidentical SCT, as promising valid alternative choices. In this paper, we review recent advances in allo-SCT for AML, weigh the benefits of allo-SCT for high-, intermediate-, and even low-risk AML in CR1, discuss the best choice of allo-SCT donor for the treatment of AML, and summarize new approaches for refractory and relapsed AML pre- or post-allo-SCT.
Collapse
Affiliation(s)
- Xuying Pei
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
29
|
Di Tucci C, Schiavi MC, Faiano P, D'Oria O, Prata G, Sciuga V, Giannini A, Palaia I, Muzii L, Benedetti Panici P. Therapeutic vaccines and immune checkpoints inhibition options for gynecological cancers. Crit Rev Oncol Hematol 2018; 128:30-42. [PMID: 29958629 DOI: 10.1016/j.critrevonc.2018.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/21/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Treatments for gynecological cancer include surgery, chemotherapy, and radiation. However, overall survival is not improved, and novel approaches are needed. Immunotherapy has been proven efficacious in various types of cancers and multiple approaches have been recently developed. Since numerous gynecological cancers are associated to human papilloma virus (HPV) infections, therapeutic vaccines, targeting HPV epitopes, have been developed. The advancing understanding of the immune system, regulatory pathways and tumor microenvironment have produced a major interest in immune checkpoint blockade, Indeed, immune checkpoint molecules are important clinical targets in a wide variety of tumors, including gynecological. In this review, we will describe the immunotherapeutic targets and modalities available and review the most recent immunotherapeutic clinical trials in the context of gynecological cancers. The synergic results obtained from the combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, or immune checkpoint inhibitors, may underlie the potential for a novel therapeutic scenario for these tumors.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Michele Carlo Schiavi
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Pierangelo Faiano
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Ottavia D'Oria
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Giovanni Prata
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Valentina Sciuga
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Andrea Giannini
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Innocenza Palaia
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Ludovico Muzii
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| |
Collapse
|