1
|
Onida F, Gagelmann N, Chalandon Y, Kobbe G, Robin M, Symeonidis A, de Witte T, Itzykson R, Jentzsch M, Platzbecker U, Santini V, Sanz G, Scheid C, Solary E, Valent P, Greco R, Sanchez-Ortega I, Yakoub-Agha I, Pleyer L. Management of adult patients with CMML undergoing allo-HCT: recommendations from the EBMT PH&G Committee. Blood 2024; 143:2227-2244. [PMID: 38493484 DOI: 10.1182/blood.2023023476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Chronic myelomonocytic leukemia (CMML) is a heterogeneous disease presenting with either myeloproliferative or myelodysplastic features. Allogeneic hematopoietic cell transplantation (allo-HCT) remains the only potentially curative option, but the inherent toxicity of this procedure makes the decision to proceed to allo-HCT challenging, particularly because patients with CMML are mostly older and comorbid. Therefore, the decision between a nonintensive treatment approach and allo-HCT represents a delicate balance, especially because prospective randomized studies are lacking and retrospective data in the literature are conflicting. International consensus on the selection of patients and the ideal timing of allo-HCT, specifically in CMML, could not be reached in international recommendations published 6 years ago. Since then, new, CMML-specific data have been published. The European Society for Blood and Marrow Transplantation (EBMT) Practice Harmonization and Guidelines (PH&G) Committee assembled a panel of experts in the field to provide the first best practice recommendations on the role of allo-HCT specifically in CMML. Recommendations were based on the results of an international survey, a comprehensive review of the literature, and expert opinions on the subject, after structured discussion and circulation of recommendations. Algorithms for patient selection, timing of allo-HCT during the course of the disease, pretransplant strategies, allo-HCT modality, as well as posttransplant management for patients with CMML were outlined. The keynote message is, that once a patient has been identified as a transplant candidate, upfront transplantation without prior disease-modifying treatment is preferred to maximize chances of reaching allo-HCT whenever possible, irrespective of bone marrow blast counts.
Collapse
Affiliation(s)
- Francesco Onida
- Department of Oncology and Hemato-Oncology, Hematology and Bone Marrow Transplantation Unit, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, University of Milan, Milan, Italy
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
| | - Nico Gagelmann
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yves Chalandon
- Division of Hematology, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Marie Robin
- Service d'Hématologie Greffe, Hôpital Saint-Louis, L'Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Argiris Symeonidis
- Department of Hematology, Olympion General Hospital and Rehabilitation Center, Patras, Greece
| | - Theo de Witte
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, Centre National de la Recherche Scientifique, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, L'Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Hematology, Dipartimento di Medicina Sperimentale e Clinica, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Guillermo Sanz
- University and Polytechnic Hospital La Fe and Health Research Institute La Fe, Valencia, Spain
- Centro de Investigacion Biomedica en Red Cancer, Instituto de Salud Carlos III, Madrid, Spain
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Eric Solary
- Department of Hematology, INSERM Unité Mixte de Recherche 1287, Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicetre, France
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Greco
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
- Unit of Hematology and Bone Marrow Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Isabel Sanchez-Ortega
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
| | - Ibrahim Yakoub-Agha
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
- Centre Hospitalier Universitaire de Lille, University of Lille, INSERM U1286, Infinite, Lille, France
| | - Lisa Pleyer
- Austrian Group of Medical Tumor Therapy Study Group, Vienna, Austria
- Salzburg Cancer Research Institute, Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Karel D, Valburg C, Woddor N, Nava VE, Aggarwal A. Myelodysplastic Neoplasms (MDS): The Current and Future Treatment Landscape. Curr Oncol 2024; 31:1971-1993. [PMID: 38668051 PMCID: PMC11049094 DOI: 10.3390/curroncol31040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous clonal disorder of hemopoietic stem cells characterized by cytomorphologic dysplasia, ineffective hematopoiesis, peripheral cytopenias and risk of progression to acute myeloid leukemia (AML). Our understanding of this disease has continued to evolve over the last century. More recently, prognostication and treatment have been determined by cytogenetic and molecular data. Specific genetic abnormalities, such as deletion of the long arm of chromosome 5 (del(5q)), TP53 inactivation and SF3B1 mutation, are increasingly associated with disease phenotype and outcome, as reflected in the recently updated fifth edition of the World Health Organization Classification of Hematolymphoid Tumors (WHO5) and the International Consensus Classification 2022 (ICC 2022) classification systems. Treatment of lower-risk MDS is primarily symptom directed to ameliorate cytopenias. Higher-risk disease warrants disease-directed therapy at diagnosis; however, the only possible cure is an allogenic bone marrow transplant. Novel treatments aimed at rational molecular and cellular pathway targets have yielded a number of candidate drugs over recent years; however few new approvals have been granted. With ongoing research, we hope to increasingly offer our MDS patients tailored therapeutic approaches, ultimately decreasing morbidity and mortality.
Collapse
Affiliation(s)
- Daniel Karel
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
| | - Claire Valburg
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
| | - Navitha Woddor
- Department of Pathology, The George Washington University, Washington, DC 20037, USA; (N.W.); (V.E.N.)
| | - Victor E. Nava
- Department of Pathology, The George Washington University, Washington, DC 20037, USA; (N.W.); (V.E.N.)
- Department of Pathology, Washington DC VA Medical Center, Washington, DC 20422, USA
| | - Anita Aggarwal
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
- Department of Hematology/Medical Oncology, Washington DC VA Medical Center, Washington, DC 20422, USA
| |
Collapse
|
3
|
Ren Y, Liu F, Chen X, Zhang X, Zhao B, Wan Y, Lan Y, Li X, Yang W, Zhu X, Guo Y. Decitabine-containing conditioning improved outcomes for children with higher-risk myelodysplastic syndrome undergoing allogeneic hematopoietic stem cell transplantation. Ann Hematol 2024; 103:1345-1351. [PMID: 38316642 DOI: 10.1007/s00277-024-05628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
Myelodysplastic syndrome (MDS) is a rare clonal hematopoietic disorder in children. The risk stratification system and treatment strategy for adults are unfit for children. The role of hypomethylating agents (HMAs) in higher-risk childhood MDS has not been identified. This study aimed to investigate the outcomes of hematopoietic stem cell transplantation (HSCT) in children with higher-risk MDS at one single center. A retrospective study was conducted in children with higher-risk MDS undergoing HSCT between September 2019 and March 2023 at Blood Diseases Hospital CAMS. The clinical characteristics and transplantation information were reviewed and analyzed. A total of 27 patients were analyzed, including 11 with MDS with excess blasts (MDS-EB), 14 with MDS-EB in transformation (MDS-EBt) or acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), and 2 with therapy-related MDS/AML (t-MDS/AML). Eight patients harbored monosomy 7. Before transplantation, induction therapy was administered to 25 patients, and 19 of them achieved bone marrow blasts <5% before HSCT. The stem cell source was unmanipulated-related bone marrow or peripheral blood stem cells for nineteen patients and unrelated cord blood for eight. All patients received decitabine-containing and Bu/Cy-based myeloablative conditioning; 26 patients achieved initial engraftment. The cumulative incidences of grade II-IV and grade III-IV acute graft-versus-host disease (GvHD) at 100 days were 65.4% and 42.3%, respectively. The incidence of cGvHD was 38.5%. The median follow-up was 26 (range 4-49) months after transplantation. By the end of follow-up, two patients died of complications and two died of disease progression. The probability of 3-year overall survival (OS) was 84.8% (95%CI, 71.1 to 98.5%). In summary, decitabine-containing myeloablative conditioning resulted in excellent outcomes for children with higher-risk MDS undergoing allogeneic HSCT.
Collapse
Affiliation(s)
- Yuanyuan Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoyan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Beibei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yang Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaolan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Wang R, Xu Y, Wang B, Wang H, Wang M, Jing Y, Gao X, Yu L. Hypomethylating agents (HMAs) show benefit in AML rather than in intermediate/high-risk MDS based on genetic mutations in epigenetic modification (EMMs): from a retrospective study. Ann Hematol 2024; 103:61-71. [PMID: 37926751 DOI: 10.1007/s00277-023-05438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/04/2023] [Indexed: 11/07/2023]
Abstract
Since HMAs were recommended for treatments in AML and MDS, we wondered whether HMAs could provide similar benefit to AML and intermediate/high-risk MDS under the direction of next-generation sequencing. Here we retrospectively analyzed the prognosis of 176 AML and 128 intermediate/high-risk MDS patients treated with HMAs or non-HMA regimens. For AML, HMAs regimen was related to better CR rate compared with non-HMA regimen in elder cohort, while the situation was the opposite in younger cohort. In consolidation phase, EMM (+) patients could benefit from HMAs regimen. Relapsed AML patients receiving HMAs regimen rather than non-HMA regimen had better post-relapse survival. Multivariate analysis identified HMA regimen as an independent prognostic factor for OS in EMM (+) cohort. For intermediate/high-risk MDS patients not undergoing HSCT, however, HMA regimen showed no survival advantage in EMM (+) cohort and was conversely associated with shorter survival in EMM (-) cohort compared with non-HMA regimen. And among those undergoing HSCT, HMA prior to HSCT predicted poor prognosis compared with upfront HSCT regardless of the existence of EMMs. Therefore, HMAs had better therapeutic value in AML rather than in intermediate/high-risk MDS based on EMMs.
Collapse
Affiliation(s)
- Ruiqi Wang
- Medicine School, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Yuanyuan Xu
- Department of Hematology-Oncology, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan Avenue, Shenzhen, 518060, China
| | - Bianhong Wang
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Hong Wang
- Medicine School, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Mengzhen Wang
- Medicine School, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| | - Li Yu
- Medicine School, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
- Department of Hematology-Oncology, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan Avenue, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Nannya Y, Tobiasson M, Sato S, Bernard E, Ohtake S, Takeda J, Creignou M, Zhao L, Kusakabe M, Shibata Y, Nakamura N, Watanabe M, Hiramoto N, Shiozawa Y, Shiraishi Y, Tanaka H, Yoshida K, Kakiuchi N, Makishima H, Nakagawa M, Usuki K, Watanabe M, Imada K, Handa H, Taguchi M, Kiguchi T, Ohyashiki K, Ishikawa T, Takaori-Kondo A, Tsurumi H, Kasahara S, Chiba S, Naoe T, Miyano S, Papaemanuil E, Miyazaki Y, Hellström-Lindberg E, Ogawa S. Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms. Blood Adv 2023; 7:3624-3636. [PMID: 36989067 PMCID: PMC10365941 DOI: 10.1182/bloodadvances.2022009564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Azacitidine is a mainstay of therapy for myelodysplastic syndrome (MDS)-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their posttreatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pretreatment (n = 449) and posttreatment (n = 289) bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their posttreatment clone size on treatment outcomes. In Cox proportional hazard modeling, multihit TP53 mutation (hazard ratio [HR], 2.03; 95% confidence interval [CI], 1.42-2.91; P < .001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P = .009), and DDX41 mutation (HR, 0.33; 95% CI, 0.17-0.62; P < .001), together with age, high-risk karyotypes, low platelets, and high blast counts, independently predicted OS. Posttreatment clone size accounting for all drivers significantly correlated with International Working Group (IWG) response (P < .001, using trend test), except for that of DDX41-mutated clones, which did not predict IWG response. Combined, IWG response and posttreatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, the molecular International Prognostic Scoring System (IPSS-M; c-index, 0.653 vs 0.688; P < .001, using likelihood ratio test). In conclusion, evaluation of posttreatment clone size, together with the pretreatment mutational profile as well as the IWG response play a role in better prognostication of azacitidine-treated patients with myelodysplasia.
Collapse
Affiliation(s)
- Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shinya Sato
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Japan Adult Leukemia Study Group, Japan
| | - Elsa Bernard
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maria Creignou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lanying Zhao
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Kusakabe
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Yuhei Shibata
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Nobuhiko Nakamura
- Department of Hematology & Infectious Disease, Gifu University Hospital, Gifu, Japan
| | - Mizuki Watanabe
- Department of Hematology and Oncology, Kyoto University, Kyoto, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- Department of Integrated Data Science, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Mitsumasa Watanabe
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Kazunori Imada
- Department of Hematology, Japan Red Cross Osaka Hospital, Osaka, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Masataka Taguchi
- Department of Hematology, Sasebo City General Hospital, Nagasaki, Japan
| | - Toru Kiguchi
- Department of Hematology, Chugoku Central Hospital, Hiroshima, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | | | - Hisashi Tsurumi
- Department of Hematology & Infectious Disease, Gifu University Hospital, Gifu, Japan
| | - Senji Kasahara
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Shigeru Chiba
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Tomoki Naoe
- Japan Adult Leukemia Study Group, Japan
- Nagoya Medical Center, Aichi, Japan
| | - Satoru Miyano
- Department of Integrated Data Science, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Elli Papaemanuil
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Japan Adult Leukemia Study Group, Japan
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Awada H, Gurnari C, Xie Z, Bewersdorf JP, Zeidan AM. What's Next after Hypomethylating Agents Failure in Myeloid Neoplasms? A Rational Approach. Cancers (Basel) 2023; 15:2248. [PMID: 37190176 PMCID: PMC10137017 DOI: 10.3390/cancers15082248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Hypomethylating agents (HMA) such as azacitidine and decitabine are a mainstay in the current management of patients with myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukemia (AML) as either single agents or in multidrug combinations. Resistance to HMA is not uncommon, and it can result due to several tumor cellular adaptations. Several clinical and genomic factors have been identified as predictors of HMA resistance. However, the management of MDS/AML patients after the failure of HMA remains challenging in the absence of standardized guidelines. Indeed, this is an area of active research with several potential therapeutic agents currently under development, some of which have demonstrated therapeutic potential in early clinical trials, especially in cases with particular mutational characteristics. Here, we review the latest findings and give a rational approach for such a challenging scenario.
Collapse
Affiliation(s)
- Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Comprehensive Cancer Center, New York, NY 10065, USA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Cancer Center, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Wang Y, Chen J, Xue SL, Han Y, Tang XW, Qiu HY, Wu DP, Wang Y. [Outcome of allogeneic hematopoietic stem cell transplantation in 14 patients with NPM1-mutated myelodysplastic syndromes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:66-69. [PMID: 36987726 PMCID: PMC10067381 DOI: 10.3760/cma.j.issn.0253-2727.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 03/30/2023]
Affiliation(s)
- Y Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - S L Xue
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Y Han
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - X W Tang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - H Y Qiu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Y Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| |
Collapse
|
8
|
Zhang Y, Liu C, Zhang R, Shi Y, Li X, Yu J, Wan D, Xie X. Impact of treatments before allogeneic hematopoietic stem cell transplantation in patients with higher-risk myelodysplastic syndrome. Leuk Res 2023; 124:106997. [PMID: 36502583 DOI: 10.1016/j.leukres.2022.106997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The study aimed to evaluate pre-allogeneic hematopoietic stem cell transplantation (allo-HSCT) treatment, compare the endpoints related to disease management between pre-HSCT cytoreduction patients and upfront transplantation patients with higher-risk myelodysplastic syndrome (MDS). METHODS A total of 90 higher-risk MDS patients administered allo-HSCT in the Hematology Department of the First Affiliated Hospital of Zhengzhou University were retrospectively analyzed, which included 28 patients with upfront transplantation and 62 patients with pre-transplant cytoreduction, including 30 patients received hypomethylating agents (HMA) and 32 patients received hypomethylating agents and induction chemotherapy (HMA+IC). Difference between the two groups regarding hematopoietic reconstruction, graft-versus-host disease (GVHD), relapse rate, non-relapse death (NRM), overall survival (OS) and relapse-free survival (RFS) was compared. RESULTS No significant differences in OS, DFS and NRM were found between the upfront transplantation and pre-transplant cytoreduction groups, and cumulative cGVHD occurrence and relapse rates were 35.7 % and 14.5 % (P = 0.029), and 10.7 % and 12.9 % (p = 0.535), respectively. Survival rates were significantly higher in the upfront transplantation and HMA+IC groups compared with the HMA group (3-year OS: 67.9 %, 68.8 %, 43.3 %, P = 0.039; 3-year RFS: 64.3 %, 62.5 %, 43.3 %, P = 0.107; 3-year NRM: 25.0 %, 21.9 %, 50.0 %, P = 0.025). Compared with the upfront transplantation group, overall response to cytoreductive therapy (OR) and non-response to cytoreductive therapy (NR), 3-year OS were 67.9 %, 73.0 % and 32.0 % (P < 0.001), 3-year RFS were 64.3 %, 73.0 % and 24.0 % (P < 0.001) and 3-year NRM were 25.0 %, 21.6 %, and 56.0 %, respectively (P < 0.001). Upfront transplantation (n = 11) had better OS and RFS compared with the cytoreductive group (n = 10) in patients with ≥ 10 % bone marrow blast cells before transplantation (3-year OS: 63.64 %, 22.22 %, p = 0.010; 3-year DFS: 63.64 %, 20.00 %, p = 0.012, respectively). CONCLUSION The pre-transplant treatment regimen was an independent prognostic factor of OS and NRM. If the donor is suitable, upfront transplantation may provide longer survival in higher-risk MDS patients, which, however, may also increase the incidence of cGVHD. Even in patients with bone marrow blast cells ≥ 10 % before transplantation, upfront transplantation was not worse than transplantation after cytoreductive therapy. While waiting for a transplant, HMA+IC therapy may be a good pre-transplant treatment option.
Collapse
Affiliation(s)
- Yupei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Chao Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yajie Shi
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xue Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Henan, China.
| |
Collapse
|
9
|
Niederwieser C, Kröger N. Current status of pretransplant intensive chemotherapy or hypomethylating agents for myelodysplastic syndrome. Best Pract Res Clin Haematol 2021; 34:101332. [PMID: 34865704 DOI: 10.1016/j.beha.2021.101332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Myelodysplastic syndrome is a heterogeneous disease with survival probabilities ranging from a few months to several years. Allogeneic hematopoietic cell transplantation (HCT) remains the only curative treatment. Although access (up to 75 years) and outcome of HCT have improved steadily in recent years, high relapse rates and, to a lower extent, treatment related mortalities are a persisting problem. Reduction of tumor burden before HCT has been shown to decrease relapse incidence and often overall survival (OS) in hematological malignancies but the role of pretransplant therapy in MDS remains controversial. We reviewed the role of pretransplant therapy on outcome in MDS patients. No prospective randomized trial addressed this issue so far. Retrospective studies have shown that pretransplant therapy reduces the risk of relapse, but does not improve survival. In addition, registry studies from diagnosis with standard protocols are proposed in order to exclude patient selection. With the availability of new, more effective and low-toxicity therapies, it may be possible to achieve a significant improvement of OS in the future.
Collapse
Affiliation(s)
- Christian Niederwieser
- University Medical Center Hamburg Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Nicolaus Kröger
- University Medical Center Hamburg Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany.
| |
Collapse
|
10
|
Zhang XH, Chen J, Han MZ, Huang H, Jiang EL, Jiang M, Lai YR, Liu DH, Liu QF, Liu T, Ren HY, Song YP, Sun ZM, Tang XW, Wang JM, Wu DP, Xu LP, Zhang X, Zhou DB, Huang XJ. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol 2021; 14:145. [PMID: 34526099 PMCID: PMC8441240 DOI: 10.1186/s13045-021-01159-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The consensus recommendations in 2018 from The Chinese Society of Hematology (CSH) on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation (allo-HSCT) facilitated the standardization of clinical practices of allo-HSCT in China and progressive integration with the world. There have been new developments since the initial publication. To integrate recent developments and further improve the consensus, a panel of experts from the CSH recently updated the consensus recommendations, which are summarized as follows: (1) there is a new algorithm for selecting appropriate donors for allo-HSCT candidates. Haploidentical donors (HIDs) are the preferred donor choice over matched sibling donors (MSDs) for patients with high-risk leukemia or elderly patients with young offspring donors in experienced centers. This replaces the previous algorithm for donor selection, which favored MSDs over HIDs. (2) Patients with refractory/relapsed lymphoblastic malignancies are now encouraged to undergo salvage treatment with novel immunotherapies prior to HSCT. (3) The consensus has been updated to reflect additional evidence for the application of allo-HSCT in specific groups of patients with hematological malignancies (intermediate-risk acute myeloid leukemia (AML), favorable-risk AML with positive minimal residual disease, and standard-risk acute lymphoblastic leukemia). (4) The consensus has been updated to reflect additional evidence for the application of HSCT in patients with nonmalignant diseases, such as severe aplastic anemia and inherited diseases. (5) The consensus has been updated to reflect additional evidence for the administration of anti-thymocyte globulin, granulocyte colony-stimulating factors and post-transplantation cyclophosphamide in HID-HSCT.
Collapse
Affiliation(s)
- Xiao-hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing Chen
- Shanghai Children’s Medical Center, Shanghai, China
| | - Ming-Zhe Han
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Hematologic Disease, Tianjin, China
| | - He Huang
- First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Er-lie Jiang
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Hematologic Disease, Tianjin, China
| | - Ming Jiang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong-rong Lai
- The First Affiliated Hospital of Guangxi Medical University, Guilin, China
| | - Dai-hong Liu
- General Hospital of PLA (People’s Liberation Army of China), Beijing, China
| | - Qi-Fa Liu
- Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ting Liu
- West China Hospital, Sichuan University, Chengdu, China
| | - Han-yun Ren
- Peking University First Hospital, Beijing, China
| | - Yong-Ping Song
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zi-min Sun
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiao-wen Tang
- The First Affiliated Hospital of Soochow Hospital, National Clinical Research Center for Hematologic Disease, Suzhou, China
| | - Jian-min Wang
- Changhai Hospital of Shanghai, Naval Medical University, Shanghai, China
| | - De-pei Wu
- The First Affiliated Hospital of Soochow Hospital, National Clinical Research Center for Hematologic Disease, Suzhou, China
| | - Lan-ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xi Zhang
- Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Dao-bin Zhou
- Peking Union Medical College Hospital, Beijing, China
| | - Xiao-jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
11
|
Ferrara F, Bernardi M. 2021 BSH guidelines for the management of adult myelodysplastic syndromes: a practical approach to a challenging disease. Br J Haematol 2021; 194:235-237. [PMID: 34180049 DOI: 10.1111/bjh.17640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Massimo Bernardi
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Wang H, Li Y, Zhou W, Wang R, Li Y, Yu L. Pre-transplant therapy for patients with myelodysplastic syndromes: A systematic review and meta-analysis. Leuk Res 2021; 110:106645. [PMID: 34217112 DOI: 10.1016/j.leukres.2021.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The value of pre-transplant cytoreductive therapy for patients with myelodysplastic syndromes (MDS) is controversial. Here, we conducted a meta-analysis to explore the effects of cytoreduction before transplantation. METHODS PubMed, Embase, Cochrane, and Chinese databases were searched to identify studies comparing post-transplant outcomes in MDS patients receiving different pre-transplant therapy. Pooled hazard ratios (HRs) and 95 % confidence intervals (CI) were calculated. RESULTS Eighteen reports were included. Post-transplant outcomes were similar for MDS patients receiving pre-transplant cytoreductive therapy and upfront transplantation in terms of overall survival (OS: HR, 0.92; 95 % CI, 0.79-1.07), relapse-free survival (RFS: HR, 1.18; 95 % CI, 0.94-1.47), cumulative incidence of relapse (CIR: HR, 1.08; 95 % CI, 0.88-1.33), and non-relapse mortality (NRM: HR, 0.93; 95 % CI, 0.74-1.18). Pre-transplant hypomethylating agents (HMAs) and chemotherapy were not different regarding post-transplant OS, RFS, CIR, and NRM. Achieving complete remission (CR) before transplantation was associated with increased RFS (HR, 0.80; 95 %CI, 0.63-1.00) and decreased NRM (HR, 0.53; 95 % CI, 0.32-0.90) when compared with upfront transplantation. CONCLUSIONS Timely transplantation is of great value for MDS patients. Suitable pre-transplant cytoreduction could be used during the search for donors.
Collapse
Affiliation(s)
- Hong Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology, Peking University, Third Hospital, Beijing, China
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yonghui Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
13
|
Wang H, Li Y, Xu Q, Zhou W, Yin C, Wang R, Wang M, Xu Y, Li Y, Yu L. Comparison of Upfront Transplantation and Pretransplant Cytoreductive Therapy for Advanced Myelodysplastic Syndrome. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:631-640. [PMID: 34074612 DOI: 10.1016/j.clml.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy for advanced myelodysplastic syndrome (MDS). However, the value of pretransplant cytoreduction remains debatable. PATIENTS AND METHODS We retrospectively compared the outcomes of upfront transplantation and pretransplant cytoreduction. Of 69 patients, 39 received upfront allo-HSCT and 30 received pretransplant cytoreduction, including chemotherapy (n = 16), hypomethylating agents (HMAs, n = 6), and HMAs with chemotherapy (n = 8). RESULTS The upfront group achieved similar overall survival (OS) and a trend of better progression-free survival (PFS) from diagnosis compared with the cytoreduction group (3-year PFS, 64.0% vs. 44.4%, P = .076). Posttransplant outcomes were comparable between the two groups in terms of OS, relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapse mortality (NRM). In patients with ≥2 mutations, the upfront group achieved better OS and PFS (3-year OS, 100.0% vs. 68.6%, P = .044; 3-year PFS: 92.3% vs. 43.9%, P = .016) than the cytoreduction group. Patients achieving remission in the cytoreduction group had outcomes similar to the upfront group, but those without remission before transplantation had a significantly worse posttransplant OS (3-year OS, 46.7% vs. 75.7%, P = .038). Patients with pretransplant HMAs had better PFS than those with chemotherapy or HMAs plus chemotherapy (P < 0.05). CONCLUSION Compared with pretransplant cytoreduction, upfront allo-HSCT might provide more benefit to some patients with advanced MDS if there are suitable donors. HMAs would be a good alternative during the donor search.
Collapse
Affiliation(s)
- Hong Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology, Peking University, Third Hospital, Beijing, China
| | - Qingyu Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China; Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Mengzhen Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|