1
|
Ren J, Xu J, Sun J, Wu X, Yang X, Nie C, Lan L, Zeng Y, Zheng X, Li J, Lin Q, Hu J, Yang T. Reactivation of cytomegalovirus and bloodstream infection and its impact on early survival after allogeneic haematopoietic stem cell transplantation: a multicentre retrospective study. Front Microbiol 2024; 15:1405652. [PMID: 38962143 PMCID: PMC11219566 DOI: 10.3389/fmicb.2024.1405652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Cytomegalovirus reactivation (CMVr) and bloodstream infections (BSI) are the most common infectious complications in patients after allogeneic haematopoietic stem cell transplantation (allo-HSCT). Both are associated with great high morbidity whilst the BSI is the leading cause of mortality. This retrospective study evaluated the incidence of CMVr and BSI, identified associated risk factors, assessed their impact on survival in allo-HSCT recipients during the first 100 days after transplantation. The study comprised 500 allo-HSCT recipients who were CMV DNA-negative and CMV IgG-positive before allo-HSCT. Amongst them, 400 developed CMVr and 75 experienced BSI within 100 days after allo-HSCT. Multivariate regression revealed that graft failure and acute graft-versus-host disease were significant risk factors for poor prognosis, whereas CMVr or BSI alone were not. Amongst all 500 patients, 56 (14%) developed both CMVr and BSI in the 100 days after HSCT, showing significantly reduced 6-month overall survival (p = 0.003) and long-term survival (p = 0.002). Specifically, in the initial post-transplant phase (within 60 days), BSI significantly elevate mortality risk, However, patients who survive BSI during this critical period subsequently experience a lower mortality risk. Nevertheless, the presence of CMVr in patients with BSI considerably diminishes their long-term survival prospects. This study provides real-world data on the impact of CMVr and BSI following transplantation on survival, particularly in regions such as China, where the prevalence of CMV IgG-positivity is high. The findings underscore the necessity for devising and executing focused prevention and early management strategies for CMVr and BSI to enhance outcomes for allo-HSCT recipients.
Collapse
Affiliation(s)
- Jinhua Ren
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingjing Xu
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Jiaqi Sun
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xueqiong Wu
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Xiaozhu Yang
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Chengjun Nie
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Ningde Hospital Affiliated to Ningde Normal University, Ningde, China
| | - Lingqiong Lan
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, The Second Hospital of Longyan, Longyan, China
| | - Yanling Zeng
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping, China
| | - Xiaoyun Zheng
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Qiaoxian Lin
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Jianda Hu
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Ting Yang
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
2
|
Zhu J, Xu M, Ru Y, Gong H, Ding Y, Zhu Z, Xu Y, Fan Y, Zhang X, Tu Y, Sun A, Qiu H, Jin Z, Tang X, Han Y, Fu C, Chen S, Ma X, Chen F, Song T, Wu D, Chen J. Comparison of valganciclovir versus foscarnet for the treatment of cytomegalovirus viremia in adult acute leukemia patients after allogeneic hematopoietic cell transplantation. Leuk Lymphoma 2024; 65:816-824. [PMID: 38475670 DOI: 10.1080/10428194.2024.2321322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Cytomegalovirus (CMV) reactivation increases treatment-related mortality (TRM) after allogeneic hematopoietic cell transplantation (allo-HCT). We analyzed 141 adult acute leukemia (AL) patients suffered allo-HCT between 2017 and 2021, who developed CMV viremia post-HCT and treated with valganciclovir or foscarnet, to evaluate effectiveness and safety of both drugs. Viremia clearance rates (14 and 21 d post treatment) and toxicities were similar in two groups. However, valganciclovir was associated with a lower cumulative incidence of CMV recurrence within 180 days (16.7% vs. 35.7%, p=0.029) post CMV clearance. Finally, 2-year TRM was lower in valganciclovir group (9.7% ± 0.2% vs. 26.2% ± 0.3%, p = 0.026), result a superior 2-year overall survival (OS; 88.1% ± 5.2% vs. 64.4% ± 5.5%, p = 0.005) and leukemia-free survival (LFS; 82.0% ± 5.9% vs. 58.9% ± 5.6%, p = 0.009). Valganciclovir might decrease CMV viremia recurrence and led to better long-term outcome than foscarnet in adult AL patients developed CMV viremia post-HCT. Considering the inherent biases of retrospective study, well-designed trials are warranted to validate our conclusion.
Collapse
Affiliation(s)
- Jinjin Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yuhua Ru
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yiyang Ding
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, PR China
| | - Ziling Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiang Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yuqing Tu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Zhengming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Feng Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Tiemei Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| |
Collapse
|
3
|
Risk factors and outcome of concurrent and sequential multiviral cytomegalovirus, Epstein-Barr virus, BK virus, adenovirus and other viral reactivations in transplantation. Curr Opin Infect Dis 2022; 35:536-544. [PMID: 36255049 DOI: 10.1097/qco.0000000000000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Reactivation of viral infections occurs frequently in immunosuppressed populations, particularly in solid organ (SOT) or allogeneic haematopoietic cell (HCT) transplant patients. Concurrent and sequential multivirus infections are common, yet risk factors and outcomes remain unclear. This review aims to identify the patients vulnerable to multivirus infections and characterize the impact of increased viral burden to formulate prevention and treatment strategies. RECENT FINDINGS Incidences of up to 89% in SOT and 36% in HCT have been reported for two viruses, and 32% in SOT and 28% in HCT for at least three viruses. Risk factors appear related to an increased burden of immunosuppression, with most viral coinfections occurring within 12 months of transplantation. Direct viral complications such as cytomegalovirus disease are more frequent in coinfected patients, with documented prolonged duration of viraemia, higher viral load and increased end-organ disease. Graft dysfunction, acute rejection and graft-vs.-host disease (GVHD) have also been associated. Increased mortality is reported in the HCT population. SUMMARY Multivirus infections occur in a significant proportion of transplant patients and is linked to immunosuppressive burden. There is increasing evidence that this leads to worse graft and patient outcomes. Further prospective studies are required to further comprehensively characterise viral epidemiology, mechanisms and treatment strategies to ameliorate this risk.
Collapse
|
4
|
Ru Y, Zhu J, Song T, Ding Y, Zhu Z, Fan Y, Xu Y, Sun A, Qiu H, Jin Z, Tang X, Han Y, Fu C, Chen S, Ma X, Chen F, Chen J, Wu D. Features of Epstein-Barr Virus and Cytomegalovirus Reactivation in Acute Leukemia Patients After Haplo-HCT With Myeloablative ATG-Containing Conditioning Regimen. Front Cell Infect Microbiol 2022; 12:865170. [PMID: 35651756 PMCID: PMC9149257 DOI: 10.3389/fcimb.2022.865170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023] Open
Abstract
Background Haploidentical donor hematopoietic cell transplantation (haplo-HCT) has become a preferred option for patients without HLA-matched donors, but it increases the risk of viral reactivations. Epstein-Barr virus (EBV) and cytomegalovirus (CMV) are common viruses post-HCT, but limited data have been reported in the setting of haplo-HCT. Methods We conducted a retrospective study enrolling acute leukemia patients who received haplo-HCT with myeloablative conditioning regimen employing ATG in our center from July 2014 to July 2017. All the patients enrolled were EBV-IgM and EBV-DNA negative but EBV-IgG positive, and so were their donors. The same went for CMV as well. Results In total, 602 patients were recruited consisting of 331 with acute myeloid leukemia (AML) and 271 with acute lymphoblastic leukemia (ALL). One-year cumulative incidences of EBV (22.9% ± 2.4% vs. 27.4% ± 2.8%, P = 0.169) and CMV (24.7% ± 2.4% vs. 29.4% ± 2.8%, P = 0.190) reactivation were comparable between AML and ALL. EBV and CMV were independent risk factors for each other. In the AML group, male recipients [HR = 1.275, 95% CI (1.001-1.624), P = 0.049] and acute graft-versus-host disease [HR = 1.592, 95% CI (1.001-2.533), P = 0.049] were independent risk factors for EBV reactivation and CMV reactivation, respectively. CMV rather than EBV reactivation was related to a trend of worsened treatment-related mortality (TRM) (15.6% ± 0.1% vs. 10.2% ± 0.0%, P = 0.067) and progression-free survival (PFS) (60.6% ± 4.1% vs. 70.3% ± 2.3%, P = 0.073), while significant impacts were revealed only in the subgroup analysis. CMV reactivation resulted in a remarkable inferior 2-year overall survival (OS) (64.2% ± 5.7% vs. 77.6% ± 3.2%, P = 0.038) and PFS (55.0% ± 5.9% vs. 71.9% ± 3.4%, P = 0.042) in ALL patients. On the other hand, in the EBV+/CMV- subgroup, relapse was lower in ALL patients (8.2% ± 0.2% vs. 32.4% ± 0.8%, P = 0.010) compared with AML patients, which led to a superior 2-year OS (82.0% ± 6.2% vs. 60.3% ± 8.8%, P = 0.016) and PFS (74.5% ± 7.0% vs. 57.5% ± 8.4%, P = 0.036). Conclusion We concluded that EBV and CMV reactivations were frequent in acute leukemia patients after haplo-HCT, with possibly distinctive risk factors from HLA-matched HCT. There could be a potential interaction between EBV and CMV, but impacts on transplant outcomes remained complex.
Collapse
Affiliation(s)
- Yuhua Ru
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jinjin Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Tiemei Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yiyang Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Ziling Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Zhengming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Feng Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| |
Collapse
|
5
|
The clinical outcomes of B-cell Acute Lymphoblastic Leukemia Patients Treated with Haploidentical Stem Cells Combined with Umbilical Cord Blood Transplantation. Transplant Cell Ther 2021; 28:173.e1-173.e6. [PMID: 34954150 DOI: 10.1016/j.jtct.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Clinical outcomes of the transplantation strategy combined with a haploidentical stem cell graft and an unrelated umbilical cord blood unit (haplo-cord HSCT) for the treatment of B-cell acute lymphoblastic leukemia (B-ALL) remain unclear. OBJECTIVE To explore the clinical outcomes of haplo-cord HSCT in B-ALL patients. STUDY DESIGN A total of 112 B-ALL patients who received haplo-cord HSCT and 64 patients who received haploidentical hematopoietic stem cell transplantation (haplo-HSCT) in our center from 2010 to 2020 were retrospectively included in this study, and clinical outcomes and prognostic factors were further analyzed. RESULTS A total of 94.6% (106/112) of the haplo-cord patients achieved complete haploidentical chimerism, while 5.4% (6/112) of patients had mixed cord blood chimerism. No differences were observed in neutrophil and platelet recovery or the incidences of GVHD, CMV/EBV viremia, bloodstream infection or hemorrhagic cystitis between the haplo-cord HSCT and haplo-HSCT groups. Compared to haplo-HSCT group, the haplo-cord HSCT group had a higher absolute number of CD3+ cells (P=0.029) and a lower ratio of CD3+CD4+ /CD3+CD8+ cells (P=0.049) at 1 month after transplantation. Moreover, Haplo-cord HSCT patients showed lower minimal residual disease (MRD) levels at 1 month (P=0.020) and 100 days (P=0.038) after transplantation and better 3-year prognoses than the haplo-HSCT group (OS: P=0.016; DFS: P=0.041; cumulative incidence of relapse (CIR): P=0.016). The CIRs in patients with adverse genomic features (P=0.040) or flow cytometry-based minimal residual disease (FCM-MRD)≥1 × 10-4 (P=0.033) were improved by haplo-cord HSCT. By multivariate analysis, we found that haplo-cord HSCT could independently improve the 3-year OS, DFS and CIR of B-ALL patients (OS: P=0.029; DFS: P=0.024; CIR: P=0.024). Additionally, allo-HSCT at CR1 was an independent parameter associated with 3-year OS for B-ALL patients (P=0.014). FCM-MRD≥1 × 10-4 pre-HSCT could independently predict unfavorable 3-year DFS and CIR (DFS: P=0.020; CIR: P=0.036) in B-ALL patients. CONCLUSION Haplo-cord HSCT could independently improve survival in B-ALL patients.
Collapse
|