1
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
2
|
Schmitt M, Ewendt F, Kluttig A, Mikolajczyk R, Kraus FB, Wätjen W, Bürkner PC, Stangl GI, Föller M. Smoking is associated with increased eryptosis, suicidal erythrocyte death, in a large population-based cohort. Sci Rep 2024; 14:3024. [PMID: 38321053 PMCID: PMC10847437 DOI: 10.1038/s41598-024-53258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Smoking has multiple detrimental effects on health, and is a major preventable cause of premature death and chronic disease. Despite the well-described effect of inhaled substances from tobacco smoke on cell toxicity, the association between smoking and suicidal erythrocyte death, termed eryptosis, is virtually unknown. Therefore, the blood samples of 2023 participants of the German National Cohort Study (NAKO) were analyzed using flow cytometry analysis to determine eryptosis from fluorescent annexin V-FITC-binding to phosphatidylserine-exposing erythrocytes. Blood analyses were complemented by the measurement of hematologic parameters including red blood cell count, hematocrit, hemoglobin, mean corpuscular cell volume (MCV) and mean corpuscular hemoglobin (MCH). Eryptosis was higher in smokers than in non- and ex-smokers, and positively associated with the number of cigarettes smoked daily (r = 0.08, 95% CI [0.03, 0.12]). Interestingly, despite increased eryptosis, smokers had higher red blood cell indices than non-smokers. To conclude, smokers were characterized by higher eryptosis than non-smokers, without showing any obvious detrimental effect on classic hematological parameters.
Collapse
Affiliation(s)
- Marvin Schmitt
- Cluster of Excellence SimTech, University of Stuttgart, Stuttgart, Germany
| | - Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biometrics, and Informatics, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute of Medical Epidemiology, Biometrics, and Informatics, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - F Bernhard Kraus
- Central Laboratory, Department for Laboratory Medicine, University Hospital Halle, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Paul-Christian Bürkner
- Cluster of Excellence SimTech, University of Stuttgart, Stuttgart, Germany
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|