1
|
Nipate DS, Meena N, Swami PN, Rangan K, Kumar A. Rh(III)-catalyzed oxidative [4+2] annulation of 2-arylquinoxalines and 2-aryl-2 H-indazoles with allyl alcohols. Chem Commun (Camb) 2024; 60:344-347. [PMID: 38078491 DOI: 10.1039/d3cc04600a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Synthesis of functionalized benzo[a]phenazines and indazolo[2,3-a]quinolines has been developed through Rh(III)-catalyzed oxidative annulation of 2-arylquinoxalines and 2-aryl-2H-indazoles with allyl alcohols, respectively. The method features a broad substrate scope, excellent functional group tolerance, good to high yields of annulated products, and scaled-up synthesis capability. Based on a preliminary mechanistic investigation, a tentative mechanism of annulation reaction has been proposed.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Yuan Y, Zhang S, Dong W, Wu F, Xie X, Zhang Z. Visible‐Light‐Induced Radical Cascade Cyclization of
o‐
Diisocyanoarenes: Synthesis of Diethyl Benzo[
a
]phenazine‐6,6(5
H
)‐Dicarboxylate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Si‐Yuan Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wu‐Heng Dong
- Medicine Center Guangxi University of Science and Technology Guangxi Liuzhou 545006 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources Guangxi Liuzhou 545006 People's Republic of China
| | - Feng Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Xiao‐Min Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Zhao‐Guo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
3
|
Anti-Inflammatory Effects of an Extract from Pseudomonas aeruginosa and Its Purified Product 1-Hydroxyphenazine on RAW264.7 Cells. Curr Microbiol 2021; 78:2762-2773. [PMID: 34043026 DOI: 10.1007/s00284-021-02544-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to discuss the effects of an extract from the culture medium of Pseudomonas aeruginosa (P. aeruginosa) 2016NX1 (chloroform extract of P. aeruginosa, CEPA) and its purified product 1-hydroxyphenazine on RAW264.7 cell inflammation. Cell viability was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method. TNF-α production was determined by an ELISA method. The effects of CEPA and its purified product 1-hydroxyphenazine on cell morphology were investigated using an inverted microscope. Quantitative real-time PCR was performed to determine mRNA expression levels. CEPA and 1-hydroxyphenazine had no obvious toxicity to cells when their concentrations were no more than 20 μg ml-1 and 5 μg ml-1, respectively. Both CEPA and 1-hydroxyphenazine suppressed the secretion of TNF-α and significantly reduced the mRNA expression levels of TNF-α, IL-1β, and IL-6. Both CEPA and 1-hydroxyphenazine inhibited M1 cell polarization after lipopolysaccharide (LPS) stimulation. The results in this article lay a good foundation for the biopharmaceutical applications of CEPA and 1-hydroxyphenazine in the future. CEPA and 1-hydroxyphenazine had certain anti-inflammatory activity, and inhibited LPS-induced RAW264.7 cell inflammation. Our findings suggest that CEPA and 1-hydroxyphenazine are potential chemicals with anti-inflammatory activity.
Collapse
|
4
|
Stockert JC, Carou MC, Casas AG, García Vior MC, Ezquerra Riega SD, Blanco MM, Espada J, Blázquez-Castro A, Horobin RW, Lombardo DM. Fluorescent redox-dependent labeling of lipid droplets in cultured cells by reduced phenazine methosulfate. Heliyon 2020; 6:e04182. [PMID: 32566788 PMCID: PMC7298651 DOI: 10.1016/j.heliyon.2020.e04182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/14/2022] Open
Abstract
Natural and synthetic phenazines are widely used in biomedical sciences. In dehydrogenase histochemistry, phenazine methosulfate (PMS) is applied as a redox reagent for coupling reduced coenzymes to the reduction of tetrazolium salts into colored formazans. PMS is also currently used for cytotoxicity and viability assays of cell cultures using sulfonated tetrazoliums. Under UV (340 nm) excitation, aqueous solutions of the cationic PMS show green fluorescence (λem: 526 nm), whereas the reduced hydrophobic derivative (methyl-phenazine, MPH) shows blue fluorescence (λem: 465 nm). Under UV (365 nm) excitation, cultured cells (LM2, IGROV-1, BGC-1, and 3T3-L1 adipocytes) treated with PMS (5 μg/mL, 30 min) showed cytoplasmic granules with bright blue fluorescence, which correspond to lipid droplets labeled by the lipophilic methyl-phenazine. After formaldehyde fixation blue-fluorescing droplets could be stained with oil red O. Interestingly, PMS-treated 3T3-L1 adipocytes observed under UV excitation 24 h after labeling showed large lipid droplets with a weak green emission within a diffuse pale blue-fluorescing cytoplasm, whereas a strong green emission was observed in small lipid droplets. This fluorescence change from blue to green indicates that reoxidation of methyl-phenazine to PMS can occur. Regarding cell uptake and labeling mechanisms, QSAR models predict that the hydrophilic PMS is not significantly membrane-permeant, so most PMS reduction is expected to be extracellular and associated with a plasma membrane NAD(P)H reductase. Once formed, the lipophilic and blue-fluorescing methyl-phenazine enters live cells and mainly accumulates in lipid droplets. Overall, the results reported here indicate that PMS is an excellent fluorescent probe to investigate labeling and redox dynamics of lipid droplets in cultured cells.
Collapse
Affiliation(s)
- Juan C Stockert
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina.,Universidad de Buenos Aires, Instituto de Oncología "Angel H. Roffo", Area Investigación, Buenos Aires, C1417DTB, Argentina
| | - María C Carou
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina
| | - Adriana G Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias, Hospital de Clínicas, Universidad de Buenos Aires, CONICET, C1120AAF, Argentina
| | - María C García Vior
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, C1113AAD, CABA, Argentina
| | - Sergio D Ezquerra Riega
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, C1113AAD, CABA, Argentina
| | - María M Blanco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, C1113AAD, CABA, Argentina
| | - Jesús Espada
- Experimental Dermatology and Skin Biology Group, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, 28034, Madrid, Spain.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O´Higgins, Santiago, 8370854, Chile
| | - Alfonso Blázquez-Castro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Richard W Horobin
- Chemical Biology and Precision Synthesis, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Daniel M Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina
| |
Collapse
|
5
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Hu W, Huang XS, Wu JF, Yang L, Zheng YT, Shen YM, Li ZY, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem 2018; 61:8947-8980. [PMID: 29870668 DOI: 10.1021/acs.jmedchem.7b01202] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 South Shanda Road, 250100 Ji’nan, Shandong, P. R. China
| | - Xu-Sheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ji-Feng Wu
- Institute of Criminal Science and Technology, Ji’nan Public Security Bureau, 21 South QiliShan Road, 250000 Ji’nan, Shandong, P. R. China
| | - Liang Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Zhi-Yu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, Pennsylvania 19104, United States
| | - Xun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| |
Collapse
|
8
|
Yoo M, Jung KY. Deacetylation of Unactivated Amide Bonds in Heterocyclic Systems Using t
-BuOK. ChemistrySelect 2018. [DOI: 10.1002/slct.201702289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minjin Yoo
- Department of Medicinal Chemistry and Pharmacology; University of Science & Technology; 217 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Kwan-Young Jung
- Bio & Drug Discovery Division; Korea Research Institute of Chemical Technology; 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology; University of Science & Technology; 217 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
9
|
|
10
|
Zhao W, Jiang G, Bi C, Li Y, Liu J, Ye C, He H, Li L, Song D, Shao R. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation. Oncotarget 2016; 6:37871-94. [PMID: 26462155 PMCID: PMC4741971 DOI: 10.18632/oncotarget.5680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023] Open
Abstract
DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
| | - Chongwen Bi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yangbiao Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingbo Liu
- China Meitan General Hospital, Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei He
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danqing Song
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Design, synthesis and biological evaluation of novel 7-alkylamino substituted benzo[a]phenazin derivatives as dual topoisomerase I/II inhibitors. Eur J Med Chem 2015; 92:540-53. [DOI: 10.1016/j.ejmech.2015.01.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 11/22/2022]
|
12
|
Cimmino A, Evidente A, Mathieu V, Andolfi A, Lefranc F, Kornienko A, Kiss R. Phenazines and cancer. Nat Prod Rep 2012; 29:487-501. [DOI: 10.1039/c2np00079b] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Cowell IG, Tilby MJ, Austin CA. An overview of the visualisation and quantitation of low and high MW DNA adducts using the trapped in agarose DNA immunostaining (TARDIS) assay. Mutagenesis 2010; 26:253-60. [PMID: 21068206 DOI: 10.1093/mutage/geq094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to detect and quantify specific DNA adducts benefits genome stability research, drug development and the evaluation of environmental mutagens. The trapped in agarose DNA immunostaining (TARDIS) assay was developed as a means of detecting and quantifying melphalan and cisplatin DNA adducts at the single-cell level and has since been adapted to quantify topoisomerase-DNA complexes. The method relies on salt-detergent extraction of agarose-embedded cells. Genomic DNA and any covalently attached molecules remain in place in the agarose, while other cellular constituents are removed. Drug-DNA or topoisomerase-DNA complexes are then detected and quantified by sensitive immunofluorescence using adduct-specific antibodies. Here, we give a perspective of the TARDIS assay including a comparison with other methods for quantifying topoisomerase-DNA covalent complexes and provide technical details required to set up and perform the assay.
Collapse
Affiliation(s)
- Ian G Cowell
- Institute for Cell and Molecular Biosciences, Medical School, Catherine Cookson Building, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | |
Collapse
|