1
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
2
|
Ueno H, Hoshino T, Yano W, Tsukioka S, Suzuki T, Hara S, Ogino Y, Chong KT, Suzuki T, Tsuji S, Itadani H, Yamamiya I, Otsu Y, Ito S, Yonekura T, Terasaka M, Tanaka N, Miyahara S. TAS1553, a small molecule subunit interaction inhibitor of ribonucleotide reductase, exhibits antitumor activity by causing DNA replication stress. Commun Biol 2022; 5:571. [PMID: 35681099 PMCID: PMC9184620 DOI: 10.1038/s42003-022-03516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/22/2022] [Indexed: 01/03/2023] Open
Abstract
Ribonucleotide reductase (RNR) is composed of two non-identical subunits, R1 and R2, and plays a crucial role in balancing the cellular dNTP pool, establishing it as an attractive cancer target. Herein, we report the discovery of a highly potent and selective small-molecule inhibitor, TAS1553, targeting protein-protein interaction between R1 and R2. TAS1553 is also expected to demonstrate superior selectivity because it does not directly target free radical or a substrate binding site. TAS1553 has shown antiproliferative activity in human cancer cell lines, dramatically reducing the intracellular dATP pool and causing DNA replication stress. Furthermore, we identified SLFN11 as a biomarker that predicts the cytotoxic effect of TAS1553. Oral administration of TAS1553 demonstrated robust antitumor efficacy against both hematological and solid cancer xenograft tumors and also provided a significant survival benefit in an acute myelogenous leukemia model. Our findings strongly support the evaluation of TAS1553 in clinical trials. A small-molecule protein-protein interaction inhibitor of ribonucleotide reductase subunit, TAS1553, is shown to inhibit growth of both hematological and solid cancer xenograft tumors following oral administration in mice.
Collapse
|
3
|
Li J, Ma A, Lan W, Liu Q. Platycodon D-induced A549 cell apoptosis through RRM1-regulated p53/VEGF/MMP2 pathway. Anticancer Agents Med Chem 2022; 22:2458-2467. [PMID: 35088678 DOI: 10.2174/1871520622666220128095355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the leading causes of cancer-related deaths worldwide. Platycodin D (PD), a major pharmacological constituent from the Chinese medicinal herb named Platycodonis Radix, has shown potent anti-tumor activity. Also, it is also reported that PD could inhibit cellular growth in the non-small-cell lung carcinoma (NSCLC) A549 cell line. However, the underlying mechanism is not fully clarified. METHODS Cell proliferation was measured by MTT assay. Annexin V and propidium iodide (PI) assay were employed to study the apoptosis effects of PD on A549 cells. Western blot analysis was used to evaluate protein expression. Also, we used a siRNA against p53, as well as a plasmid-based RRM1 over-expression to investigate their functions. RESULTS It demonstrated PD inhibited A549 cell proliferation in a dose- and time-dependent manner. Further investigations showed that PD induced cell apoptosis, which was supported by dose-dependent and time-dependent caspase-3 activation and p53/VEGF/MMP2 pathway regulation. Also, PD demonstrated the inhibition effect of ribonucleotide reductase M1 (RRM1), whose role in various tumors is contradictory. Remarkably, in this work, RRM1 overexpression in A549 cells could have a negative impact on the regulation of the p53/VEGF/MMP2 pathway induced by PD treatment. Note as well that RRM1 overexpression also attenuated cell apoptosis and inhibition of cell proliferation of A549 treated with PD. CONCLUSION The results suggested that PD could inhibit A549 cell proliferation and induce cell apoptosis by regulating p53/VEGF/MMP2 pathway, in which RRM1 plays an important role directly.
Collapse
Affiliation(s)
- Jiurong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P. R. of China
| | - Aiping Ma
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P. R. of China
| | - Wenbin Lan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P. R. of China
| | - Qun Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P. R. of China
| |
Collapse
|
4
|
Jin G, Wang K, Liu Y, Liu X, Zhang X, Zhang H. Proteomic Level Changes on Treatment in MCF-7/DDP Breast Cancer Drug- Resistant Cells. Anticancer Agents Med Chem 2021; 20:687-699. [PMID: 32053082 PMCID: PMC7403652 DOI: 10.2174/1871520620666200213102849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023]
Abstract
Background
LCL161, a SMAC’S small molecule mimetic, can bind to a variety of IAPs and activate Caspases. We found that on its own, LCL161induces apoptosis of drug-resistant breast cancer cells by binding to a variety of IAPs and activating Caspases. However, when LCL161 is used in combination with Caspase Inhibitors (CI), its capacity to induce apoptosis of breast cancer cells is enhanced. Objective
To carry out proteomic and bioinformatics analysis of LCL161 in combination with CI. We aim to identify the key proteins and mechanisms of breast cancer drug-resistant apoptosis, thereby aiding in the breast cancer drug resistance treatment and identification of drug targeting markers. Methods
Cell culture experiments were carried out to explore the effect of LCL161 combined with CI on the proliferation of breast cancer drug-resistant cells. Proteomic analysis was carried out to determine the protein expression differences between breast cancer drug-resistant cells and LCL161 combined with CI treated cells. Bioinformatics analysis was carried out to determine its mechanism of action. Validation of proteomics results was done using Parallel Reaction Monitoring (PRM). Results
Cell culture experiments showed that LCL161 in combination with CI can significantly promote the apoptosis of breast cancer drug-resistant cells. Up-regulation of 92 proteins and down-regulation of 114 proteins protein were noted, of which 4 were selected for further validation. Conclusion
Our results show that LCL161 combined with CI can promote the apoptosis of drug-resistant breast cancer cells by down-regulation of RRM2, CDK4, and ITGB1 expression through Cancer pathways, p53 or PI3K-AKT signaling pathway. In addition, the expression of CDK4, RRM2, and CDC20 can be down-regulated by the nuclear receptor pathway to affect DNA transcription and replication, thereby promoting apoptosis of breast cancer drug-resistant cells.
Collapse
Affiliation(s)
- Gongshen Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Kangwei Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Yonghong Liu
- First People's Hospital of Yuhang District, Hangzhou 310000, China
| | - Xianhu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Xiaojing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| |
Collapse
|
5
|
Fouad S, Hauton D, D'Angiolella V. E2F1: Cause and Consequence of DNA Replication Stress. Front Mol Biosci 2021; 7:599332. [PMID: 33665206 PMCID: PMC7921158 DOI: 10.3389/fmolb.2020.599332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, cell cycle entry occurs in response to the correct stimuli and is promoted by the transcriptional activity of E2F family members. E2F proteins regulate the transcription of S phase cyclins and genes required for DNA replication, DNA repair, and apoptosis. The activity of E2F1, the archetypal and most heavily studied E2F family member, is tightly controlled by the DNA damage checkpoints to modulate cell cycle progression and initiate programmed cell death, when required. Altered tumor suppressor and oncogenic signaling pathways often result in direct or indirect interference with E2F1 regulation to ensure higher rates of cell proliferation independently of external cues. Despite a clear link between dysregulated E2F1 activity and cancer progression, literature on the contribution of E2F1 to DNA replication stress phenotypes is somewhat scarce. This review discusses how dysfunctional tumor suppressor and oncogenic signaling pathways promote the disruption of E2F1 transcription and hence of its transcriptional targets, and how such events have the potential to drive DNA replication stress. In addition to the involvement of E2F1 upstream of DNA replication stress, this manuscript also considers the role of E2F1 as a downstream effector of the response to this type of cellular stress. Lastly, the review introduces some reflections on how E2F1 activity is integrated with checkpoint control through post-translational regulation, and proposes an exploitable tumor weakness based on this axis.
Collapse
Affiliation(s)
- Shahd Fouad
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David Hauton
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Guo Y, Huang P, Ning W, Zhang H, Yu C. Identification of Core Genes and Pathways in Medulloblastoma by Integrated Bioinformatics Analysis. J Mol Neurosci 2020; 70:1702-1712. [PMID: 32535713 DOI: 10.1007/s12031-020-01556-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is one of the most common intracranial malignancies in children. The present study applied integrated bioinformatics to identify potential core genes associated with the pathogenesis of MB and reveal potential molecular mechanisms. Through the integrated analysis of multiple data sets from the Gene Expression Omnibus (GEO), 414 differentially expressed genes (DEGs) were identified. Combining the protein-protein interaction (PPI) network analysis with gene set enrichment analysis (GSEA), eight core genes, including CCNA2, CCNB1, CCNB2, AURKA, CDK1, MAD2L1, BUB1B, and RRM2, as well as four core pathways, including "cell cycle", "oocyte meiosis", "p53 pathway" and "DNA replication" were selected. In independent data sets, the core genes showed superior diagnostic values and significant prognostic correlations. Moreover, in the pan-caner data of the cancer genome atlas (TCGA), the core genes were also widely abnormally expressed. In conclusion, this study identified core genes and pathways of MB through integrated analysis to deepen the understanding of the molecular mechanisms underlying the MB and provide potential targets and pathways for diagnosis and treatment of MB.
Collapse
Affiliation(s)
- Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Peng Huang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Hu SF, Lin X, Xu LP, Chen HG, Guo JF, Jin L. DCK is an Unfavorable Prognostic Biomarker and Correlated With Immune Infiltrates in Liver Cancer. Technol Cancer Res Treat 2020; 19:1533033820934133. [PMID: 32588770 PMCID: PMC7325533 DOI: 10.1177/1533033820934133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The biological function of deoxycytidine kinase in tumor is not yet clear, and there are a few studies relating to the correlation of deoxycytidine kinase gene with the occurrence and development of liver cancer. METHODS The messenger RNA expression of deoxycytidine kinase was analyzed with the use of the UALCAN and GEPIA database. Moreover, we assessed the function of deoxycytidine kinase on clinical prognosis with Kaplan-Meier plotter database. The relationship between deoxycytidine kinase and cancer immune infiltrates was investigated via Tumor Immune Estimation Resource site. Furthermore, Tumor Immune Estimation Resource was also used to evaluate the correlations between the expression of deoxycytidine kinase and gene marker sets of immune infiltrates. RESULTS The deoxycytidine kinase messenger RNA level significantly upregulated in patients with liver cancer compared to normal liver samples. Moreover, the increased expression of deoxycytidine kinase messenger RNA was closely associated with reduced overall survival and disease-free survival in all liver cancers. In addition, deoxycytidine kinase expression displayed a strong correlation with infiltrating levels of macrophages, neutrophils, and dendritic cells in liver cancer, and deoxycytidine kinase expression was positively correlated with diverse immune marker sets in liver cancer. CONCLUSIONS All the above findings suggested that increased expression of deoxycytidine kinase was significantly related to unfavorable prognosis in patients with liver cancer. And deoxycytidine kinase is correlated with immune infiltrating levels, including those of B cells, macrophages, neutrophils, and dendritic cells in patients with liver cancer. These findings suggest that deoxycytidine kinase can be used as a prognostic biomarker for determining prognosis and immune infiltration in liver cancer. And deoxycytidine kinase is a potential target for liver cancer therapy, and these preliminary findings require further study to determine whether deoxycytidine kinase-targeting reagents might be developed for clinical application in liver cancer.
Collapse
Affiliation(s)
- Shu Fang Hu
- The Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- The Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lv Ping Xu
- The Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Gang Chen
- The Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Feng Guo
- The Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jin
- Traditional Chinese Medicine Department, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Luo Y, Shen D, Chen L, Wang G, Liu X, Qian K, Xiao Y, Wang X, Ju L. Identification of 9 key genes and small molecule drugs in clear cell renal cell carcinoma. Aging (Albany NY) 2019; 11:6029-6052. [PMID: 31422942 PMCID: PMC6738436 DOI: 10.18632/aging.102161] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor that the underlying molecular mechanisms are largely unclear. This study aimed to elucidate the key candidate genes and pathways in ccRCC by integrated bioinformatics analysis. 1387 differentially expressed genes were identified based on three expression profile datasets, including 673 upregulated genes and 714 downregulated genes. Then we used weighted correlation network analysis to identify 6 modules associated with pathological stage and grade, blue module was the most relevant module. GO and KEGG pathway analyses showed that genes in blue module were enriched in cell cycle and metabolic related pathways. Further, 25 hub genes in blue module were identified as hub genes. Based on GEPIA database, 9 genes were associated with progression and prognosis of ccRCC patients, including PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20. Then multivariate Cox regression showed that the risk score base on 9 key genes signature was a clinically independent prognostic factor for ccRCC patients. Moreover, we screened out several new small molecule drugs that have the potential to treat ccRCC. Few of them were identified as biomarkers in ccRCC. In conclusion, our research identified 9 potential prognostic genes and several candidate small molecule drugs for ccRCC treatment.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20007, USA
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
9
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
10
|
Fan S, Tang J, Li N, Zhao Y, Ai R, Zhang K, Wang M, Du W, Wang W. Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom Med 2019; 4:2. [PMID: 30729033 PMCID: PMC6358616 DOI: 10.1038/s41525-019-0077-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 11/09/2022] Open
Abstract
The integration of genomic and DNA methylation data has been demonstrated as a powerful strategy in understanding cancer mechanisms and identifying therapeutic targets. The TCGA consortium has mapped DNA methylation in thousands of cancer samples using Illumina Infinium Human Methylation 450 K BeadChip (Illumina 450 K array) that only covers about 1.5% of CpGs in the human genome. Therefore, increasing the coverage of the DNA methylome would significantly leverage the usage of the TCGA data. Here, we present a new model called EAGLING that can expand the Illumina 450 K array data 18 times to cover about 30% of the CpGs in the human genome. We applied it to analyze 13 cancers in TCGA. By integrating the expanded methylation, gene expression, and somatic mutation data, we identified the genes showing differential patterns in each of the 13 cancers. Many of the triple-evidenced genes identified in majority of the cancers are biomarkers or potential biomarkers. Pan-cancer analysis also revealed the pathways in which the triple-evidenced genes are enriched, which include well known ones as well as new ones, such as axonal guidance signaling pathway and pathways related to inflammatory processing or inflammation response. Triple-evidenced genes, particularly TNXB, RRM2, CELSR3, SLC16A3, FANCI, MMP9, MMP11, SIK1, and TRIM59 showed superior predictive power in both tumor diagnosis and prognosis. These results have demonstrated that the integrative analysis using the expanded methylation data is powerful in identifying critical genes/pathways that may serve as new therapeutic targets.
Collapse
Affiliation(s)
- Shicai Fan
- 1School of Automation Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, Sichuan China.,2Center for Informational Biology, University of Electronic Science and Technology of China, 611731 Chengdu, Sichuan China.,3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA.,4Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 130012 Changchun, China
| | - Jianxiong Tang
- 1School of Automation Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, Sichuan China
| | - Nan Li
- 3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA
| | - Ying Zhao
- 3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA
| | - Rizi Ai
- 3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA
| | - Kai Zhang
- 3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA
| | - Mengchi Wang
- 3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA
| | - Wei Du
- 4Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 130012 Changchun, China
| | - Wei Wang
- 3Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359 USA.,5Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093-0359 USA
| |
Collapse
|
11
|
Liu X, Wang J, Chen M, Liu S, Yu X, Wen F. Combining data from TCGA and GEO databases and reverse transcription quantitative PCR validation to identify gene prognostic markers in lung cancer. Onco Targets Ther 2019; 12:709-720. [PMID: 30718962 PMCID: PMC6345189 DOI: 10.2147/ott.s183944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The aim of this study was to predict and explore the possible mechanism and clinical value of genetic markers in the development of lung cancer with a combined database to screen the prognostic genes of lung cancer. Materials and methods Common differential genes in two gene expression chips (GSE3268 and GSE10072 datasets) were investigated by collecting and calculating from Gene Expression Omnibus and The Cancer Genome Atlas databases using R language. Five markers of gene composition (ribonucleotide reductase regulatory subunit M2 [RRM2], trophoblast glycoprotein [TPBG], transmembrane protease serine 4[TMPRFF4], chloride intracellular channel 3 [CLIC3], and WNT inhibitory factor-1 [WIF1]) were found by the stepwise Cox regression function when we further screened combinations of gene models, which were more meaningful for prognosis. By analyzing the correlation between gene markers and clinicopathological parameters of lung cancer and its effect on prognosis, the TPBG gene was selected to analyze differential expression, its possible pathways and functions were predicted using gene set enrichment analysis (GSEA), and its protein interaction network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database; then, quantitative PCR and the Oncomine database were used to verify the expression differences of TPBG in lung cancer cells and tissues. Results The expression levels of five genetic markers were correlated with survival prognosis, and the total survival time of the patients with high expression of the genetic markers was shorter than those with low expression (P<0.001). GSEA showed that these high-expression samples enriched the gene sets of cell adhesion, cytokine receptor interaction pathway, extracellular matrix receptor pathway, adhesion pathway, skeleton protein regulation, cancer pathway and TGF-β pathway. Conclusion The high expression of five gene constituent markers is a poor prognostic factor in lung cancer and may serve as an effective biomarker for predicting metastasis and prognosis of patients with lung cancer.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China, .,Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China, .,Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Mei Chen
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Shilan Liu
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xiaodan Yu
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China, .,Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China,
| |
Collapse
|
12
|
Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L, Zhao H. Identification of key candidate genes and small molecule drugs in cervical cancer by bioinformatics strategy. Cancer Manag Res 2018; 10:3533-3549. [PMID: 30271202 PMCID: PMC6145638 DOI: 10.2147/cmar.s171661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Cervical cancer (CC) is one of the most common malignant tumors among women. The present study aimed at integrating two expression profile datasets to identify critical genes and potential drugs in CC. Materials and methods Expression profiles, GSE7803 and GSE9750, were integrated using bioinformatics methods, including differentially expressed genes analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and protein–protein interaction (PPI) network construction. Subsequently, survival analysis was performed among the key genes using Gene Expression Profiling Interactive Analysis websites. Connectivity Map (CMap) was used to query potential drugs for CC. Results A total of 145 upregulated genes and 135 downregulated genes in CC were identified. The functional changes of these differentially expressed genes related to CC were mainly associated with cell cycle, DNA replication, p53 signaling pathway, and oocyte meiosis. A PPI network was identified by STRING with 220 nodes and 2,111 edges. Thirteen key genes were identified as the intersecting genes of the enrichment pathways and the top 20 nodes in PPI network. Survival analysis revealed that high mRNA expression of MCM2, PCNA, and RFC4 was significantly associated with longer overall survival, and the survival was significantly better in the low-expression RRM2 group. Moreover, CMap predicted nine small molecules as possible adjuvant drugs to treat CC. Conclusion Our study found key dysregulated genes involved in CC and potential drugs to combat it, which might provide insights into CC pathogenesis and might shed light on potential CC treatments.
Collapse
Affiliation(s)
- Xin Tang
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Yicong Xu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Lin Lu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Yang Jiao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Jianjun Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Linlin Wang
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Hongbo Zhao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| |
Collapse
|
13
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
14
|
Severi L, Losi L, Fonda S, Taddia L, Gozzi G, Marverti G, Magni F, Chinello C, Stella M, Sheouli J, Braicu EI, Genovese F, Lauriola A, Marraccini C, Gualandi A, D'Arca D, Ferrari S, Costi MP. Proteomic and Bioinformatic Studies for the Characterization of Response to Pemetrexed in Platinum Drug Resistant Ovarian Cancer. Front Pharmacol 2018; 9:454. [PMID: 29867465 PMCID: PMC5952181 DOI: 10.3389/fphar.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
Collapse
Affiliation(s)
- Leda Severi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Taddia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaia Gozzi
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Jalid Sheouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elena I Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Gualandi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Wang N, Li Y, Zhou J. Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells. Oncol Lett 2018; 15:3719-3725. [PMID: 29556274 PMCID: PMC5844123 DOI: 10.3892/ol.2018.7806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Ribonucleotide reductase subunit M2 (RRM2) is associated with the biological behaviours of cancers, including apoptosis, cell proliferation, invasion, cell cycle and migration. Previous studies have suggested that the expression of RRM2 plays critical roles in tumorigenesis in several cancer types. However, the precise molecular mechanism remains unknown. We previously identified RRM2 as a novel downstream target that is activated by human papillomavirus E7, which activates the extracellular signal-regulated kinase 1/2 signalling pathway, but further studies are warranted to establish RRM2 as a therapeutic target. The results of the present study indicate that RRM2 is associated with cervical cancer cell apoptosis and proliferation. The downregulation of RRM2 significantly increased apoptosis, promoted cell cycle arrest at the G1 phase in vitro and inhibited tumour formation in nude mice transplant models in vivo. These results highlight the potential for inhibition of RRM2 expression as a promising therapeutic target for human cervical cancer treatment.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory of Molecular Biology, College of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, P.R. China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianhong Zhou
- Laboratory of Molecular Biology, College of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, P.R. China
| |
Collapse
|
16
|
Huang YH, Peng W, Furuuchi N, DuHadaway JB, Jimbo M, Pirritano A, Dunton CJ, Daum GS, Leiby BE, Brody JR, Sawicki JA. Insights from HuR biology point to potential improvement for second-line ovarian cancer therapy. Oncotarget 2017; 7:21812-24. [PMID: 26943573 PMCID: PMC5008325 DOI: 10.18632/oncotarget.7840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/21/2016] [Indexed: 12/28/2022] Open
Abstract
This retrospective study aimed to investigate the role that an RNA-binding protein, HuR, plays in the response of high-grade serous ovarian tumors to chemotherapeutics. We immunohistochemically stained sections of 31 surgically-debulked chemo-naïve ovarian tumors for HuR and scored the degree of HuR cytoplasmic staining. We found no correlation between HuR intracellular localization in tumor sections and progression free survival (PFS) of these patients, 29 of whom underwent second-line gemcitabine/platin combination therapy for recurrent disease. Ribonucleoprotein immunoprecipitation (RNP-IP) analysis of ovarian cancer cells in culture showed that cytoplasmic HuR increases deoxycytidine kinase (dCK), a metabolic enzyme that activates gemcitabine. The effects of carboplatin treatment on HuR and WEE1 (a mitotic inhibitor) expression, and on cell cycle kinetics, were also examined. Treatment of ovarian cancer cells with carboplatin results in increased HuR cytoplasmic expression and elevated WEE1 expression, arresting cell cycle G2/M transition. This may explain why HuR cytoplasmic localization in chemo-naïve tumors is not predictive of therapeutic response and PFS following second-line gemcitabine/platin combination therapy. These results suggest treatment of recurrent ovarian tumors with a combination of gemcitabine, carboplatin, and a WEE1 inhibitor may be potentially advantageous as compared to current clinical practices.
Collapse
Affiliation(s)
- Yu-Hung Huang
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA.,Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA
| | - Narumi Furuuchi
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA
| | | | - Masaya Jimbo
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Pirritano
- Main Line Gynecologic Oncology, Lankenau Medical Center, Wynnewood, PA 19096, USA
| | - Charles J Dunton
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA.,Main Line Gynecologic Oncology, Lankenau Medical Center, Wynnewood, PA 19096, USA
| | - Gary S Daum
- Main Line Health Laboratories, Lankenau Medical Center, Wynnewood, PA 19096, USA
| | - Benjamin E Leiby
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jonathan R Brody
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janet A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
17
|
Effects of DCK knockdown on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Cancer Gene Ther 2017; 24:367-372. [PMID: 28820179 DOI: 10.1038/cgt.2017.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/27/2017] [Accepted: 06/06/2017] [Indexed: 01/25/2023]
Abstract
The present study explored the effect that deoxycytidine kinase (DCK) knockdown had on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Human cervical cancer HeLa cells that had received no prior treatment were selected from the HeLa group. The HeLa-negative control (NC) group consisted of cells that had undergone an empty vector treatment, and finally the HeLa-short hairpin RNA (shRNA) group included cells that were treated by means of shRNA-DCK expression. DCK expressions were evaluated by quantitative real-time polymerase chain reaction in addition to western blotting assays. Cell proliferation was estimated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle progression. Cell apoptosis was determined by flow cytometry. BALB/c nude mice (n=24) were selected to establish transplanted tumor models, with gross tumor volume measured every 3 days. The results in vitro were as follows: compared with the HeLa group, the HeLa-shRNA group exhibited downregulation of DCK expression and inhibition of cell proliferation at 48, 72 and 96 h. Additionally, more cells in the HeLa-shRNA group were arrested in G0/G1 stage and less in S and G2/M stages, as well as in promotion of cell apoptosis. In vivo results are as follows: when comparing the HeLa and HeLa-NC groups, the gross tumor volume of the transplanted tumor in nude mice in the HeLa-shRNA group was found to have decreased in 13, 16, 19 and 22 days. Based on these findings, our study suggests that DCK knockdown facilitates apoptosis while inhibiting proliferation and tumorigenicity in vivo of cervical cancer HeLa cells.
Collapse
|
18
|
Zimmermann M, Wang SS, Zhang H, Lin TY, Malfatti M, Haack K, Ognibene T, Yang H, Airhart S, Turteltaub KW, Cimino GD, Tepper CG, Drakaki A, Chamie K, de Vere White R, Pan CX, Henderson PT. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Mol Cancer Ther 2016; 16:376-387. [PMID: 27903751 DOI: 10.1158/1535-7163.mct-16-0381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California.,Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Si-Si Wang
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Tzu-Yin Lin
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | | | - Kurt Haack
- Lawrence Livermore National Laboratory, Livermore, California
| | - Ted Ognibene
- Lawrence Livermore National Laboratory, Livermore, California
| | | | | | | | - George D Cimino
- Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, California
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA Medical Center, Los Angeles, California
| | - Karim Chamie
- Department of Urology, UCLA Medical Center, Los Angeles, California
| | - Ralph de Vere White
- Department of Urology, University of California Davis, Sacramento, California
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California. .,Department of Urology, University of California Davis, Sacramento, California.,VA Northern California Health Care System, Mather, California
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California. .,Accelerated Medical Diagnostics Incorporated, Berkeley, California
| |
Collapse
|
19
|
Yaghmour G, Prouet P, Wiedower E, Jamy OH, Feldman R, Chandler JC, Pandey M, Martin MG. Genomic alterations in neuroendocrine cancers of the ovary. J Ovarian Res 2016; 9:52. [PMID: 27566252 PMCID: PMC5002197 DOI: 10.1186/s13048-016-0259-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND As we have previously reported, small cell carcinoma of the ovary (SCCO) is a rare, aggressive form of ovarian cancer associated with poor outcomes. In an effort to identify new treatment options, we utilized comprehensive genomic profiling to assess the potential for novel therapies in SCCO. METHODS Patients with SCCO, SCCO-HT (hypercalcemic type), neuroendocrine tumors of the ovary (NET-O), and small cell carcinoma of the lung (SCLC) profiled by Caris Life Sciences between 2007-2015 were identified. Tumors were assessed with up to 21 IHC stains, in situ hybridization of cMET, EGFR, HER2 and PIK3CA, and next-generation sequencing (NGS) as well as Sanger sequencing of selected genes. RESULTS Forty-six patients with SCCO (10 SCCO, 18 SCCO-HT, 18 NET-O) were identified as well as 58 patients with SCLC for comparison. Patients with SCCO and SCCO-HT were younger (median 42 years [range 12-75] and 26 years [range 8-40], respectively) than patients with NET-O 62 [range 13-76] or SCLC 66 [range 36-86]. SCCO patients were more likely to be metastatic (70 %) than SCCO-HT (50 %) or NET-O (33 %) patients, but at a similar rate to SCLC patients (65 %). PD1 expression varied across tumor type with SCCO (100 %), SCCO-HT (60 %), NET-O (33 %) vs SCLC (42 %). PDL1 expression also varied with SCCO (50 %), SCCO-HT (20 %), NET-O (33 %) and SCLC (0 %). No amplifications were identified in cMET, EGFR, or HER2 and only 1 was found in PIK3CA (NET-O). Actionable mutations were rare with 1 patient with SCCO having a BRCA2 mutation and 1 patient with NET-O having a PIK3CA mutation. No other actionable mutations were identified. CONCLUSIONS No recurrent actionable mutations or rearrangements were identified using this platform in SCCO. IHC patterns may help guide the use of chemotherapy in these rare tumors.
Collapse
Affiliation(s)
- George Yaghmour
- The West Cancer Center, 1588 Union Ave., Memphis, TN 38104 USA
- Department of Hematology & Oncology, The University of Tennessee Health Science Center, 956 Court Ave., Suite H310A, Memphis, TN 38163 USA
| | - Philippe Prouet
- Department of Internal Medicine, The University of Tennessee Health Science Center, 956 Court Ave., Suite H314, Memphis, TN 38163 USA
| | - Eric Wiedower
- The West Cancer Center, 1588 Union Ave., Memphis, TN 38104 USA
- Department of Hematology & Oncology, The University of Tennessee Health Science Center, 956 Court Ave., Suite H310A, Memphis, TN 38163 USA
| | - Omer Hassan Jamy
- Department of Internal Medicine, The University of Tennessee Health Science Center, 956 Court Ave., Suite H314, Memphis, TN 38163 USA
| | - Rebecca Feldman
- Caris Life Sciences, 4750 S. 44th Place, Phoenix, AZ 85040 USA
| | - Jason C Chandler
- The West Cancer Center, 1588 Union Ave., Memphis, TN 38104 USA
- Department of Hematology & Oncology, The University of Tennessee Health Science Center, 956 Court Ave., Suite H310A, Memphis, TN 38163 USA
| | - Manjari Pandey
- The West Cancer Center, 1588 Union Ave., Memphis, TN 38104 USA
- Department of Hematology & Oncology, The University of Tennessee Health Science Center, 956 Court Ave., Suite H310A, Memphis, TN 38163 USA
| | - Mike G Martin
- The West Cancer Center, 1588 Union Ave., Memphis, TN 38104 USA
- Department of Hematology & Oncology, The University of Tennessee Health Science Center, 956 Court Ave., Suite H310A, Memphis, TN 38163 USA
| |
Collapse
|
20
|
ERCC1 and RRM1 as a predictive parameter for non-small cell lung, ovarian or pancreas cancer treated with cisplatin and/or gemcitabine. Contemp Oncol (Pozn) 2015; 19:207-13. [PMID: 26557761 PMCID: PMC4631284 DOI: 10.5114/wo.2015.52656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/05/2013] [Accepted: 02/06/2014] [Indexed: 11/17/2022] Open
Abstract
Background We aimed to investigate the impact of RRM1 and ERCC1 expression on response to cisplatin and/or gemcitabine chemotherapy in patients with lung, ovarian or pancreatic cancer. Material and methods Patients with lung, ovarian or pancreatic cancer, who used cisplatin and/or gemcitabine therapy were included; hospital files were examined and RRM1 and ERCC1 expression were evaluated with an immunohistochemical method on tissue cross sections from paraffin blocks of the tumour. Results Out of 89 patients, 51%, 30% and 19% had lung, ovarian and pancreatic cancer, respectively. The response rates to the therapy in patients with lung and ovarian cancer having low ERCC1 expression were 62% and 90%, respectively (p = 0.028 and p = 0.044, respectively). No significant association was found between ERCC1 expression and response to therapy in patients with pancreatic cancer (p = 0.354). Therapeutic response rates in patients with lung and pancreatic cancer with low RRM1 expression were 60% and 82%, respectively. Survival rates were higher in patients with lung cancer in which ERCC1 and RRM1 expressions were low. Median survival duration in patients with ovarian cancer showing low ERCC1 and RRM1 expressions was longer than that seen in patients with high expressions. Although no significant correlation was found between ERCC1 and the survival in ovarian cancer (p = 0.183), there was a significant correlation between RRM1 expression and survival in patients with pancreatic cancer (p = 0.005). Conclusions Our results suggest a predictive value of ERCC1 in lung and ovarian cancers, and also RRM1 in lung and pancreatic cancers.
Collapse
|
21
|
Lee B, Ha SY, Song DH, Lee HW, Cho SY, Park CK. High expression of ribonucleotide reductase subunit M2 correlates with poor prognosis of hepatocellular carcinoma. Gut Liver 2014; 8:662-8. [PMID: 25368754 PMCID: PMC4215454 DOI: 10.5009/gnl13392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/07/2014] [Accepted: 01/29/2014] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Ribonucleotide reductase subunit M2 (RRM2) catalyzes the production of deoxynucleotide triphosphates, which are necessary for DNA synthesis. RRM2 has been reported to play an active role in tumor progression, and elevated RRM2 levels have been correlated with poor prognosis for colorectal cancer patients. This study aimed to elucidate the prognostic significance of RRM2 protein expression in hepatocellular carcinoma after surgery. Methods RRM2 protein expression was evaluated using immunohistochemistry in tumor tissues from 259 hepatocellular carcinoma patients who underwent curative hepatectomy. Results High RRM2 expression was observed in 210 of 259 patients (81.1%) with hepatocellular carcinomas. High RRM2 expression was significantly associated with viral etiology (p=0.035) and liver cirrhosis (p=0.036). High RRM2 expression was correlated with early recurrence (p=0.004) but not with late recurrence (p=0.144). Logistic regression analysis revealed that high RRM2 expression (p=0.040) and intrahepatic metastasis (p<0.001) were independent predictors of early recurrence. High RRM2 expression unfavorably influenced both shorter recurrence-free survival (p=0.011) and shorter disease-specific survival (p=0.002) and was an independent predictor of shorter disease-specific survival (p=0.008). Conclusions High RRM2 protein expression might be a useful marker for predicting early recurrence and may be a marker for poor prognosis of hepatocellular carcinoma after curative hepatectomy.
Collapse
Affiliation(s)
- Boin Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Hyun Song
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Woo Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Youn Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Keun Park
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Tambutet G, Becerril-Jiménez F, Dostie S, Simard R, Prévost M, Mochirian P, Guindon Y. Dual-Face Nucleoside Scaffold Featuring a Stereogenic All-Carbon Quaternary Center. Intramolecular Silicon Tethered Group-Transfer Reaction. Org Lett 2014; 16:5698-701. [DOI: 10.1021/ol502777r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guillaume Tambutet
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Département
de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Fabiola Becerril-Jiménez
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Starr Dostie
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | - Ryan Simard
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Michel Prévost
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Philippe Mochirian
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Yvan Guindon
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Département
de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
23
|
de Sousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 2014; 741:8-16. [PMID: 25084222 DOI: 10.1016/j.ejphar.2014.07.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022]
Abstract
Gemcitabine is the first-line treatment for pancreatic adenocarcinoma, but is increasingly used to treat breast, bladder, and non-small cell lung cancers. Despite such broad use, intrinsic and acquired chemoresistance is common. In general, the underlying mechanisms of chemoresistance are poorly understood. Here, current knowledge of gemcitabine metabolism, mechanisms of action, sensitivity and chemoresistance reported over the past two decades are reviewed; and we also offer new perspectives to improve gemcitabine efficacy with particular reference to the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lucas de Sousa Cavalcante
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2014; 34:2011-21. [PMID: 24909171 DOI: 10.1038/onc.2014.155] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 12/16/2022]
Abstract
Accurate DNA replication and repair is essential for proper development, growth and tumor-free survival in all multicellular organisms. A key requirement for the maintenance of genomic integrity is the availability of adequate and balanced pools of deoxyribonucleoside triphosphates (dNTPs), the building blocks of DNA. Notably, dNTP pool alterations lead to genomic instability and have been linked to multiple human diseases, including mitochondrial disorders, susceptibility to viral infection and cancer. In this review, we discuss how a key regulator of dNTP biosynthesis in mammals, the enzyme ribonucleotide reductase (RNR), impacts cancer susceptibility and serves as a target for anti-cancer therapies. Because RNR-regulated dNTP production can influence DNA replication fidelity while also supporting genome-protecting DNA repair, RNR has complex and stage-specific roles in carcinogenesis. Nevertheless, cancer cells are dependent on RNR for de novo dNTP biosynthesis. Therefore, elevated RNR expression is a characteristic of many cancers, and an array of mechanistically distinct RNR inhibitors serve as effective agents for cancer treatment. The dNTP metabolism machinery, including RNR, has been exploited for therapeutic benefit for decades and remains an important target for cancer drug development.
Collapse
Affiliation(s)
- Y Aye
- 1] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA [2] Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - M Li
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - M J C Long
- Graduate Program in Biochemistry, Brandeis University, Waltham, MA, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Kang W, Tong JHM, Chan AWH, Zhao J, Wang S, Dong Y, Sin FMC, Yeung S, Cheng ASL, Yu J, To K. Targeting ribonucleotide reductase M2 subunit by small interfering RNA exerts anti-oncogenic effects in gastric adenocarcinoma. Oncol Rep 2014; 31:2579-86. [PMID: 24756820 DOI: 10.3892/or.2014.3148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/21/2014] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase M2 subunit (RRM2) is one of the two subunits of human ribonucleotide reductase which plays a critical role in tumor progression. The aim of the present study was to analyze its expression, clinical significance and biological functions in gastric adenocarcinoma. We observed the upregulation of RRM2 mRNA and protein in all nine gastric cancer cell lines examined. In paired primary gastric cancers, both mRNA and protein levels of RRM2 were significantly upregulated in tumors compared with the corresponding non-tumorous gastric tissues. RRM2 protein expression correlated with higher tumor grade, advanced T stage and poor disease-specific survival. RRM2 knockdown in gastric cancer cell lines AGS, MKN1 and MKN28 significantly suppressed cell proliferation, inhibited monolayer colony formation, reduced cell invasion and induced apoptosis. Downregulation of RRM2 suppressed xenograft formation in vivo. Collectively, these findings suggest that RRM2 plays a crucial role in gastric tumorigenesis and may serve as a potential prognostic marker and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Joanna H M Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Junhong Zhao
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Shiyan Wang
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Yujuan Dong
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Frankie M C Sin
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Saifung Yeung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Kafai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
26
|
Shao J, Liu X, Zhu L, Yen Y. Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets 2013; 17:1423-37. [PMID: 24083455 DOI: 10.1517/14728222.2013.840293] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ribonucleotide reductase (RR) is a unique enzyme, because it is responsible for reducing ribonucleotides to their corresponding deoxyribonucleotides, which are the building blocks required for DNA replication and repair. Dysregulated RR activity is associated with genomic instability, malignant transformation and cancer development. The use of RR inhibitors, either as a single agent or combined with other therapies, has proven to be a promising approach for treating solid tumors and hematological malignancies. AREAS COVERED This review covers recent publications in the area of RR, which include: i) the structure, function and regulation of RR; ii) the roles of RR in cancer development; iii) the classification, mechanisms and clinical application of RR inhibitors for cancer therapy and iv) strategies for developing novel RR inhibitors in the future. EXPERT OPINION Exploring the possible nonenzymatic roles of RR subunit proteins in carcinogenesis may lead to new rationales for developing novel anticancer drugs. Updated information about the structure and holoenzyme models of RR will help in identifying potential sites in the protein that could be targets for novel RR inhibitors. Determining RR activity and subunit levels in clinical samples will provide a rational platform for developing personalized cancer therapies that use RR inhibitors.
Collapse
Affiliation(s)
- Jimin Shao
- Zhejiang University, School of Medicine, Department of Pathology and Pathophysiology , Hangzhou 310058 , China
| | | | | | | |
Collapse
|
27
|
Rahman MA, Amin AR, Wang D, Koenig L, Nannapaneni S, Chen Z, Wang Z, Sica G, Deng X, Chen Z(G, Shin DM. RRM2 regulates Bcl-2 in head and neck and lung cancers: a potential target for cancer therapy. Clin Cancer Res 2013; 19:3416-28. [PMID: 23719266 PMCID: PMC3747783 DOI: 10.1158/1078-0432.ccr-13-0073] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ribonucleotide reductase subunit M2 (RRM2) plays an active role in tumor progression. Recently, we reported that depletion of RRM2 by systemic delivery of a nanoparticle carrying RRM2-specific siRNA suppresses head and neck tumor growth. The aim of this study is to clarify the underlying mechanism by which RRM2 depletion inhibits tumor growth. EXPERIMENTAL DESIGN siRNA-mediated gene silencing was carried out to downregulate RRM2. Immunoblotting, reverse-transcriptase PCR, confocal microscopy, tissue fractionation, gene overexpression and knockdown were employed to analyze critical apoptosis signaling. Conventional immunohistochemistry and quantum dot-based immunofluorescence were applied to detect RRM2 and Bcl2 expression and localization in tissue samples from patients and mice. RESULTS Knockdown of RRM2 led to apoptosis through the intrinsic pathway in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. We showed that Bcl-2 is a key determinant controlling apoptosis, both in vitro and in vivo, and that RRM2 depletion significantly reduces Bcl-2 protein expression. We observed that RRM2 regulates Bcl-2 protein stability, with RRM2 suppression leading to increased Bcl-2 degradation, and identified their colocalization in HNSCC and NSCLC cells. In a total of 50 specimens each from patients with HNSCC and NSCLC, we identified the colocalization of Bcl-2 and RRM2 and found a significant positive correlation between their expression in HNSCC (R = 0.98; P < 0.0001) and NSCLC (R = 0.92; P < 0.0001) tumor tissues. CONCLUSIONS Our novel findings add to the knowledge of RRM2 in regulating expression of the antiapoptotic protein Bcl-2 and reveal a critical link between RRM2 and Bcl-2 in apoptosis signaling.
Collapse
Affiliation(s)
- Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - A.R.M. Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Lydia Koenig
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Zhibo Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Gabriel Sica
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Zhuo (Georgia) Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Corresponding Author: Dong M. Shin, Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322. Phone: 1-404-778-2980, Fax: 1-404-778-5520.
| |
Collapse
|
28
|
Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG. Cyclins and cell cycle control in cancer and disease. Genes Cancer 2013; 3:649-57. [PMID: 23634253 DOI: 10.1177/1947601913479022] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin D1 overexpression is found in more than 50% of human breast cancers and causes mammary cancer in transgenic mice. Dysregulation of cyclin D1 gene expression or function contributes to the loss of normal cell cycle control during tumorigenesis. Recent studies have demonstrated that cyclin D1 conducts additional specific functions to regulate gene expression in the context of local chromatin, promote cellular migration, and promote chromosomal instability. It is anticipated that these additional functions contribute to the pathology associated with dysregulated cyclin D1 abundance. This article discusses evidence that examines the functional roles that cyclin D1 may play in cancer with an emphasis on other cyclin family members that also may contribute to cancer and disease in a similar fashion.
Collapse
|
29
|
Wonganan P, Lansakara-P DSP, Zhu S, Holzer M, Sandoval MA, Warthaka M, Cui Z. Just getting into cells is not enough: mechanisms underlying 4-(N)-stearoyl gemcitabine solid lipid nanoparticle's ability to overcome gemcitabine resistance caused by RRM1 overexpression. J Control Release 2013; 169:17-27. [PMID: 23570983 DOI: 10.1016/j.jconrel.2013.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 10/27/2022]
Abstract
Gemcitabine is a deoxycytidine analog that is widely used in the chemotherapy of many solid tumors. However, acquired tumor cell resistance often limits its use. Previously, we discovered that 4-(N)-stearoyl gemcitabine solid lipid nanoparticles (4-(N)-GemC18-SLNs) can overcome multiple acquired gemcitabine resistance mechanisms, including RRM1 overexpression. The present study was designed to elucidate the mechanisms underlying the 4-(N)-GemC18-SLNs' ability to overcome gemcitabine resistance. The 4-(N)-GemC18 in the 4-(N)-GemC18-SLNs entered tumor cells due to clathrin-mediated endocytosis of the 4-(N)-GemC18-SLNs into the lysosomes of the cells, whereas the 4-(N)-GemC18 alone in solution entered cells by diffusion. We substantiated that it is the way the 4-(N)-GemC18-SLNs deliver the 4-(N)-GemC18 into tumor cells that allows the gemcitabine hydrolyzed from the 4-(N)-GemC18 to be more efficiently converted into its active metabolite, gemcitabine triphosphate (dFdCTP), and thus more potent against gemcitabine-resistant tumor cells than 4-(N)-GemC18 or gemcitabine alone. Moreover, we also showed that the RRM1-overexpressing tumor cells were also cross-resistant to cytarabine, another nucleoside analog commonly used in cancer therapy, and 4-(N)-stearoyl cytarabine carried by solid lipid nanoparticles can also overcome the resistance. Therefore, formulating the long-chain fatty acid amide derivatives of nucleoside analogs into solid lipid nanoparticles may represent a platform technology to increase the antitumor activity of the nucleoside analogs and to overcome tumor cell resistance to them.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Pharmaceutics Division, The University of Texas at Austin, College of Pharmacy, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 2012; 149:1023-34. [PMID: 22632967 DOI: 10.1016/j.cell.2012.03.043] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/01/2012] [Accepted: 03/24/2012] [Indexed: 11/20/2022]
Abstract
F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as an interactor of the F-box protein cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCF(cyclin F) to maintain balanced dNTP pools and genome stability. After DNA damage, cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a nondegradable RRM2 mutant. In summary, we have identified a biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.
Collapse
|
31
|
Fisher SB, Fisher KE, Patel SH, Lim MG, Kooby DA, El-Rayes BF, Staley CA, Adsay NV, Farris AB, Maithel SK. Excision repair cross-complementing gene-1, ribonucleotide reductase subunit M1, ribonucleotide reductase subunit M2, and human equilibrative nucleoside transporter-1 expression and prognostic value in biliary tract malignancy. Cancer 2012; 119:454-62. [PMID: 22760605 DOI: 10.1002/cncr.27739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/03/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumor expression of excision cross-complementing gene-1 (ERCC1), human equilibrative nucleoside transporter 1 (hENT1), ribonucleotide reductase subunit M1 (RRM1), and ribonucleotide reductase subunit M2 (RRM2), is associated with the efficacy of platinum and gemcitabine chemotherapy. The authors of this report recently demonstrated that high ERCC1 and RRM2 expression levels are independent negative prognostic markers for survival in early stage pancreas cancer. The differential expression and prognostic value of these biomarkers in biliary tract malignancy (BTM) is unknown. METHODS In total, 63 patients who had tissue available for analysis were selected from a prospective database of all patients (n = 104) who underwent resection of BTM (intrahepatic, hilar, or distal cholangiocarcinoma; gallbladder carcinoma) between January 2000 and December 2008. Immunohistochemistry for ERCC1, hENT1, RRM1, and RRM2 expression was performed. Staining was scored by a single pathologist who was blinded to patient outcomes. RESULTS The median patient age was 67 years. The median overall survival (OS) was 16.2 months, and the median follow-up was 32.7 months. Only 3 BTMs (4.8%) had high ERCC1 expression, and 92.1% and 81% of BTMs exhibited high hENT1 and RRM1 expression, respectively. RRM2 expression varied, and 32% of tumors demonstrated high RRM2 expression. ERCC1 and RRM1 were not associated with OS. High RRM2 expression was associated with a trend toward improved OS (30.8 months vs 16.2 months; P = .06), and high hENT1 expression was associated with improved OS (17.7 months vs 9.5 months; P = .04). CONCLUSIONS Most BTMs exhibited low ERCC1 expression and high hENT1 and RRM1 expression, whereas RRM2 expression levels varied. High expression of hENT1 was associated with improved OS. These findings may have implications for the selection of chemotherapy agents (gemcitabine vs platinum) and the stratification of patients in chemotherapy trials that assess outcome.
Collapse
Affiliation(s)
- Sarah B Fisher
- Department of Surgery, Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gandhi VV, Samuels DC. Correlated tissue expression of genes of cytoplasmic and mitochondrial nucleotide metabolisms in normal tissues is disrupted in transformed tissues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:112-29. [PMID: 22303991 DOI: 10.1080/15257770.2011.644101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cells maintain dual metabolic pathways to provide substrates for the replication of mitochondrial and nuclear DNA. These pathways involve two separate sets of genes in the nuclear DNA, with one set encoding proteins targeted to the mitochondrion. However, the cytoplasmic and mitochondrial metabolisms are capable of communication through the transport of deoxyribonucleosides and deoxyribonucleotides between the two subcellular compartments. Cytoplasmic and mitochondrial deoxyribonucleoside triphosphate concentrations are strongly correlated in normal cells but not in transformed cells. We were therefore interested in comparing the interactions in normal and transformed tissues between the corresponding cytoplasmic and mitochondrial metabolisms that produce deoxyribonucleoside triphosphates. We conducted an analysis of gene expression data in normal and transformed human tissues obtained from the UniGene database for a selected set of genes for proteins involved in nucleoside salvage in either the cytoplasm or mitochondria. We also included ribonucleotide reductase in our analysis due to its importance in generating deoxyribonucleoside triphosphates. This analysis revealed a large number of highly significant positive correlations between the tissue expression profiles of the genes of the mitochondrial and cytoplasmic pathways in normal tissues, indicating that in normal tissues, the two metabolisms coordinately generate deoxyribonucleoside triphosphates. In transformed tissues, this correlation structure was disrupted. Multiple correlations involving the mitochondrial nucleoside kinase gene DGUOK were statistically significantly different between normal and transformed tissues, suggesting that control of DGUOK expression relative to other cytoplasmic genes is important in transformed tissues.
Collapse
Affiliation(s)
- Vishal V Gandhi
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0700, USA
| | | |
Collapse
|
33
|
Fisher SB, Patel SH, Bagci P, Kooby DA, El-Rayes BF, Staley CA, Adsay NV, Maithel SK. An analysis of human equilibrative nucleoside transporter-1, ribonucleoside reductase subunit M1, ribonucleoside reductase subunit M2, and excision repair cross-complementing gene-1 expression in patients with resected pancreas adenocarcinoma: implications for adjuvant treatment. Cancer 2012; 119:445-53. [PMID: 22569992 DOI: 10.1002/cncr.27619] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/26/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tumor overexpression of excision repair cross-complementing gene-1 (ERCC1) may be associated with decreased survival in patients with pancreas adenocarcinoma (PAC). Human equilibrative nucleoside transporter-1 (hENT1) and ribonucleoside reductase subunits M1 and M2 (RRM1 and RRM2) are integral to cellular transport and DNA synthesis and are implicated as poor prognostic factors in other malignancies. To the authors's knowledge, their role in PAC is not defined. METHODS A prospective database was used to randomly select 95 patients who underwent pancreaticoduodenectomy for PAC between January 2000 and October 2008. Immunohistochemical analysis was performed on tumor samples for hENT1, RRM1 and RRM2, and ERCC1. Main outcomes were recurrence-free survival (RFS) and overall survival (OS). RESULTS The median follow-up, RFS, and OS were 49 months, 10.6 months, and 15.5 months, respectively. The median tumor size was 3 cm. Approximately 26% of patients had positive microscopic margins, 61% had lymph node involvement, and 88% and 45% had perineural and lymphovascular invasion, respectively. High tumor expression of hENT1, RRM1, RRM2, and ERCC1 was present in 85%, 40%, 17%, and 16%, respectively, of patients. High hENT1 expression was associated with reduced RFS (9.5 months vs 44.5 months; P = .029), but not with OS. RRM1 expression was not associated with survival. High RRM2 expression was associated with reduced RFS (6.9 months vs 16.0 months; P < .0001) and decreased OS (9.1 months vs 18.4 months; P < .0001). High ERCC1 expression was associated with reduced RFS (6.1 months vs 15 months; P = .04) and decreased OS (8.9 months vs 18.1 months; P = .03). After accounting for known adverse tumor factors, high expression of RRM2 and ERCC1 persisted as negative prognostic factors for RFS and OS. A subset analysis of patients who received adjuvant therapy (n = 74) revealed the same negative effect of high RRM2 and ERCC1 expression on RFS and OS. CONCLUSIONS High tumor expression of RRM2 and ERCC1 are associated with reduced RFS and OS after resection of pancreas cancer. These biomarkers may help to personalize adjuvant therapy.
Collapse
Affiliation(s)
- Sarah B Fisher
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ohmine K, Kawaguchi K, Ohtsuki S, Motoi F, Egawa S, Unno M, Terasaki T. Attenuation of phosphorylation by deoxycytidine kinase is key to acquired gemcitabine resistance in a pancreatic cancer cell line: targeted proteomic and metabolomic analyses in PK9 cells. Pharm Res 2012; 29:2006-16. [PMID: 22419259 DOI: 10.1007/s11095-012-0728-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/29/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE Multiple proteins are involved in activation and inactivation of 2',2'-difluorodeoxycytidine (gemcitabine, dFdC). We aimed to clarify the mechanism of dFdC resistance in a pancreatic cancer cell line by applying a combination of targeted proteomic and metabolomic analyses. METHODS Twenty-five enzyme and transporter proteins and 6 metabolites were quantified in sensitive and resistant pancreatic cancer cell lines, PK9 and RPK9, respectively. RESULTS The protein concentration of deoxycytidine kinase (dCK) in RPK9 cells was less than 0.02-fold (2 %) compared with that in PK9 cells, whereas the differences (fold) were within a factor of 3 for other proteins. Targeted metabolomic analysis revealed that phosphorylated forms of dFdC were reduced to less than 0.2 % in RPK9 cells. The extracellular concentration of 2',2'-difluorodeoxyuridine (dFdU), an inactive metabolite of dFdC, reached the same level as the initial dFdC concentration in RPK9 cells. However, tetrahydrouridine treatment did not increase phosphorylated forms of dFdC and did not reverse dFdC resistance in RPK9 cells, though this treatment inhibits production of dFdU. CONCLUSIONS Combining targeted proteomics and metabolomics suggests that acquisition of resistance in RPK9 cells is due to attenuation of dFdC phosphorylation via suppression of dCK.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Membrane Transport and Drug Targeting Department of Biochemical Pharmacology and Therapeutics Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Nam HJ, Kim HP, Yoon YK, Song SH, Min AR, Han SW, Im SA, Kim TY, Oh DY, Bang YJ. The irreversible pan-HER inhibitor PF00299804 alone or combined with gemcitabine has an antitumor effect in biliary tract cancer cell lines. Invest New Drugs 2011; 30:2148-60. [DOI: 10.1007/s10637-011-9782-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
|
36
|
Celia C, Cosco D, Paolino D, Fresta M. Gemcitabine-loaded innovative nanocarriers vs GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity. Expert Opin Drug Deliv 2011; 8:1609-29. [PMID: 22077480 DOI: 10.1517/17425247.2011.632630] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Gemcitabine, an anticancer drug, is a nucleoside analog deoxycytidine antimetabolite, which acts against a wide range of solid tumors. The limitation of gemcitabine is its rapid inactivation by the deoxycytidine deaminase enzyme following its in vivo administration. AREAS COVERED One of the most promising new approaches for improving the biopharmaceutical properties of gemcitabine is the use of innovative drug delivery devices. This review explains the current status of gemcitabine drug delivery, which has been under development over the past 5 years, with particular emphasis on liposomal delivery. In addition, the use of novel supramolecular vesicular aggregates (SVAs), polymeric nanoparticles and squalenoylation were treated as interesting innovative approaches for the administration of the nucleoside analog. EXPERT OPINION Different colloidal systems containing gemcitabine have been realized, with the aim of providing important potential advancements through traditional ways of therapy. A possible future commercialization of modified gemcitabine is desirable, as was true in the case of liposomal doxorubicin (Doxil(®), Caely(®)).
Collapse
Affiliation(s)
- Christian Celia
- The Methodist Hospital Research Institute, Department of Nanomedicine, 6670 Bertner St, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Bock AJ, Dong HP, Tropé CG, Staff AC, Risberg B, Davidson B. Nucleoside transporters are widely expressed in ovarian carcinoma effusions. Cancer Chemother Pharmacol 2011; 69:467-75. [DOI: 10.1007/s00280-011-1716-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/18/2011] [Indexed: 11/30/2022]
|
38
|
Recognition of potential predictive markers for diagnosis in Korean serous ovarian cancer patients at stage IIIc using array comparative genomic hybridization with high resolution. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Ciccolini J, Mercier C, Dahan L, André N. Integrating pharmacogenetics into gemcitabine dosing--time for a change? Nat Rev Clin Oncol 2011; 8:439-44. [PMID: 21304503 DOI: 10.1038/nrclinonc.2011.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing the efficacy of anticancer agents and avoiding toxic effects is a critical issue in clinical oncology. Identifying biomarkers that predict clinical outcome would ensure improved patient care. Gemcitabine is widely used to treat various solid tumors as a single agent or in combination with other drugs. The therapeutic index of gemcitabine is narrow, and abnormal pharmacokinetics leading to changes in plasma exposure is a major cause of adverse effects. A number of biomarkers have been proposed to predict efficacy of gemcitabine, focusing on molecular determinants of response identified at the tumor level. Genetic and functional deregulations that affect the disposition of a drug could be the reason for life-threatening adverse effects or treatment failure. In particular, deregulation of cytidine deaminase, the enzyme responsible for detoxification of most nucleotide analogs, should be examined. Identifying and validating biomarkers for pharmacogenetic testing before administration of gemcitabine is a step towards personalized medicine.
Collapse
Affiliation(s)
- Joseph Ciccolini
- Pôle Oncologie, La Timone University Hospital of Marseille, 267 Rue St Pierre, 13385 Marseille, France
| | | | | | | |
Collapse
|
40
|
Nishio R, Tsuchiya H, Yasui T, Matsuura S, Kanki K, Kurimasa A, Hisatome I, Shiota G. Disrupted plasma membrane localization of equilibrative nucleoside transporter 2 in the chemoresistance of human pancreatic cells to gemcitabine (dFdCyd). Cancer Sci 2011; 102:622-9. [PMID: 21205085 DOI: 10.1111/j.1349-7006.2010.01837.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although the nucleoside pyrimidine analogue gemcitabine is the most effective single agent in the palliation of advanced pancreatic cancer, cellular resistance to gemcitabine treatment is a major problem in the clinical scene. To clarify the molecular mechanisms responsible for chemoresistance to gemcitabine, mRNA expression of the key enzymes including cytidine deaminase (CDA), deoxycytidine kinase (dCK), 5'-nucleotidase (NT5), equilibrative nucleoside transporter 1 and 2 (ENT1 and ENT2), dCMP deaminase (dCMPK), ribonucleotide reductase M1 and M2 (RRM1 and RRM2), thymidylate synthase (TS) and CTP synthase (CTPS) was examined. The interacellular uptake of gemcitabine was greatly impaired in the chemoresistant cell lines due to dysfunction of ENT1 and ENT2. Protein expression of ENT1 and ENT2 and their protein coding sequences were not altered. Immunohistochemical and western blot analyses revealed that localization of ENT2 on the plasma membrane was disrupted. These data suggest that the disrupted localization of ENT2 is one of causes of the impaired uptake of gemcitabine, resulting in a gain of chemoresistance to gemcitabine.
Collapse
Affiliation(s)
- Ren Nishio
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jordheim LP, Sève P, Trédan O, Dumontet C. The ribonucleotide reductase large subunit (RRM1) as a predictive factor in patients with cancer. Lancet Oncol 2010; 12:693-702. [PMID: 21163702 DOI: 10.1016/s1470-2045(10)70244-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The large subunit of human ribonucleotide reductase, RRM1, is involved in the regulation of cell proliferation, cell migration, tumour and metastasis development, and the synthesis of deoxyribonucleotides for DNA synthesis. It is also a cellular target for the chemotherapeutic agent, gemcitabine. RRM1 has been studied in a large number of patients with different types of cancer, such as non-small-cell lung cancer, pancreatic cancer, breast cancer, and biliary tract cancer, to establish its prognostic or predictive value when patients were treated with gemcitabine, and mRNA expression and genetic variants as determined by genotyping have in some cases been associated with clinical outcome of patients with cancer. Here, we review preclinical and clinical studies of RRM1 assessment and discuss the further steps in the development of this clinically pertinent biomarker.
Collapse
Affiliation(s)
- Lars Petter Jordheim
- INSERM U590, Laboratoire de Cytologie Analytique, Faculte de Medecine Rockefeller, Universite Claude Bernard Lyon I, 69008 Lyon, France.
| | | | | | | |
Collapse
|
42
|
Errasti-Murugarren E, Pastor-Anglada M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 2010; 11:809-41. [PMID: 20504255 DOI: 10.2217/pgs.10.70] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article focuses on the different types of transporter proteins that have been implicated in the influx and efflux of nucleoside-derived drugs currently used in the treatment of cancer, viral infections (i.e., AIDS) and other conditions, including autoimmune and inflammatory diseases. Genetic variations in nucleoside-derived drug transporter proteins encoded by the gene families SLC15, SLC22, SLC28, SLC29, ABCB, ABCC and ABCG will be specifically considered. Variants known to affect biological function are summarized, with a particular emphasis on those for which clinical correlations have already been established. Given that relatively little is known regarding the genetic variability of the players involved in determining nucleoside-derived drug bioavailability, it is anticipated that major challenges will be faced in this area of research.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- The Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Center for Biomedical Research Network in the Subject Area of Liver and Digestive Diseases (CIBERehd), Barcelona 08071, Spain
| | | |
Collapse
|
43
|
Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 2010; 29:73-93. [PMID: 20108112 DOI: 10.1007/s10555-010-9199-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Collapse
Affiliation(s)
- Raj Chari
- Genetics Unit - Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Radivoyevitch T. Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data. Biol Direct 2009; 4:50. [PMID: 20003203 PMCID: PMC2799446 DOI: 10.1186/1745-6150-4-50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase is the main control point of dNTP production. It has two subunits, R1, and R2 or p53R2. R1 has 5 possible catalytic site states (empty or filled with 1 of 4 NDPs), 5 possible s-site states (empty or filled with ATP, dATP, dTTP or dGTP), 3 possible a-site states (empty or filled with ATP or dATP), perhaps two possible h-site states (empty or filled with ATP), and all of this is folded into an R1 monomer-dimer-tetramer-hexamer equilibrium where R1 j-mers can be bound by variable numbers of R2 or p53R2 dimers. Trillions of RNR complexes are possible as a result. The problem is to determine which are needed in models to explain available data. This problem is intractable for 10 reactants, but it can be solved for 2 and is here for R1 and ATP. RESULTS Thousands of ATP-induced R1 hexamerization models with up to three (s, a and h) ATP binding sites per R1 subunit were automatically generated via hypotheses that complete dissociation constants are infinite and/or that binary dissociation constants are equal. To limit the model space size, it was assumed that s-sites are always filled in oligomers and never filled in monomers, and to interpret model terms it was assumed that a-sites fill before h-sites. The models were fitted to published dynamic light scattering data. As the lowest Akaike Information Criterion (AIC) of the 3-parameter models was greater than the lowest of the 2-parameter models, only models with up to 3 parameters were fitted. Models with sums of squared errors less than twice the minimum were then partitioned into two groups: those that contained no occupied h-site terms (508 models) and those that contained at least one (1580 models). Normalized AIC densities of these two groups of models differed significantly in favor of models that did not include an h-site term (Kolmogorov-Smirnov p < 1 x 10(-15)); consistent with this, 28 of the top 30 models (ranked by AICs) did not include an h-site term and 28/30 > 508/2088 with p < 2 x 10(-15). Finally, 99 of the 2088 models did not have any terms with ATP/R1 ratios >1.5, but of the top 30, there were 14 such models (14/30 > 99/2088 with p < 3 x 10(-16)), i.e. the existence of R1 hexamers with >3 a-sites occupied by ATP is also not supported by this dataset. CONCLUSION The analysis presented suggests that three a-sites may not be occupied by ATP in R1 hexamers under the conditions of the data analyzed. If a-sites fill before h-sites, this implies that the dataset analyzed can be explained without the existence of an h-site.
Collapse
Affiliation(s)
- Tomas Radivoyevitch
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|