1
|
Cao Z, Wang W, Yang Z, Liu Y, Sun L, Zhang L, Li Z. Discovery of the FXR/CES2 dual modulator LE-77 for the treatment of irinotecan-induced delayed diarrhea. Bioorg Chem 2024; 153:107852. [PMID: 39362081 DOI: 10.1016/j.bioorg.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Michalska K, Balcerczak E, Jeleń A, Saed L, Pietrzak J, Żebrowska-Nawrocka M. Effects of the SLCO1B1 A388G single nucleotide polymorphism on the development, clinical parameters, treatment, and survival of multiple myeloma cases in a Polish population. Mol Biol Rep 2023; 50:1447-1458. [PMID: 36478296 PMCID: PMC9889417 DOI: 10.1007/s11033-022-08162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multiple myeloma is one of the most common hematological malignancies worldwide. Genetic alterations may lead to the progression from monoclonal gammopathy to multiple myeloma. Additionally, the genetic background of the disease might influence therapy outcomes, including survival time. SLCO1B1, belonging to the OATPs family, is a membrane protein that mediates the uptake of a wide range of endogenous and exogenous (including drugs) compounds. METHODS AND RESULTS In this study, the A388G single nucleotide polymorphism in the SLCO1B1 gene in Polish multiple myeloma patients was determined. This polymorphism affects the amino acid change of the protein, so it may be responsible for treatment effectiveness or risk of disease development. A388G was evaluated by the PCR-RFLP method. The presented study showed a statistically significant association between the GG genotype with longer survival of patients with multiple myeloma with Melphalan-Prednisone therapy compared to other treatment regimens (p = 0.0271). There was no statistically significant association in the frequency of genotypes (p = 0.8211) and alleles: allele A (p = 0.5442); allele G (p = 0.8020) between multiple myeloma patients and a control group. CONCLUSIONS The A388G polymorphism does not seem to affect the increased risk of the development of multiple myeloma. However, the occurrence of the GG genotype may prolong of patients overall survival in the case of Melphalan-Prednisone therapy.
Collapse
Affiliation(s)
- Katarzyna Michalska
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Jeleń
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Lias Saed
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
3
|
Physiologically based pharmacokinetic (PBPK) modeling of flurbiprofen in different CYP2C9 genotypes. Arch Pharm Res 2022; 45:584-595. [PMID: 36028591 DOI: 10.1007/s12272-022-01403-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
The aim of this study was to establish the physiologically based pharmacokinetic (PBPK) model of flurbiprofen related to CYP2C9 genetic polymorphism and describe the pharmacokinetics of flurbiprofen in different CYP2C9 genotypes. PK-Sim® software was used for the model development and validation. A total of 16 clinical pharmacokinetic data for flurbiprofen in different CYP2C9 genotypes, dose regimens, and age groups were used for the PBPK modeling. Turnover number (kcat) of CYP2C9 values were optimized to capture the observed profiles in different CYP2C9 genotypes. In the simulation, predicted fraction metabolized by CYP2C9, fraction excreted to urine, bioavailability, and volume of distribution were similar to previously reported values. Predicted plasma concentration-time profiles in different CYP2C9 genotypes were visually similar to the observed profiles. Predicted AUCinf in CYP2C9*1/*2, CYP2C9*1/*3, and CYP2C9*3/*3 genotypes were 1.44-, 2.05-, and 3.67-fold higher than the CYP2C9*1/*1 genotype. The ranges of fold errors for AUCinf, Cmax, and t1/2 were 0.84-1.00, 0.61-1.22, and 0.74-0.94 in development and 0.59-0.98, 0.52-0.97, and 0.61-1.52 in validation, respectively, which were within the acceptance criterion. Thus, the PBPK model was successfully established and described the pharmacokinetics of flurbiprofen in different CYP2C9 genotypes, dose regimens, and age groups. The present model could guide the decision-making of tailored drug administration strategy by predicting the pharmacokinetics of flurbiprofen in various clinical scenarios.
Collapse
|
4
|
Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Poveda JL, Montesinos P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14040878. [PMID: 35456712 PMCID: PMC9030330 DOI: 10.3390/pharmaceutics14040878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Antineoplastic uptake by blast cells in acute myeloid leukemia (AML) could be influenced by influx and efflux transporters, especially solute carriers (SLCs) and ATP-binding cassette family (ABC) pumps. Genetic variability in SLC and ABC could produce interindividual differences in clinical outcomes. A systematic review was performed to evaluate the influence of SLC and ABC polymorphisms and their combinations on efficacy and safety in AML cohorts. Anthracycline intake was especially influenced by SLCO1B1 polymorphisms, associated with lower hepatic uptake, showing higher survival rates and toxicity in AML studies. The variant alleles of ABCB1 were related to anthracycline intracellular accumulation, increasing complete remission, survival and toxicity. Similar findings have been suggested with ABCC1 and ABCG2 polymorphisms. Polymorphisms of SLC29A1, responsible for cytarabine uptake, demonstrated significant associations with survival and response in Asian populations. Promising results were observed with SLC and ABC combinations regarding anthracycline toxicities. Knowledge of the role of transporter pharmacogenetics could explain the differences observed in drug disposition in the blast. Further studies including novel targeted therapies should be performed to determine the influence of genetic variability to individualize chemotherapy schemes.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
- Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - José Luis Poveda
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-961-245876
| |
Collapse
|
5
|
Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021; 22:ijms22062786. [PMID: 33801813 PMCID: PMC8001156 DOI: 10.3390/ijms22062786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.
Collapse
|
6
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
7
|
Bechtold B, Clarke J. Multi-factorial pharmacokinetic interactions: unraveling complexities in precision drug therapy. Expert Opin Drug Metab Toxicol 2020; 17:397-412. [PMID: 33339463 DOI: 10.1080/17425255.2021.1867105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Precision drug therapy requires accounting for pertinent factors in pharmacokinetic (PK) inter-individual variability (i.e., pharmacogenetics, diseases, polypharmacy, and natural product use) that can cause sub-therapeutic or adverse effects. Although each of these individual factors can alter victim drug PK, multi-factorial interactions can cause additive, synergistic, or opposing effects. Determining the magnitude and direction of these complex multi-factorial effects requires understanding the rate-limiting redundant and/or sequential PK processes for each drug.Areas covered: Perturbations in drug-metabolizing enzymes and/or transporters are integral to single- and multi-factorial PK interactions. Examples of single factor PK interactions presented include gene-drug (pharmacogenetic), disease-drug, drug-drug, and natural product-drug interactions. Examples of multi-factorial PK interactions presented include drug-gene-drug, natural product-gene-drug, gene-gene-drug, disease-natural product-drug, and disease-gene-drug interactions. Clear interpretation of multi-factorial interactions can be complicated by study design, complexity in victim drug PK, and incomplete mechanistic understanding of victim drug PK.Expert opinion: Incorporation of complex multi-factorial PK interactions into precision drug therapy requires advances in clinical decision tools, intentional PK study designs, drug-metabolizing enzyme and transporter fractional contribution determinations, systems and computational approaches (e.g., physiologically-based pharmacokinetic modeling), and PK phenotyping of progressive diseases.
Collapse
Affiliation(s)
- Baron Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - John Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
8
|
Megías-Vericat JE, Martínez-Cuadrón D, Herrero MJ, Rodríguez-Veiga R, Solana-Altabella A, Boluda B, Ballesta-López O, Cano I, Acuña-Cruz E, Cervera J, Poveda JL, Sanz M, Aliño SF, Montesinos P. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma 2020; 62:659-668. [PMID: 33135528 DOI: 10.1080/10428194.2020.1839650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Anthracycline uptake could be affected by influx and efflux transporters in acute myeloid leukemia (AML). Combinations of single-nucleotide polymorphisms (SNPs) of wild-type genotype of influx transporters (SLC22A16, SLCO1B1) and homozygous variant genotypes of ABC polymorphisms (ABCB1, ABCC1, ABCC2, ABCG2) were evaluated in 225 adult de novo AML patients. No differences in complete remission were reported, but higher induction death was observed with combinations of SLCO1B1 rs4149056 and ABCB1 (triple variant haplotype, rs1128503), previously associated with ABCB1 and SLCO1B1 SNPs. Several combinations of SLCO1B1 and SLC22A16 with ABCB1 SNPs were associated with higher toxicities, including nephrotoxicity and hepatotoxicity, neutropenia, previously related to ABCB1, and a novel correlation with mucositis. Combination of SLC22A16 rs714368 and ABCG2 rs2231142 was related to cardiac toxicity, reproducing previous correlations with ABCG2. This study shows the impact of transporter polymorphisms in AML chemotherapy safety. Further prospective studies with larger populations are needed to validate these associations.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- Grupo de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitari i Politècnic, Valencia, Spain.,Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic, Valencia, Spain
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - María José Herrero
- Grupo de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitari i Politècnic, Valencia, Spain.,Departamento Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Rebeca Rodríguez-Veiga
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | | | - Blanca Boluda
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Octavio Ballesta-López
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic, Valencia, Spain
| | - Isabel Cano
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Evelyn Acuña-Cruz
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - José Cervera
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - José Luis Poveda
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic, Valencia, Spain
| | - MiguelÁngel Sanz
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Salvador F Aliño
- Grupo de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitari i Politècnic, Valencia, Spain.,Departamento Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,Unidad de Farmacología Clínica, Área del Medicamento. Hospital Universitari I Politècnic, Valencia, Spain
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Pharmacogenomics, biomarker network, and allele frequencies in colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2019; 20:136-158. [PMID: 31616044 DOI: 10.1038/s41397-019-0102-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is one of the leading causes of cancer death worldwide. Over the last decades, several studies have shown that tumor-related genomic alterations predict tumor prognosis, drug response, and toxicity. These observations have led to the development of several therapies based on individual genomic profiles. As part of these approaches, pharmacogenomics analyses genomic alterations which may predict an efficient therapeutic response. Studying these mutations as biomarkers for predicting drug response is of a great interest to improve precision medicine. We conduct a comprehensive review of the main pharmacogenomics biomarkers and genomic alterations affecting enzyme activity, transporter capacity, channels, and receptors; and therefore the new advances in CRC precision medicine to select the best therapeutic strategy in populations worldwide, with a focus on Latin America.
Collapse
|
10
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
11
|
Hahn RZ, Antunes MV, Verza SG, Perassolo MS, Suyenaga ES, Schwartsmann G, Linden R. Pharmacokinetic and Pharmacogenetic Markers of Irinotecan Toxicity. Curr Med Chem 2019; 26:2085-2107. [PMID: 29932028 DOI: 10.2174/0929867325666180622141101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Irinotecan (IRI) is a widely used chemotherapeutic drug, mostly used for first-line treatment of colorectal and pancreatic cancer. IRI doses are usually established based on patient's body surface area, an approach associated with large inter-individual variability in drug exposure and high incidence of severe toxicity. Toxic and therapeutic effects of IRI are also due to its active metabolite SN-38, reported to be up to 100 times more cytotoxic than IRI. SN-38 is detoxified by the formation of SN-38 glucuronide, through UGT1A1. Genetic polymorphisms in the UGT1A1 gene are associated to higher exposures to SN-38 and severe toxicity. Pharmacokinetic models to describe IRI and SN-38 kinetic profiles are available, with few studies exploring pharmacokinetic and pharmacogenetic-based dose individualization. The aim of this manuscript is to review the available evidence supporting pharmacogenetic and pharmacokinetic dose individualization of IRI in order to reduce the occurrence of severe toxicity during cancer treatment. METHODS The PubMed database was searched, considering papers published in the period from 1995-2017, using the keywords irinotecan, pharmacogenetics, metabolic genotyping, dose individualization, therapeutic drug monitoring, pharmacokinetics and pharmacodynamics, either alone or in combination, with original papers being selected based on the presence of relevant data. CONCLUSION The findings of this review confirm the importance of considering individual patient characteristics to select IRI doses. Currently, the most straightforward approach for IRI dose individualization is UGT1A1 genotyping. However, this strategy is sub-optimal due to several other genetic and environmental contributions to the variable pharmacokinetics of IRI and its active metabolite. The use of dried blood spot sampling could allow the clinical application of limited sampling and population pharmacokinetic models for IRI doses individualization.
Collapse
Affiliation(s)
- Roberta Zilles Hahn
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo- RS, Brazil.,Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo- RS, Brazil
| | - Marina Venzon Antunes
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo- RS, Brazil.,Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo- RS, Brazil
| | - Simone Gasparin Verza
- Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo- RS, Brazil
| | - Magda Susana Perassolo
- Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo- RS, Brazil
| | - Edna Sayuri Suyenaga
- Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo- RS, Brazil
| | | | - Rafael Linden
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo- RS, Brazil.,Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo- RS, Brazil
| |
Collapse
|
12
|
Schulte RR, Ho RH. Organic Anion Transporting Polypeptides: Emerging Roles in Cancer Pharmacology. Mol Pharmacol 2019; 95:490-506. [PMID: 30782852 DOI: 10.1124/mol.118.114314] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are a superfamily of drug transporters involved in the uptake and disposition of a wide array of structurally divergent endogenous and exogenous substrates, including steroid hormones, bile acids, and commonly used drugs, such as anti-infectives, antihypertensives, and cholesterol lowering agents. In the past decade, OATPs, primarily OATP1A2, OATP1B1, and OATP1B3, have emerged as potential mediators of chemotherapy disposition, including drugs such as methotrexate, doxorubicin, paclitaxel, docetaxel, irinotecan and its important metabolite 7-ethyl-10-hydroxycamptothecin, and certain tyrosine kinase inhibitors. Furthermore, OATP family members are polymorphic and numerous studies have shown OATP variants to have differential uptake, disposition, and/or pharmacokinetics of numerous drug substrates with important implications for interindividual differences in efficacy and toxicity. Additionally, certain OATPs have been found to be overexpressed in a variety of human solid tumors, including breast, liver, colon, pancreatic, and ovarian cancers, suggesting potential roles for OATPs in tumor development and progression and as novel targets for cancer therapy. This review focuses on the emerging roles for selected OATPs in cancer pharmacology, including preclinical and clinical studies suggesting roles in chemotherapy disposition, the pharmacogenetics of OATPs in cancer therapy, and OATP overexpression in various tumor tissues with implications for OATPs as therapeutic targets.
Collapse
Affiliation(s)
- Rachael R Schulte
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Abstract
OBJECTIVE Promoter single-nucleotide polymorphisms (SNPs) of the ABCB1 gene, encoding the placental efflux transporter P-glycoprotein, can affect its expression and alter xenobiotic transfer from the maternal to the fetal circulation. Because SNPs are arranged in specific combinations as defined haplotypes, the aims of this study were to: (i) determine the placental haplotype structure of the ABCB1 promoter and (ii) determine the differential effect of these haplotypes on placental ABCB1 promoter activity. MATERIALS AND METHODS DNA samples from 100 healthy placentas were PCR-amplified and sequenced to identify existing SNPs in the proximal ABCB1 promoter. The haplotype structure encompassing these SNPs was inferred by PHASE analysis. Luciferase reporter constructs representing these haplotypes were generated and transfected into human placental 3A cells and their effect on ABCB1 promoter activity was determined using a dual-luciferase assay. RESULTS We identified 12 ABCB1 promoter SNPs. These SNPs were predicted by PHASE to segregate into 28 haplotypes with frequencies ranging between 0.019 and 0.88. We found 12 of these haplotypes in our population in addition to two haplotypes not predicted by PHASE. We also generated two haplotypes to determine individual SNP effects for a total of 16 studied. Compared with the ancestral haplotype, three haplotypes significantly up-regulated (107-266% increase; P<0.05), one significantly down-regulated (95.4% decrease; P<0.01), and 12 had no statistically significant effect on ABCB1 promoter activity. DISCUSSION AND CONCLUSION Our data show that the effect of SNPs on promoter activity depends on their presence in a specific haplotype. This indicates that haplotypes, rather than individual SNPs, could play a significant role in regulating placental P-glycoprotein expression and affect placental transfer and fetal exposure to xenobiotics.
Collapse
|
14
|
Speidel JT, Xu M, Abdel-Rahman SZ. Bisphenol A (BPA) and bisphenol S (BPS) alter the promoter activity of the ABCB1 gene encoding P-glycoprotein in the human placenta in a haplotype-dependent manner. Toxicol Appl Pharmacol 2018; 359:47-54. [PMID: 30240697 PMCID: PMC6196727 DOI: 10.1016/j.taap.2018.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Exposure to bisphenols (BPA and BPS) during pregnancy can significantly affect fetal development and increase risk of adverse health consequences, however the underlying mechanisms are not fully elucidated. In human placenta, the efflux transporter P-glycoprotein (P-gp), encoded by the ABCB1 gene, extrudes its substrates from the trophoblasts back into the maternal circulation. Alterations in levels of placental P-gp could therefore significantly affect fetal exposure to xenobiotics that are P-gp substrates. The ABCB1 promoter contains many single nucleotide polymorphisms (SNPs). In the genome, SNPs are not arrayed as independent variants but as combinations forming defined haplotypes. Recently, we determined the haplotype sequences encompassing the ABCB1 promoter SNPs and found that promoter haplotypes differentially affect ABCB1 promoter activity. Here we investigate the effect of BPA and BPS on ABCB1 promoter activity by testing the hypothesis that BPA and BPS exposure affect ABCB1 promoter activity in a haplotype-dependent manner. Our data indicate that acute exposure to 50 nM BPA induced a significant haplotype-dependent increase in ABCB1 promoter activity (P < .05). However, acute exposure to 0.5 nM BPS induced a significant decrease (P < .05) in promoter activity that was haplotype-dependent. Chronic exposure to BPA and BPS individually (5 nM and 0.3 nM, respectively) or as a mixture (5 nM BPA:1.5 nM BPS) induced significant haplotype-dependent increases (P < .01) in ABCB1 promoter activity. Our data indicate that BPA and BPS significantly alter ABCB1 promoter activity in a haplotype- and exposure type- dependent manners. Such alteration could significantly impact placental P-gp levels and alter fetal exposure to many therapeutic and environmental xenobiotics.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/drug effects
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adult
- Benzhydryl Compounds/toxicity
- Cell Line
- Endocrine Disruptors/toxicity
- Female
- Fetal Development
- Gene Expression Regulation/drug effects
- Haplotypes
- Humans
- Phenols/pharmacology
- Phenols/toxicity
- Placenta/drug effects
- Placenta/metabolism
- Polymorphism, Single Nucleotide
- Pregnancy
- Promoter Regions, Genetic/drug effects
- Sulfones/pharmacology
Collapse
Affiliation(s)
- Jordan T Speidel
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Obstetrics and Gynecology, Maternal-fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Meixiang Xu
- Department of Obstetrics and Gynecology, Maternal-fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, Maternal-fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
15
|
Heyes N, Kapoor P, Kerr ID. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos 2018; 46:1886-1899. [PMID: 30266733 DOI: 10.1124/dmd.118.083030] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
The widespread expression and polyspecificity of the multidrug ABCG2 efflux transporter make it an important determinant of the pharmacokinetics of a variety of substrate drugs. Null ABCG2 expression has been linked to the Junior blood group. Polymorphisms affecting the expression or function of ABCG2 may have clinically important roles in drug disposition and efficacy. The most well-studied single nucleotide polymorphism (SNP), Q141K (421C>A), is shown to decrease ABCG2 expression and activity, resulting in increased total drug exposure and decreased resistance to various substrates. The effect of Q141K can be rationalized by inspection of the ABCG2 structure, and the effects of this SNP on protein processing may make it a target for pharmacological intervention. The V12M SNP (34G>A) appears to improve outcomes in cancer patients treated with tyrosine kinase inhibitors, but the reasons for this are yet to be established, and this residue's role in the mechanism of the protein is unexplored by current biochemical and structural approaches. Research into the less-common polymorphisms is confined to in vitro studies, with several polymorphisms shown to decrease resistance to anticancer agents such as SN-38 and mitoxantrone. In this review, we present a systematic analysis of the effects of ABCG2 polymorphisms on ABCG2 function and drug pharmacokinetics. Where possible, we use recent structural advances to present a molecular interpretation of the effects of SNPs and indicate where we need further in vitro experiments to fully resolve how SNPs impact ABCG2 function.
Collapse
Affiliation(s)
- Niall Heyes
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Parth Kapoor
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. THE PHARMACOGENOMICS JOURNAL 2016; 18:35-42. [PMID: 27845419 DOI: 10.1038/tpj.2016.75] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/09/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
Abstract
Neutropenia is a common dose-limiting toxicity associated with irinotecan treatment. Although UGT1A1 variants have been associated with neutropenia, a fraction of neutropenia risk remains unaccounted for. To identify additional genetic markers contributing to variability in irinotecan pharmacokinetics and neutropenia, a regression analysis was performed in 78 irinotecan-treated patients to analyze comprehensively three hepatic efflux transporter genes (ABCB1, ABCC1 and ABCG2). rs6498588 (ABCC1) and rs12720066 (ABCB1) were associated with increased SN-38 exposure, and rs17501331 (ABCC1) and rs12720066 were associated with lower absolute neutrophil count nadir. rs6498588 and a variant in high linkage disequilibrium are located in transcriptionally active regions or are predicted to alter transcription factor binding sites. While enhancer activity was not evident in vitro for genomic regions containing these single-nucleotide polymorphisms, rs6498588 was significantly associated with ABCC1 expression in human liver. These results suggest that genetic variation in ABCC1 and ABCB1 may contribute to irinotecan-induced neutropenia by altering expression of transporters involved in irinotecan metabolite disposition.
Collapse
|
17
|
Chen S, Sutiman N, Zhang CZ, Yu Y, Lam S, Khor CC, Chowbay B. Pharmacogenetics of irinotecan, doxorubicin and docetaxel transporters in Asian and Caucasian cancer patients: a comparative review. Drug Metab Rev 2016; 48:502-540. [DOI: 10.1080/03602532.2016.1226896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Takano M, Yamamoto K, Tabata T, Minegishi Y, Yokoyama T, Hirata E, Ikeda T, Shimada M, Yamada K, Morita S, Ando Y, Hirata K, Sugihara M, Sugiyama T, Ohashi Y, Sakata Y. Impact of UGT1A1 genotype upon toxicities of combination with low-dose irinotecan plus platinum. Asia Pac J Clin Oncol 2016; 12:115-24. [PMID: 26862009 DOI: 10.1111/ajco.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
Abstract
AIM Irinotecan-induced severe toxicities are possibly related to UGT1A1*6 and *28 genotypes. However, the correlation between UGT1A1 polymorphisms and the risk of toxicities induced by low-dose irinotecan plus platinum combination therapy still remains controversial. This prospective observational study aimed to examine the correlation between UGT1A1 genotypes and clinical outcomes of low-dose irinotecan (median 60 mg/m(2) , range 25-115 mg/m(2) ) plus platinum in Japanese patients with solid tumors. METHODS Toxicity profiles were compared between UGT1A1 SNP heterozygotes (hetero-group) and patients with homozygous SNP profile (*6/*6, *28/*28 and *6/*28). Logistic regression models were used to identify independent risk factors for these toxicities. RESULTS A total of 331 patients were enrolled: 84% with hetero-group and 16% with homo-group. Although the initial irinotecan dose was similar, the dose intensities during the three cycles were significantly lower in the homo-group (P < 0.01). Grade 3/4 hematological toxicities were significantly more frequent in the homo-group. Multivariable analysis identified UGT1A1 genotype (P < 0.01) as an independent factor for grade 4 hematological toxicity in the first treatment cycle. CONCLUSION UGT1A1 genotype has a major impact on the increased risk of severe hematological toxicities, even in low-dose irinotecan regimens. UGT1A1 genotypes are useful biomarkers for predicting severe hematological toxicities in patients treated with irinotecan plus platinum analog.
Collapse
Affiliation(s)
- Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Japan
| | - Kaichiro Yamamoto
- Department of Obstetrics and Gynecology, Sakai Hospital, Kinki University Faculty of Medicine, Sakai, Japan
| | - Tsutomu Tabata
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuji Minegishi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takuma Yokoyama
- Department of Respiratory Medicine, Kyorin University Hospital, Mitaka, Japan
| | - Eiji Hirata
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ikeda
- Department of Respiratory Medicine, Naga Municipal Hospital, Kinokawa, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Japan
| | - Kouzo Yamada
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Koji Hirata
- Pharmacovigilance Department, Daiichi Sankyo, Tokyo, Japan
| | - Masahiro Sugihara
- Clinical Data and Biostatistics Department, Daiichi Sankyo, Tokyo, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Yasuo Ohashi
- Department of Integrated Science and Engineering for Sustainable Society, Chuo University, Tokyo, Japan
| | - Yuh Sakata
- CEO, Misawa City Hospital, Misawa, Japan
| |
Collapse
|
19
|
Ichikawa W, Uehara K, Minamimura K, Tanaka C, Takii Y, Miyauchi H, Sadahiro S, Fujita K, Moriwaki T, Nakamura M, Takahashi T, Tsuji A, Shinozaki K, Morita S, Ando Y, Okutani Y, Sugihara M, Sugiyama T, Ohashi Y, Sakata Y. An internally and externally validated nomogram for predicting the risk of irinotecan-induced severe neutropenia in advanced colorectal cancer patients. Br J Cancer 2015; 112:1709-16. [PMID: 25880011 PMCID: PMC4430714 DOI: 10.1038/bjc.2015.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/16/2015] [Accepted: 03/07/2015] [Indexed: 02/08/2023] Open
Abstract
Background: In Asians, the risk of irinotecan-induced severe toxicities is related in part to UGT1A1*6 (UGT, UDP glucuronosyltransferase) and UGT1A1*28, variant alleles that reduce the elimination of SN-38, the active metabolite of irinotecan. We prospectively studied the relation between the UGT1A1 genotype and the safety of irinotecan-based regimens in Japanese patients with advanced colorectal cancer, and then constructed a nomogram for predicting the risk of severe neutropenia in the first treatment cycle. Methods: Safety data were obtained from 1312 patients monitored during the first 3 cycles of irinotecan-based regimen in a prospective observational study. In development of the nomogram, multivariable logistic regression analysis was used to test the associations of candidate factors to severe neutropenia in the first cycle. The final nomogram based on the results of multivariable analysis was constructed and validated internally using a bootstrapping technique and externally in an independent data set (n=350). Results: The UGT1A1 genotype was confirmed to be associated with increased risks of irinotecan-induced grade 3 or 4 neutropenia and diarrhoea. The final nomogram included type of regimen, administered dose of irinotecan, gender, age, UGT1A1 genotype, Eastern Cooperative Oncology Group performance status, pre-treatment absolute neutrophil count, and total bilirubin level. The model was validated both internally (bootstrap-adjusted concordance index, 0.69) and externally (concordance index, 0.70). Conclusions: Our nomogram can be used before treatment to accurately predict the probability of irinotecan-induced severe neutropenia in the first cycle of therapy. Additional studies should evaluate the effect of nomogram-guided dosing on efficacy in patients receiving irinotecan.
Collapse
Affiliation(s)
- W Ichikawa
- Division of Medical Oncology, Department of Medicine, Showa University, School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - K Uehara
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - K Minamimura
- Department of Surgery, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo 101-8643, Japan
| | - C Tanaka
- Department of Surgery, Gifu Prefectural General Medical Centre, 4-6-1 Noishiki, Gifu 500-8717, Japan
| | - Y Takii
- Department of Surgery, Niigata Cancer Centre Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata 951-8566, Japan
| | - H Miyauchi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - S Sadahiro
- Department of Surgery, Tokai University, 143 Shimoyasuya, Isehara 259-1193, Japan
| | - K Fujita
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T Moriwaki
- Division of Gastroenterology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - M Nakamura
- Comprehensive Cancer Centre, Aizawa Hospital, 2-5-1 Honjo, Matsumoto 390-8510, Japan
| | - T Takahashi
- Division of Medical Oncology, Department of Medicine, Showa University, School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A Tsuji
- Department of Medical Oncology, Kobe City Medical Centre General Hospital, 2-1-1 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - K Shinozaki
- Division of Clinical Oncology, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima 734-8530, Japan
| | - S Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Y Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Y Okutani
- Medical Affairs Department, Daiichi Sankyo, 3-5-1 Nihonbashi-Honcho, Chuo-ku 103-8426, Tokyo, Japan
| | - M Sugihara
- Clinical Data & Biostatistics Department, Daiichi Sankyo, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - T Sugiyama
- Department of Obstetrics and Gynaecology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Y Ohashi
- Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Tokyo 112-8551, Japan
| | - Y Sakata
- CEO, Misawa City Hospital, 164-65, Aza Horiguchi, Oaza Misawa, Misawa, Aomori 033-0022, Japan
| |
Collapse
|
20
|
Teft WA, Welch S, Lenehan J, Parfitt J, Choi YH, Winquist E, Kim RB. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br J Cancer 2015; 112:857-65. [PMID: 25611302 PMCID: PMC4453959 DOI: 10.1038/bjc.2015.5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/01/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Background: Treatment of advanced and metastatic colorectal cancer with irinotecan is hampered by severe toxicities. The active metabolite of irinotecan, SN-38, is a known substrate of drug-metabolising enzymes, including UGT1A1, as well as OATP and ABC drug transporters. Methods: Blood samples (n=127) and tumour tissue (n=30) were obtained from advanced cancer patients treated with irinotecan-based regimens for pharmacogenetic and drug level analysis and transporter expression. Clinical variables, toxicity, and outcomes data were collected. Results: SLCO1B1 521C was significantly associated with increased SN-38 exposure (P<0.001), which was additive with UGT1A1*28. ABCC5 (rs562) carriers had significantly reduced SN-38 glucuronide and APC metabolite levels. Reduced risk of neutropenia and diarrhoea was associated with ABCC2–24C/T (odds ratio (OR)=0.22, 0.06–0.85) and CES1 (rs2244613; OR=0.29, 0.09–0.89), respectively. Progression-free survival (PFS) was significantly longer in SLCO1B1 388G/G patients and reduced in ABCC2–24T/T and UGT1A1*28 carriers. Notably, higher OATP1B3 tumour expression was associated with reduced PFS. Conclusions: Clarifying the association of host genetic variation in OATP and ABC transporters to SN-38 exposure, toxicity and PFS provides rationale for personalising irinotecan-based chemotherapy. Our findings suggest that OATP polymorphisms and expression in tumour tissue may serve as important new biomarkers.
Collapse
Affiliation(s)
- W A Teft
- Department of Medicine, Division of Clinical Pharmacology, London Health Sciences Centre-University Hospital, Western University, Room B9-132, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | - S Welch
- Department of Oncology, London Health Sciences Centre-Victoria Hospital, Western University, 800 Commissioners Road East, PO Box 5010, London, Ontario, Canada N6A 5W9
| | - J Lenehan
- Department of Oncology, London Health Sciences Centre-Victoria Hospital, Western University, 800 Commissioners Road East, PO Box 5010, London, Ontario, Canada N6A 5W9
| | - J Parfitt
- Department of Pathology, London Health Sciences Centre - University Hospital, Western University, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | - Y-H Choi
- Department of Epidemiology and Biostatistics, Kresge Building, Western University, London Ontario, Canada N6A 5C1
| | - E Winquist
- Department of Oncology, London Health Sciences Centre-Victoria Hospital, Western University, 800 Commissioners Road East, PO Box 5010, London, Ontario, Canada N6A 5W9
| | - R B Kim
- 1] Department of Medicine, Division of Clinical Pharmacology, London Health Sciences Centre-University Hospital, Western University, Room B9-132, 339 Windermere Road, London, Ontario, Canada N6A 5A5 [2] Department of Oncology, London Health Sciences Centre-Victoria Hospital, Western University, 800 Commissioners Road East, PO Box 5010, London, Ontario, Canada N6A 5W9 [3] Department of Physiology and Pharmacology, Medical Sciences Building, Western University, London, Ontario, Canada N6A 5C1
| |
Collapse
|
21
|
Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 2014; 10:1337-54. [PMID: 25162314 DOI: 10.1517/17425255.2014.952630] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Human ATP-binding cassette (ABC) transporters act as translocators of numerous substrates across extracellular and intracellular membranes, thereby contributing to bioavailability and consequently therapy response. Genetic polymorphisms are considered as critical determinants of expression level or activity and subsequently response to selected drugs. AREAS COVERED Here the influence of polymorphisms of the prominent ABC transporters P-glycoprotein (MDR1, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and the multidrug resistance-associated protein (MRP) 2 (ABCC2) as well as MRP3 (ABCC3) on the pharmacokinetic of drugs and associated consequences on therapy response and clinical outcome is discussed. EXPERT OPINION ABC transporter genetic variants were assumed to affect interindividual differences in pharmacokinetics and subsequently clinical response. However, decades of medical research have not yielded in distinct and unconfined reproducible outcomes. Despite some unique results, the majority were inconsistent and dependent on the analyzed cohort or study design. Therefore, variability of bioavailability and drug response may be attributed only by a small amount to polymorphisms in transporter genes, whereas transcriptional regulation or post-transcriptional modification seems to be more critical. In our opinion, currently identified genetic variants of ABC efflux transporters can give some hints on the role of transporters at interfaces but are less suitable as biomarkers to predict therapeutic outcome.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein , Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel , Germany +49 431 597 3500 ; +49 431 597 3522 ;
| | | |
Collapse
|
22
|
Takahashi H, Sai K, Saito Y, Kaniwa N, Matsumura Y, Hamaguchi T, Shimada Y, Ohtsu A, Yoshino T, Doi T, Okuda H, Ichinohe R, Takahashi A, Doi A, Odaka Y, Okuyama M, Saijo N, Sawada JI, Sakamoto H, Yoshida T. Application of a combination of a knowledge-based algorithm and 2-stage screening to hypothesis-free genomic data on irinotecan-treated patients for identification of a candidate single nucleotide polymorphism related to an adverse effect. PLoS One 2014; 9:e105160. [PMID: 25127363 PMCID: PMC4134257 DOI: 10.1371/journal.pone.0105160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/17/2014] [Indexed: 01/27/2023] Open
Abstract
Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for “personalized” health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (KCNQ5) as a candidate factor related to incidence of irinotecan-induced diarrhea. The p value for rs9351963 was 3.31×10−5 in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that KCNQ4 and KCNQ5 genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in KCNQ5 is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCNQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Kimie Sai
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Nahoko Kaniwa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Ohtsu
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Haruhiro Okuda
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Risa Ichinohe
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Ayano Doi
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Yoko Odaka
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Misuzu Okuyama
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nagahiro Saijo
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Jun-ichi Sawada
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
23
|
Mohelnikova-Duchonova B, Melichar B, Soucek P. FOLFOX/FOLFIRI pharmacogenetics: The call for a personalized approach in colorectal cancer therapy. World J Gastroenterol 2014; 20:10316-10330. [PMID: 25132748 PMCID: PMC4130839 DOI: 10.3748/wjg.v20.i30.10316] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
While 5-fluorouracil used as single agent in patients with metastatic colorectal cancer has an objective response rate around 20%, the administration of combinations of irinotecan with 5-fluorouracil/folinic acid or oxaliplatin with 5-fluorouracil/folinic acid results in significantly increased response rates and improved survival. However, the side effects of systemic therapy such as myelotoxicity, neurotoxicity or gastrointestinal toxicity may lead to life-threatening complications and have a major impact on the quality of life of the patients. Therefore, biomarkers that would be instrumental in the choice of optimal type, combination and dose of drugs for an individual patient are urgently needed. The efficacy and toxicity of anticancer drugs in tumor cells is determined by the effective concentration in tumor cells, healthy tissues and by the presence and quantity of the drug targets. Enzymes active in drug metabolism and transport represent important determinants of the therapeutic outcome. The aim of this review was to summarize published data on associations of gene and protein expression, and genetic variability of putative biomarkers with response to therapy of colorectal cancer to 5-fluorouracil/leucovorin/oxaliplatin and 5-fluorouracil/leukovorin/irinotecan regimens. Gaps in the knowledge identified by this review may aid the design of future research and clinical trials.
Collapse
|
24
|
Moriya H, Saito K, Helsby N, Sugino S, Yamakage M, Sawaguchi T, Takasaki M, Kato H, Kurosawa N. Association between the low-dose irinotecan regimen-induced occurrence of grade 4 neutropenia and genetic variants of UGT1A1 in patients with gynecological cancers. Oncol Lett 2014; 7:2035-2040. [PMID: 24932285 PMCID: PMC4049750 DOI: 10.3892/ol.2014.2046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/20/2014] [Indexed: 12/14/2022] Open
Abstract
The occurrence of severe neutropenia during treatment with irinotecan (CPT-11) is associated with the *6 and *28 alleles of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1). However, the correlation between these variants and the occurrence of severe neutropenia in a low-dose CPT-11 regimen for the treatment of gynecological cancers has not been extensively studied. There are also no studies regarding the association between the 421C>A mutation in ATP-binding cassette sub-family G member 2 (ABCG2) and the occurrence of severe neutropenia in CPT-11-treated patients with gynecological cancers. The present study was designed to determine the factors associated with the occurrence of grade 4 neutropenia during chemotherapy for gynecological cancers with combinations of CPT-11 and cisplatin or mitomycin C. In total, 44 patients with gynecological cancer were enrolled in the study. The association between the absolute neutrophil count (ANC) nadir values, the total dose of CPT-11 and the genotypes of UGT1A1 or ABCG2 was studied. No correlation was observed between the ANC nadir values and the total dose of CPT-11. The ANC nadir values in the UGT1A1*6/*28 and *6/*6 groups were significantly lower compared with those in the *1/*1 group (P<0.01). Univariate analysis showed no association between the occurrence of grade 4 neutropenia and the ABCG2 421C>A mutation. Subsequent to narrowing the factors by univariate analysis, multivariate logistic regression analysis only detected significant correlations between the occurrence of grade 4 neutropenia and the UGT1A1*6/*6 and *6/*28 groups (P=0.029; odds ratio, 6.90; 95% confidence interval, 1.22-38.99). No associations were detected between the occurrence of grade 4 neutropenia and the heterozygous variant (*1/*6 or *1/*28) genotype, type of regimen or age. In conclusion, the UGT1A1*6/*28 and *6/*6 genotypes were found to be associated with the occurrence of severe neutropenia in the low-dose CPT-11 regimen for gynecological cancers. This finding indicates that the determination of UGT1A1 variants may be as useful in CPT-11 chemotherapy for gynecological conditions as it is in colorectal and lung cancer patients treated with this drug.
Collapse
Affiliation(s)
- Hiroyuki Moriya
- Department of Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, Japan
| | - Katsuhiko Saito
- Department of Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, Japan
| | - Nuala Helsby
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Shigekazu Sugino
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeru Sawaguchi
- Department of Pharmacy, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Masahiko Takasaki
- Department of Pharmacy, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hidenori Kato
- Department of Gynecology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Nahoko Kurosawa
- Department of Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, Japan
| |
Collapse
|
25
|
Harada T, Hamada A, Shimokawa M, Takayama K, Kudoh S, Maeno K, Saeki S, Miyawaki H, Moriyama A, Nakagawa K, Nakanishi Y. A phase I/II trial of irinotecan plus amrubicin supported with G-CSF for extended small-cell lung cancer. Jpn J Clin Oncol 2013; 44:127-33. [PMID: 24379211 DOI: 10.1093/jjco/hyt198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study reports the findings of a Phase I/II, cohort, dose-escalation trial of amrubicin and irinotecan with the support of granulocyte colony-stimulation factor. This study aimed to determine the dose-limiting toxicity of the combination and to define the maximum-tolerated dose, as a recommended dose for Phase II trials. We also sought to obtain preliminary data on the efficacy of this combination as a frontline therapy for extensive-disease small-cell lung cancer. METHODS We included 23 chemo-naïve patients with extensive-disease small-cell lung cancer in the trial. The amrubicin dose was escalated from 35 to 40 mg/m(2) (Levels 1 and 2, respectively) to determine the dose-limiting toxicity, with an unchanged dose of irinotecan at 50 mg/m(2). RESULTS Of nine patients, three experienced dose-limiting toxicities at Level 1 of prolonged Grade 4 neutropenia, Grade 3 febrile neutropenia and Grade 3 febrile neutropenia with Grade 3 diarrhea. At Level 2, two patients experienced dose-limiting toxicities of Grade 4 neutropenia and Grade 3 neutropenia with Grade 4 diarrhea. The maximum-tolerated doses and recommended doses for amrubicin and irinotecan were therefore determined to be 35 and 50 mg/m(2), respectively. The Level 1 trial was then expanded to 21 patients, 14 (70%) of whom showed partial responses to the recommended dose. The median progression-free and overall survival times were 6.37 and 15.21 months, respectively. CONCLUSIONS The combination of amrubicin and irinotecan with the support of granulocyte colony-stimulation factor produced a potent effect in chemo-naïve extensive-disease small-cell lung cancer patients. The use of biomarkers for this regimen may identify patients who are likely to suffer from treatment-ending severe adverse effects.
Collapse
Affiliation(s)
- T Harada
- *3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ono C, Kikkawa H, Suzuki A, Suzuki M, Yamamoto Y, Ichikawa K, Fukae M, Ieiri I. Clinical impact of genetic variants of drug transporters in different ethnic groups within and across regions. Pharmacogenomics 2013; 14:1745-64. [DOI: 10.2217/pgs.13.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug transporters, together with drug metabolic enzymes, are major determinants of drug disposition and are known to alter the response to many commonly used drugs. Substantial frequency differences for known variants exist across geographic regions for certain drug transporters. To deliver efficacious medicine with the right dose for each patient, it is important to understand the contribution of genetic variants for drug transporters. Recently, mutual pharmacokinetic data usage among Asian regions, which are thought to be relatively similar in their own genetic background, is expected to accelerate new drug applications and reduce developmental costs. Polymorphisms of drug transporters could be key factors to be considered in implementing multiethnic global clinical trials. This review addresses the current knowledge on genetic variations of major drug transporters affecting drug disposition, efficacy and toxicity, focusing on the east Asian populations, and provides insights into future directions for precision medicine and drug development in east Asia.
Collapse
Affiliation(s)
- Chiho Ono
- Department of Clinical Pharmacology, Clinical Research, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Hironori Kikkawa
- Department of Clinical Pharmacology, Clinical Research, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Akiyuki Suzuki
- Department of Clinical Pharmacology, Clinical Research, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Misaki Suzuki
- Department of Clinical Pharmacology, Clinical Research, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Yuichi Yamamoto
- Department of Clinical Pharmacology, Clinical Research, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Katsuomi Ichikawa
- Department of Clinical Pharmacology, Clinical Research, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589, Japan
| | - Masato Fukae
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Huang L, Zhang T, Xie C, Liao X, Yu Q, Feng J, Ma H, Dai J, Li M, Chen J, Zang A, Wang Q, Ge S, Qin K, Cai J, Yuan X. SLCO1B1 and SLC19A1 gene variants and irinotecan-induced rapid response and survival: a prospective multicenter pharmacogenetics study of metastatic colorectal cancer. PLoS One 2013; 8:e77223. [PMID: 24143213 PMCID: PMC3797132 DOI: 10.1371/journal.pone.0077223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Background Rapid response to chemotherapy in metastatic colorectal cancer (mCRC) patients (response within 12 weeks of chemotherapy) may increase the chance of complete resection and improved survival. Few molecular markers predict irinotecan-induced rapid response and survival. Single-nucleotide polymorphisms (SNPs) in solute carrier genes are reported to correlate with the variable pharmacokinetics of irinotecan and folate in cancer patients. This study aims to evaluate the predictive role of 3 SNPs in mCRC patients treated with irinotecan and fluoropyrimidine-containing regimens. Materials and Methods Three SNPs were selected and genotyped in 137 mCRC patients from a Chinese prospective multicenter trial (NCT01282658). The chi-squared test, univariate and multivariable logistic regression model, and receiver operating characteristic analysis were used to evaluate correlations between the genotypes and rapid response. Kaplan-Meier survival analysis and Cox proportional hazard models were used to evaluate the associations between genotypes and survival outcomes. Benjamini and Hochberg False Discovery Rate correction was used in multiple testing Results Genotype GA/AA of SNP rs2306283 of the gene SLCO1B1 and genotype GG of SNP rs1051266 of the gene SLC19A1 were associated with a higher rapid response rate (odds ratio [OR] =3.583 and 3.521, 95%CI =1.301-9.871 and 1.271-9.804, p=0.011 and p=0.013, respectively). The response rate was 70% in patients with both genotypes, compared with only 19.7% in the remaining patients (OR = 9.489, 95%CI = 2.191-41.093, Fisher's exact test p=0.002). Their significances were all maintained even after multiple testing (all pc < 0.05). The rs2306283 GA/AA genotype was also an independent prognostic factor of longer progression-free survival (PFS) (hazard ratio = 0.402, 95%CI = 0.171-0.945, p=0.037). None of the SNPs predicted overall survival. Conclusions Polymorphisms of solute carriers’ may be useful to predict rapid response to irinotecan plus fluoropyrimidine and PFS in mCRC patients. Trial Registry ClinicalTrials.gov NCT01282658 http://www.clinicaltrials.gov/ct2/show/NCT01282658
Collapse
Affiliation(s)
- Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tao Zhang
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, P. R. China
| | - Xin Liao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jueping Feng
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Hong Ma
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, P. R. China
| | - Min Li
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jigui Chen
- Department of Surgery, Wuhan 8 Hospital, Wuhan, P.R. China
| | - Aihua Zang
- Hubei Cancer Hospital, Wuhan, P. R. China
| | - Qian Wang
- Department of Surgery, Wuhan 8 Hospital, Wuhan, P.R. China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Juan Cai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, P. R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
28
|
Usefulness of one-point plasma SN-38G/SN-38 concentration ratios as a substitute for UGT1A1 genetic information after irinotecan administration. Int J Clin Oncol 2013; 19:397-402. [DOI: 10.1007/s10147-013-0558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
29
|
Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. JOURNAL OF DRUG DELIVERY 2013; 2013:863539. [PMID: 23431456 PMCID: PMC3574750 DOI: 10.1155/2013/863539] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/16/2023]
Abstract
Members of the organic anion transporter family (OATP) mediate the transmembrane uptake of clinical important drugs and hormones thereby affecting drug disposition and tissue penetration. Particularly OATP subfamily 1 is known to mediate the cellular uptake of anticancer drugs (e.g., methotrexate, derivatives of taxol and camptothecin, flavopiridol, and imatinib). Tissue-specific expression was shown for OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis, while other OATPs, for example, OATP4A1, are expressed in multiple cells and organs. Many different tumor entities show an altered expression of OATPs. OATP1B1/OATP1B3 are downregulated in liver tumors, but highly expressed in cancers in the gastrointestinal tract, breast, prostate, and lung. Similarly, testis-specific OATP6A1 is expressed in cancers in the lung, brain, and bladder. Due to their presence in various cancer tissues and their limited expression in normal tissues, OATP1B1, OATP1B3, and OATP6A1 could be a target for tumor immunotherapy. Otherwise, high levels of ubiquitous expressed OATP4A1 are found in colorectal cancers and their metastases. Therefore, this OATP might serve as biomarkers for these tumors. Expression of OATP is regulated by nuclear receptors, inflammatory cytokines, tissue factors, and also posttranslational modifications of the proteins. Through these processes, the distribution of the transporter in the tissue will be altered, and a shift from the plasma membrane to cytoplasmic compartments is possible. It will modify OATP uptake properties and, subsequently, change intracellular concentrations of drugs, hormones, and various other OATP substrates. Therefore, screening tumors for OATP expression before therapy should lead to an OATP-targeted therapy with higher efficacy and decreased side effects.
Collapse
|
30
|
Stieger B, Meier PJ. Pharmacogenetics of drug transporters in the enterohepatic circulation. Pharmacogenomics 2012; 12:611-31. [PMID: 21619426 DOI: 10.2217/pgs.11.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article summarizes the impact of the pharmacogenetics of drug transporters expressed in the enterohepatic circulation on the pharmacokinetics and pharmacodynamics of drugs. The role of pharmacogenetics in the function of drug transporter proteins in vitro is now well established and evidence is rapidly accumulating from in vivo pharmacokinetic studies, which suggests that genetic variants of drug transporter proteins can translate into clinically relevant phenotypes. However, a large amount of conflicting information on the clinical relevance of drug transporter proteins has so far precluded the emergence of a clear picture regarding the role of drug transporter pharmacogenetics in medical practice. This is very well exemplified by the case of P-glycoprotein (MDR1, ABCB1). The challenge is now to develop pharmacogenetic models with sufficient predictive power to allow for translation into drug therapy. This will require a combination of pharmacogenetics of drug transporters, drug metabolism and pharmacodynamics of the respective drugs.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology & Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | |
Collapse
|
31
|
Sprowl JA, Mikkelsen TS, Giovinazzo H, Sparreboom A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012; 15:5-20. [PMID: 22459901 DOI: 10.1016/j.drup.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
32
|
Hirose K, Kozu C, Yamashita K, Maruo E, Kitamura M, Hasegawa J, Omoda K, Murakami T, Maeda Y. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene. Oncol Lett 2011; 3:694-698. [PMID: 22740978 DOI: 10.3892/ol.2011.533] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/16/2011] [Indexed: 12/29/2022] Open
Abstract
In irinotecan (CPT-11)-based chemotherapy, neutropenia and diarrhea are often induced. In the present study, the clinical significance of the concentration ratios of 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronide (SN-38G) and SN-38 in the plasma in predicting CPT-11-induced neutropenia was examined. A total of 17 patients with colorectal cancer and wild-type UDP-glucuronosyltransferase (UGT)1A1 gene were enrolled and treated with CPT-11 as part of the FOLFIRI regimen [CPT-11 and fluorouracil (5-FU)]. Blood was taken exactly 15 min following a 2-h continuous infusion of CPT-11. Plasma concentrations of SN-38, SN-38G and CPT-11 were determined by a modified high-performance liquid chromatography (HPLC) method. The median, maximum and minimum values of plasma SN-38G/SN-38 ratios were 4.25, 7.09 and 1.03, respectively, indicating that UGT activities are variable among patients with the wild-type UGT1A1 gene. The plasma SN-38G/SN-38 ratios decreased with an increase in the trial numbers of chemotherapy (r=0.741, p=0.000669), suggesting that CPT-11 treatment suppresses UGT activity, and the low plasma SN-38G/SN-38 ratios resulted in the induction of greater neutropenia. However, in this analysis, 2 clearly separated regression lines were observed between plasma SN-38G/SN-38 ratios and neutropenia induction. In conclusion, UGT activity involved in SN-38 metabolism is variable among patients with the wild-type UGT1A1 gene, and each CPT-11 treatment suppresses UGT activity. One-point determination of the plasma SN-38G/SN-38 ratio may provide indications for the prediction of CPT-11-induced neutropenia and adjustment of the optimal dose, although further studies are required.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Pharmacy, Osaka Rosai Hospital, Sakai, Osaka 591-8025
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet Genomics 2011; 21:506-15. [PMID: 21691255 DOI: 10.1097/fpc.0b013e328348c786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multidrug resistance-associated protein 2 (MRP2; ABCC2) mediates the biliary excretion of glutathione, glucuronide, and sulfate conjugates of endobiotics and xenobiotics. Single nucleotide polymorphisms (SNPs) of MRP2 contribute to interindividual variability in drug disposition and ultimately in drug response. OBJECTIVES To characterize the transport function of human wild-type (WT) MRP2 and four SNP variants, S789F, A1450T, V417I, and T1477M. METHODS The four SNP variants were expressed in Sf9 cells using recombinant baculovirus infection. The kinetic parameters [Km, (μmol/l); V(max), (pmol/mg/min); the Hill coefficient] of ATP-dependent transport of leukotriene C(4) (LTC(4)), estradiol-3-glucuronide (E(2)3G), estradiol-17β-glucuronide (E(2)17G), and tauroursodeoxycholic acid (TUDC) were determined in Sf9-derived plasma membrane vesicles. Transport activity was normalized for expression level. RESULTS The V(max) for transport activity was decreased for all substrates for S789F, and for all substrates except E(2)17G for A1450T. V417I showed decreased apparent affinity for LTC(4), E(2)3G, and E(2)17G, whereas transport was similar between wild-type (WT) and T1477M, except for a modest increase in TUDC transport. Examination of substrate-stimulated MRP2-dependent ATPase activity of S789F and A1450T, SNPs located in MRP2 nucleotide-binding domains (NBDs), demonstrated significantly decreased ATPase activity and only modestly decreased affinity for ATP compared with WT. CONCLUSION SNPs in the NBDs (S789F in the D-loop of NBD1, or A1450T near the ABC signature motif of NBD2) variably decreased the transport of all substrates. V417I in membrane spanning domain 1 selectively decreased the apparent affinity for the glutathione and glucuronide conjugated substrates, whereas the T1477M SNP in the carboxyl terminus altered only TUDC transport.
Collapse
|
34
|
Phan VH, Tan C, Rittau A, Xu H, McLachlan AJ, Clarke SJ. An update on ethnic differences in drug metabolism and toxicity from anti-cancer drugs. Expert Opin Drug Metab Toxicol 2011; 7:1395-410. [PMID: 21950349 DOI: 10.1517/17425255.2011.624513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Based on recent emerging evidence of inter-ethnic differences in drug response and toxicity, ethnic diversity in pharmacokinetics, pharmacogenomics and clinical outcomes are being increasingly investigated. Ultimately, this will promote improved understanding of inter-individual differences in the pharmacokinetics and tolerance of cytotoxic drugs. AREAS COVERED This article reviews potential explanations for the observed ethnic differences in treatment outcomes and provides clinical data to support this concept. A literature search was implemented on PubMed and PharmGKB to investigate the areas of ethnic differences in pharmacogenomics, pharmacogenetics and clinical outcomes of cancer therapies. EXPERT OPINION There has been a relative paucity of clinical evidence linking genetic polymorphisms of genes encoding drug-metabolizing enzymes to the pharmacokinetics, pharmacodynamics and tolerance of anti-cancer drugs. Future research should focus on studies using large sample sizes, in the hope that they will provide results of high clinical significance. Due to the potential for ethnic differences to impact on both toxicities and benefits of systemic cancer therapies, the development of new therapeutic agents should include patients from diverse geographical ancestries in each phase of drug development.
Collapse
Affiliation(s)
- Viet Hong Phan
- The University of Sydney, Concord Repatriation General Hospital, Sydney Cancer Centre, Concord, NSW, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Drug transporters are now widely acknowledged as important determinants governing drug absorption, excretion, and, in many cases, extent of drug entry into target organs. There is also a greater appreciation that altered drug transporter function, whether due to genetic polymorphisms, drug-drug interactions, or environmental factors such as dietary constituents, can result in unexpected toxicity. Such effects are in part due to the interplay between various uptake and efflux transporters with overlapping functional capabilities that can manifest as marked interindividual variability in drug disposition in vivo. Here we review transporters of the solute carrier (SLC) and ATP-binding cassette (ABC) superfamilies considered to be of major importance in drug therapy and outline how understanding the expression, function, and genetic variation in such drug transporters will result in better strategies for optimal drug design and tissue targeting as well as reduce the risk for drug-drug interactions and adverse drug responses.
Collapse
Affiliation(s)
- M K DeGorter
- Division of Clinical Pharmacology, University of Western Ontario, London, Canada N6A 5A5
| | | | | | | |
Collapse
|
36
|
Sai K, Saito Y. Ethnic differences in the metabolism, toxicology and efficacy of three anticancer drugs. Expert Opin Drug Metab Toxicol 2011; 7:967-88. [PMID: 21585235 DOI: 10.1517/17425255.2011.585969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Large inter-individual and inter-ethnic differences are observed in efficacies and toxicities of medical drugs. To improve the predictability of these differences, pharmacogenetic information has been applied to clinical situations. Expanding pharmacogenetic information would be a valuable tool to the medical community as well as the patient to fulfill the promise of personalized anticancer drug therapy. AREAS COVERED This review highlights genetic polymorphisms and ethnic differences of genes, UGT1As, CYP3A4, CES1As, ABCB1, ABCC2, ABCG2, SLCO1B1, CDA and CYP2D6, involved in metabolism and disposition of three anticancer drugs: irinotecan, gemcitabine and tamoxifen. EXPERT OPINION Recent pharmacogenetic studies have successfully identified distinct ethnic differences in genetic polymorphisms that are potentially involved in efficacies and toxicities of anticancer drugs. This achievement has led to personalized irinotecan therapy, reflecting ethnic differences in UGT1A1 genotypes, and possible benefits of genetic testing have also been suggested for gemcitabine and tamoxifen therapy, which still requires further validation. The ultimate goal for patients is a high rate or even perfect prediction of efficacies and toxicities of anticancer drugs in each ethnic population. For this challenge, more clinical studies combined with comprehensive omics approaches are necessary to further advance the field.
Collapse
Affiliation(s)
- Kimie Sai
- National Institute of Health Sciences , Division of Medicinal Safety Science, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | | |
Collapse
|
37
|
SAITO Y. Pharmacogenomic Research for Avoiding Adverse Reactions by Anti-cancer Drugs. YAKUGAKU ZASSHI 2011; 131:239-46. [DOI: 10.1248/yakushi.131.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshiro SAITO
- Division of Medicinal Safety Science, National Institute of Health Sciences
| |
Collapse
|
38
|
Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63:157-81. [PMID: 21245207 DOI: 10.1124/pr.110.002857] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of membrane transporters for drug pharmacokinetics has been increasingly recognized during the last decade. Organic anion transporting polypeptide 1B1 (OATP1B1) is a genetically polymorphic influx transporter expressed on the sinusoidal membrane of human hepatocytes, and it mediates the hepatic uptake of many endogenous compounds and xenobiotics. Recent studies have demonstrated that OATP1B1 plays a major, clinically important role in the hepatic uptake of many drugs. A common single-nucleotide variation (coding DNA c.521T>C, protein p.V174A, rs4149056) in the SLCO1B1 gene encoding OATP1B1 decreases the transporting activity of OATP1B1, resulting in markedly increased plasma concentrations of, for example, many statins, particularly of active simvastatin acid. The variant thereby enhances the risk of statin-induced myopathy and decreases the therapeutic indexes of statins. However, the effect of the SLCO1B1 c.521T>C variant is different on different statins. The same variant also markedly affects the pharmacokinetics of several other drugs. Furthermore, certain SLCO1B1 variants associated with an enhanced clearance of methotrexate increase the risk of gastrointestinal toxicity by methotrexate in the treatment of children with acute lymphoblastic leukemia. Certain drugs (e.g., cyclosporine) potently inhibit OATP1B1, causing clinically significant drug interactions. Thus, OATP1B1 plays a major role in the hepatic uptake of drugs, and genetic variants and drug interactions affecting OATP1B1 activity are important determinants of individual drug responses. In this article, we review the current knowledge about the expression, function, substrate characteristics, and pharmacogenetics of OATP1B1 as well as its role in drug interactions, in parts comparing with those of other hepatocyte-expressed organic anion transporting polypeptides, OATP1B3 and OATP2B1.
Collapse
Affiliation(s)
- Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, PO Box 20, Helsinki, FI-00014, Finland.
| | | | | |
Collapse
|
39
|
Abstract
Irinotecan is a camptothecin analog used as an anticancer drug. Severe, potentially life-threatening toxicities can occur from irinotecan treatment. Although multiple genes may play a role in irinotecan activity, the majority of evidence to date suggests that variation in expression of UGT1A1 caused by a common promoter polymorphism (UGT1A1*28) is strongly associated with toxicity; however, this link is dose dependent. Variations in other pharmacokinetic genes, particularly the transporter ABCC2, also contribute to irinotecan toxicity. In addition, recent studies have shown that pharmacodynamic genes such as TDP1 and XRCC1 can also play a role in both toxicity and response.
Collapse
Affiliation(s)
- Sharon Marsh
- UNC Institute for Pharmacogenomics & Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
40
|
Sai K, Saito Y, Tatewaki N, Hosokawa M, Kaniwa N, Nishimaki-Mogami T, Naito M, Sawada JI, Shirao K, Hamaguchi T, Yamamoto N, Kunitoh H, Tamura T, Yamada Y, Ohe Y, Yoshida T, Minami H, Ohtsu A, Matsumura Y, Saijo N, Okuda H. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br J Clin Pharmacol 2011; 70:222-33. [PMID: 20653675 DOI: 10.1111/j.1365-2125.2010.03695.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * Association of UDP-glucuronosyltransferase 1A1 (UGT1A1) genetic polymorphisms *6 and *28 with reduced clearance of SN-38 and severe neutropenia in irinotecan therapy was demonstrated in Japanese cancer patients. * The detailed gene structure of CES1 has been characterized. * Possible functional SNPs in the promoter region have been reported. WHAT THIS STUDY ADDS * Association of functional CES1 gene number with AUC ratio [(SN-38 + SN-38G)/irinotecan], an in vivo index of CES activity, was observed in patients with irinotecan monotherapy. * No significant effects of major CES1 SNPs on irinotecan PK were detected. AIMS Human carboxylesterase 1 (CES1) hydrolyzes irinotecan to produce an active metabolite SN-38 in the liver. The human CES1 gene family consists of two functional genes, CES1A1 (1A1) and CES1A2 (1A2), which are located tail-to-tail on chromosome 16q13-q22.1 (CES1A2-1A1). The pseudogene CES1A3 (1A3) and a chimeric CES1A1 variant (var1A1) are also found as polymorphic isoforms of 1A2 and 1A1, respectively. In this study, roles of CES1 genotypes and major SNPs in irinotecan pharmacokinetics were investigated in Japanese cancer patients. METHODS CES1A diplotypes [combinations of haplotypes A (1A3-1A1), B (1A2-1A1), C (1A3-var1A1) and D (1A2-var1A1)] and the major SNPs (-75T>G and -30G>A in 1A1, and -816A>C in 1A2 and 1A3) were determined in 177 Japanese cancer patients. Associations of CES1 genotypes, number of functional CES1 genes (1A1, 1A2 and var1A1) and major SNPs, with the AUC ratio of (SN-38 + SN-38G)/irinotecan, a parameter of in vivo CES activity, were analyzed for 58 patients treated with irinotecan monotherapy. RESULTS The median AUC ratio of patients having three or four functional CES1 genes (diplotypes A/B, A/D or B/C, C/D, B/B and B/D; n= 35) was 1.24-fold of that in patients with two functional CES1 genes (diplotypes A/A, A/C and C/C; n= 23) [median (25th-75th percentiles): 0.31 (0.25-0.38) vs. 0.25 (0.20-0.32), P= 0.0134]. No significant effects of var1A1 and the major SNPs examined were observed. CONCLUSION This study suggests a gene-dose effect of functional CES1A genes on SN-38 formation in irinotecan-treated Japanese cancer patients.
Collapse
Affiliation(s)
- Kimie Sai
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Meyer zu Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol 2011:325-371. [PMID: 21103975 DOI: 10.1007/978-3-642-14541-4_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is a member of the G-subfamiliy of the ATP-binding cassette (ABC)-transporter superfamily. This half-transporter is assumed to function as an important mechanism limiting cellular accumulation of various compounds. In context of its tissue distribution with localization in the sinusoidal membrane of hepatocytes, and in the apical membrane of enterocytes ABCG2 is assumed to function as an important mechanism facilitating hepatobiliary excretion and limiting oral bioavailability, respectively. Indeed functional assessment performing mouse studies with genetic deletion or chemical inhibition of the transporter, or performing pharmacogenetic studies in humans support this assumption. Furthermore the efflux function of ABCG2 has been linked to sanctuary blood tissue barriers as described for placenta and the central nervous system. However, in lactating mammary glands ABCG2 increases the transfer of substrates into milk thereby increasing the exposure to potential noxes of a breastfed newborn. With regard to its broad substrate spectrum including various anticancer drugs and environmental carcinogens the function of ABCG2 has been associated with multidrug resistance and tumor development/progression. In terms of cancer biology current research is focusing on the expression and function of ABCG2 in immature stem cells. Recent findings support the notion that the physiological function of ABCG2 is involved in the elimination of uric acid resulting in higher risk for developing gout in male patients harboring genetic variants. Taken together ABCG2 is implicated in various pathophysiological and pharmacological processes.
Collapse
Affiliation(s)
- Henriette E Meyer zu Schwabedissen
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
42
|
Han B, Gao G, Wu W, Gao Z, Zhao X, Li L, Qiao R, Chen H, Wei Q, Wu J, Lu D. Association of ABCC2 polymorphisms with platinum-based chemotherapy response and severe toxicity in non-small cell lung cancer patients. Lung Cancer 2010; 72:238-43. [PMID: 20943283 DOI: 10.1016/j.lungcan.2010.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 08/24/2010] [Accepted: 09/01/2010] [Indexed: 11/20/2022]
Abstract
Platinum-based chemotherapy is the most common treatment for non-small cell lung cancer (NSCLC), and expression levels of drug metabolism and transport proteins are correlated with its efficacy and toxicity. In this study, we investigated the association of three putative functional polymorphisms of ABCC2 (C-24T, G1249A, and C3972T) with tumor response and occurrence of the grade 3 or 4 toxicity in 445 patients with stage III and IV NSCLC treated with platinum-based chemotherapy. We determined the genotypes of these three polymorphisms by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MassArray) method. We found that the common homozygotes of -24C was associated with a better treatment response (adjusted odds ratios [ORs], 1.84; 95% confidence interval [CI], 1.05-3.23; P=0.032). Furthermore, patients with 3972T had increased risk of severe thrombocytopenia toxicity (adjusted OR, 2.43; 95% CI, 1.06-5.56; P=0.034); and in female subgroup analyses, this variant was associated with significantly increased risk of overall toxicity (adjusted OR, 2.63; 95% CI, 1.17-5.95; P=0.02), particularly of hematologic toxicity (adjusted OR, 3.80; 95% CI, 1.62-8.87; P=0.002). Moreover, -24T/3972T haplotype was also associated with significantly increased risk of hematologic toxicity. Our results suggested that C-24T variants had an effect on treatment response and that C3972T had an effect on severe toxicities among platinum-treated non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Baohui Han
- Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Poguntke M, Hazai E, Fromm MF, Zolk O. Drug transport by breast cancer resistance protein. Expert Opin Drug Metab Toxicol 2010; 6:1363-84. [PMID: 20873966 DOI: 10.1517/17425255.2010.519700] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The ATP-binding cassette transporter ABCG2 is a well-known major mediator of multi-drug resistance in cancers. Beyond multi-drug resistance, experimental and recent clinical studies demonstrate a role for ABCG2 as a determinant of drug pharmacokinetic, safety and efficacy profiles. AREAS COVERED IN THIS REVIEW The clinical evidence of the role of ABCG2 in pharmacokinetics and pharmacodynamics is reviewed. Key questions that arise from the perspective of preclinical drug evaluation are addressed, including the structure of ABCG2 and mechanisms of drug-transporter interactions, mechanisms responsible for the polyspecificity of ABCG2, methods suitable for studying drug-ABCG2 interactions in vitro and in silico prediction of ABCG2 substrates and inhibitors. WHAT THE READER WILL GAIN An update on current knowledge of the importance of ABCG2 in drug disposition with special emphasis on drug development. TAKE HOME MESSAGE The field of drug-ABCG2 interaction is rapidly advancing and beginning to expand into clinical practice. However, the structural understanding of drug binding and transport by ABCG2 is still incomplete. Incorporation of novel concepts of drug-transporter interactions such as electrostatic funneling might help explain the multispecificity of ABCG2 and enable in silico predictions.
Collapse
Affiliation(s)
- Maren Poguntke
- University of Erlangen-Nuremberg, Institute of Experimental and Clinical Pharmacology and Toxicology, Fahrstr. 17, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Kazuma Kiyotani
- Laboratory for Pharmacogenetics, RIKEN Center for Genomic Medicine, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenetics, RIKEN Center for Genomic Medicine, Yokohama, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Zembutsu
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Ramírez J, Ratain MJ, Innocenti F. Uridine 5'-diphospho-glucuronosyltransferase genetic polymorphisms and response to cancer chemotherapy. Future Oncol 2010; 6:563-85. [PMID: 20373870 PMCID: PMC3102300 DOI: 10.2217/fon.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics aims to elucidate how genetic variation affects the efficacy and side effects of drugs, with the ultimate goal of personalizing medicine. Clinical studies of the genetic variation in the uridine 5'-diphosphoglucuronosyltransferase gene have demonstrated how reduced-function allele variants can predict the risk of severe toxicity and help identify cancer patients who could benefit from reduced-dose schedules or alternative chemotherapy. Candidate polymorphisms have also been identified in vitro, although the functional consequences of these variants still need to be tested in the clinical setting. Future approaches in uridine 5'-diphosphoglucuronosyltransferase pharmacogenetics include genetic testing prior to drug treatment, genotype-directed dose-escalation studies, study of genetic variation at the haplotype level and genome-wide studies.
Collapse
Affiliation(s)
- Jacqueline Ramírez
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2451, Fax: +1 773 702 9268,
| | - Mark J Ratain
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 702 4400, Fax: +1 773 702 3969,
| | - Federico Innocenti
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2452, Fax: +1 773 702 9268,
| |
Collapse
|
46
|
Shimoyama S. Pharmacogenetics of irinotecan: An ethnicity-based prediction of irinotecan adverse events. World J Gastrointest Surg 2010; 2:14-21. [PMID: 21160829 PMCID: PMC2999195 DOI: 10.4240/wjgs.v2.i1.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/16/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Irinotecan is now regarded as the most active drug for the treatment of colorectal cancer. However, one of the most difficult issues oncologists face is deciding the optimal dose for an individual patient, as each individual shows different outcomes even at the same dose with regard to treatment related adverse events, ranging from no toxicity to a lethal event. Inherited genetic polymorphism of a single gene or multiple genes (haplotype or linkage disequilibrium) involved in SN-38 glucuronidation, a predominant route of irinotecan detoxification, is now recognized as a significant factor that can alter the incidence of side effects. Attempts to explore such inherited genetic variability have been focused on elucidating interindividual as well as interethnic differences. Genotyping studies in relation to adverse events in an individual or in a group of similar ethnicity should contribute to establishing individual-oriented or ethnicity-oriented irinotecan treatment regimens. This review highlights current single- or multi-tired approaches for the elucidation of genetic predispositions of patients to severe toxicities, especially among Asians. The purpose of this is to contribute to minimizing toxicity by dose modifications, with the consequent aim of maximizing dose intensity and efficacy, an ultimate goal of irinotecan-individualized therapy.
Collapse
Affiliation(s)
- Shouji Shimoyama
- Shouji Shimoyama, Gastrointestinal Unit, Settlement Clinic, 4-20-7, Towa, Adachi-ku, Tokyo 120-0003, Japan
| |
Collapse
|