1
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|
2
|
Wang Y, He M, Li X, Chai J, Jiang Q, Peng C, He G, Huang W. Design, Synthesis, and Biological Evaluation of Pyrano[2,3-c]-pyrazole-Based RalA Inhibitors Against Hepatocellular Carcinoma. Front Chem 2021; 9:700956. [PMID: 34869198 PMCID: PMC8634879 DOI: 10.3389/fchem.2021.700956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of Ras small GTPases, including RalA and RalB, plays an important role in carcinogenesis, tumor progress, and metastasis. In the current study, we report the discovery of a series of 6-sulfonylamide-pyrano [2,3-c]-pyrazole derivatives as novel RalA inhibitors. ELISA-based biochemical assay results indicated that compounds 4k–4r suppressed RalA/B binding capacities to their substrates. Cellular proliferation assays indicated that these RalA inhibitors potently inhibited the proliferation of HCC cell lines, including HepG2, SMMC-7721, Hep3B, and Huh-7 cells. Among the evaluated compounds, 4p displayed good inhibitory capacities on RalA (IC50 = 0.22 μM) and HepG2 cells (IC50 = 2.28 μM). Overall, our results suggested that a novel small-molecule RalA inhibitor with a 6-sulfonylamide-pyrano [2, 3-c]-pyrazole scaffold suppressed autophagy and cell proliferation in hepatocellular carcinoma, and that it has potential for HCC-targeted therapy.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyao He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Lanzolla G, Vannucchi G, Ionni I, Campi I, Sileo F, Lazzaroni E, Marinò M. Cholesterol Serum Levels and Use of Statins in Graves' Orbitopathy: A New Starting Point for the Therapy. Front Endocrinol (Lausanne) 2019; 10:933. [PMID: 32038490 PMCID: PMC6987298 DOI: 10.3389/fendo.2019.00933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Graves' Orbitopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease (GD). Its ultimate cause remains unclear, but it is commonly considered an autoimmune disorder due to self recognition of autoantigens constitutively expressed by orbital fibroblasts (OFs), and thyroid epithelial cells. High dose intravenous glucocorticoids (ivGC) are the most commonly used treatment for moderately severe and active GO. However, based on the complex pathogenesis of GO, a number of factors may have a protective and maybe a therapeutic role. The use of other medications improving the effect of GC may increase the overall effectiveness of the therapy and reduce GC doses, thereby limiting side effects. Recently, a possible protective role of 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitors, the so-called statins, and perhaps of lowering cholesterol levels, has been proposed. Thus, statins have been reported to be associated with a reduced frequency of GO in GD patients and in recent cross-sectional and retrospective studies a significant correlation was found between the occurrence of GO and both total and LDL-cholesterol in patients with a GD of relatively recent onset, suggesting a role of cholesterol in the development of GO. Moreover, a correlation was found between the GO clinical activity score and total as well as LDL-cholesterol in untreated GO patients, depending on GO duration, indicating a role of cholesterol on GO activity. Therefore, statin treatment may be beneficial for GO. Here we review this subject, which offers new therapeutic perspectives for patients with GO.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Endocrinology Units, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Guia Vannucchi
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Ilaria Ionni
- Endocrinology Units, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Federica Sileo
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elisa Lazzaroni
- Endocrinology and Metabolism Unit, Fondazione IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Michele Marinò
- Endocrinology Units, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy
- *Correspondence: Michele Marinò
| |
Collapse
|
5
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Abstract
More than a hundred proteins comprise the RAS superfamily of small GTPases. This family can be divided into RAS, RHO, RAB, RAN, ARF, and RAD subfamilies, with each shown to play distinct roles in human cells in both health and disease. The RAS subfamily has a well-established role in human cancer with the three genes, HRAS, KRAS, and NRAS being the commonly mutated in tumors. These RAS mutations, most often functionally activating, are especially common in pancreatic, lung, and colorectal cancers. Efforts to inhibit RAS and related GTPases have produced inhibitors targeting the downstream effectors of RAS signaling, including inhibitors of the RAF-mitogen-activated protein kinase/extracellular signal-related kinase (ERK)-ERK kinase pathway and the phosphoinositide-3-kinase-AKT-mTOR kinase pathway. A third effector arm of RAS signaling, mediated by RAL (RAS like) has emerged in recent years as a critical driver of RAS oncogenic signaling and has not been targeted until recently. RAL belongs to the RAS branch of the RAS superfamily and shares a high structural similarity with RAS. In human cells, there are two genes, RALA and RALB, both of which have been shown to play roles in the proliferation, survival, and metastasis of a variety of human cancers, including lung, colon, pancreatic, prostate, skin, and bladder cancers. In this review, we summarize the latest knowledge of RAL in the context of human cancer and the recent advancements in the development of cancer therapeutics targeting RAL small GTPases.
Collapse
Affiliation(s)
- Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (C.Y.); Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado (D.T.); and University of Colorado Comprehensive Cancer Center, Aurora, Colorado (D.T.)
| | - Dan Theodorescu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (C.Y.); Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado (D.T.); and University of Colorado Comprehensive Cancer Center, Aurora, Colorado (D.T.)
| |
Collapse
|
7
|
Guoxin Y, Bing F, Ronghai Z, Jian Z, Xiaofeng S, Lei T, Qimin W, Jinhong H, Xufei L, Ying W, Yuan Z, Zongxuan H, Yixiang L, Ning L, Lei C, Zhenggang C. [Effects of RhoA silencing on proliferation of tongue squamous cancer cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 34:620-625. [PMID: 28318165 DOI: 10.7518/hxkq.2016.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the effect of RhoA silencing through RNA interference on proliferation and growth of tongue cancer cells, as well as explored the possible mechanisms of this effect. METHODS SSC-4 tongue cancer cells were cultured in vitro and then transfected with small interfering RNA to knock down RhoA expression. The tested cells were divided into three groups: experimental group (experimental group 1: transfected with RhoA-siRNA-1; experi-mental group 2: transfected with RhoA-siRNA-2), negative control group (transfected by random sequence NC-siRNA), and blank control group (transfected with Lipofectamine). The expression levels of RhoA mRNA were respectively measured by quantitative real-time polymerase chain reaction and western blot assay. Moreover, the expression levels of cyclin D1, p21, and p27 and RhoA protein were evaluated by Western blot assay. Proliferation and growth potentiality were analyzed through evaluation of doubling times and methyl thiazolyl tetrazolium assessment. RESULTS The expression levels of RhoA gene and protein of experimental groups significantly decreased following siRNA transfection compared with those in the negative and blank control groups. The expression of cyclin D1 decreased significantly and that of p21 and p27 increased significantly. The doubling time was extended and the growth potentiality decreased. CONCLUSIONS The results indicated that RhoA silencing can inhibit proliferation of tongue cancer cells, whereas RhoA affects cell proliferation by regulating the cell cycle pathway. Thus, RhoA is a potential target in gene therapy for tongue cancer.
Collapse
Affiliation(s)
- Yan Guoxin
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Fan Bing
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Zou Ronghai
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Zhang Jian
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Sun Xiaofeng
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Tong Lei
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Wang Qimin
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Han Jinhong
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Lu Xufei
- Dept. of Stomatology, Pudong Healthcare Center of Jimo County, Qingdao 266234, China
| | - Wang Ying
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Zhou Yuan
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - He Zongxuan
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Liao Yixiang
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Li Ning
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Cao Lei
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Chen Zhenggang
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin 2015; 36:291-7. [PMID: 25557115 DOI: 10.1038/aps.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Activating RAS mutations are common in human tumors. These mutations are often markers for resistance to therapy and subsequent poor prognosis. So far, targeting the RAF-MEK-ERK and PI3K-AKT signaling pathways downstream of RAS is the only promising approach in the treatment of cancer patients harboring RAS mutations. RAL GTPase, another downstream effector of RAS, is also considered as a therapeutic option for the treatment of RAS-mutant cancers. The RAL GTPase family comprises RALA and RALB, which can have either divergent or similar functions in different tumor models. Recent studies on non-small cell lung cancer (NSCLC) have showed that different RAS mutations selectively activate specific effector pathways. This observation requires broader validation in other tumor tissue types, but if true, will provide a new approach to the treatment of RAS-mutant cancer patients by targeting specific downstream RAS effectors according to the type of RAS mutation. It also suggests that RAL GTPase inhibition will be an important treatment strategy for tumors harboring RAS glycine to cysteine (G12C) or glycien to valine (G12V) mutations, which are commonly found in NSCLC and pancreatic cancer.
Collapse
|
9
|
Involvement of RalB in the effect of geranylgeranyltransferase I on glioma cell migration and invasion. Clin Transl Oncol 2015; 17:477-85. [DOI: 10.1007/s12094-014-1263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
|
10
|
Prgomet Z, Axelsson L, Lindberg P, Andersson T. Migration and invasion of oral squamous carcinoma cells is promoted by WNT5A, a regulator of cancer progression. J Oral Pathol Med 2014; 44:776-84. [PMID: 25459554 DOI: 10.1111/jop.12292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) constitutes 90% of all cancers in the oral cavity, and the prognosis for patients diagnosed with OSCC is still poor. The identification of novel therapeutic targets and prognostic markers for OSCC is therefore essential. Previous studies of OSCC revealed an increased expression of WNT5A in the tumor tissue. However, no functional studies of WNT5A-induced effects in OSCC have been performed. METHODS Two different OSCC cell lines were used for analysis of WNT5A expression by Western blot, whereas WNT5A-induced responses were analyzed by measuring calcium (Ca²⁺) signaling, PKC activation, migration and invasion. RESULTS Despite the lack of WNT5A expression, both cell lines responded to recombinant WNT5A (rWNT5A) with activation of the non-canonical WNT/Ca²⁺ /PKC pathway. This effect was ascertained to be mediated by WNT5A by use of the WNT5A antagonist, Box5. To investigate how WNT5A affects tumor progression, rWNT5A-induced alterations in BrdU absorbance (reflecting the number of tumor cells) were analyzed. rWNT5A had no effect on BrdU absorbance but instead promoted tumor cell migration and invasion. These results were confirmed by the use of the WNT5A-mimicking peptide Foxy5, while the rWNT5A-induced migration was blocked by secreted Frizzled-related protein 1 (SFRP1), protein kinase C inhibitors or the intracellular Ca²⁺ chelator, MAPT. CONCLUSIONS These novel data clearly show that WNT5A activates the non-canonical WNT/Ca²⁺ /PKC pathway and increases migration and invasion of OSCC cells. This may indicate how an increased WNT5A expression in the tumor tissue is likely to promote progression of OSCC.
Collapse
Affiliation(s)
- Zdenka Prgomet
- Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Lena Axelsson
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Pia Lindberg
- Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Albadawi H, Haurani MJ, Oklu R, Trubiano JP, Laub PJ, Yoo HJ, Watkins MT. Differential effect of zoledronic acid on human vascular smooth muscle cells. J Surg Res 2012; 182:339-46. [PMID: 23164362 DOI: 10.1016/j.jss.2012.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/09/2012] [Accepted: 10/17/2012] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether zoledronic acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating versus quiescent cells, and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. METHODS Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity, and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly-adenosine diphosphate ribose polymerase enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly adenosine diphosphate-ribosylated protein, respectively. RESULTS There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating versus quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of activity. CONCLUSIONS These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion, and migration, which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation.
Collapse
Affiliation(s)
- Hassan Albadawi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhou X, Qian J, Hua L, Shi Q, Liu Z, Xu Y, Sang B, Mo J, Yu R. Geranylgeranyltransferase I promotes human glioma cell growth through Rac1 membrane association and activation. J Mol Neurosci 2012; 49:130-9. [PMID: 23073905 DOI: 10.1007/s12031-012-9905-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ghavami S, Yeganeh B, Stelmack GL, Kashani HH, Sharma P, Cunnington R, Rattan S, Bathe K, Klonisch T, Dixon IMC, Freed DH, Halayko AJ. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis 2012; 3:e330. [PMID: 22717585 PMCID: PMC3388233 DOI: 10.1038/cddis.2012.61] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) are cholesterol-lowering drugs that exert other cellular effects and underlie their beneficial health effects, including those associated with myocardial remodeling. We recently demonstrated that statins induces apoptosis and autophagy in human lung mesenchymal cells. Here, we extend our knowledge showing that statins simultaneously induces activation of the apoptosis, autophagy and the unfolded protein response (UPR) in primary human atrial fibroblasts (hATF). Thus we tested the degree to which coordination exists between signaling from mitochondria, endoplasmic reticulum and lysosomes during response to simvastatin exposure. Pharmacologic blockade of the activation of ER-dependent cysteine-dependent aspartate-directed protease (caspase)-4 and lysosomal cathepsin-B and -L significantly decreased simvastatin-induced cell death. Simvastatin altered total abundance and the mitochondrial fraction of proapoptotic and antiapoptotic proteins, while c-Jun N-terminal kinase/stress-activated protein kinase mediated effects on B-cell lymphoma 2 expression. Chemical inhibition of autophagy flux with bafilomycin-A1 augmented simvastatin-induced caspase activation, UPR and cell death. In mouse embryonic fibroblasts that are deficient in autophagy protein 5 and refractory to autophagy induction, caspase-7 and UPR were hyper-induced upon treatment with simvastatin. These data demonstrate that mevalonate cascade inhibition-induced death of hATF manifests from a complex mechanism involving co-regulation of apoptosis, autophagy and UPR. Furthermore, autophagy has a crucial role in determining the extent of ER stress, UPR and permissiveness of hATF to cell death induced by statins.
Collapse
Affiliation(s)
- S Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B Yeganeh
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - G L Stelmack
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - H H Kashani
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - P Sharma
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - R Cunnington
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Rattan
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K Bathe
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - T Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - I M C Dixon
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - D H Freed
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - A J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|