1
|
Sousa-Pimenta M, Estevinho LM, Szopa A, Basit M, Khan K, Armaghan M, Ibrayeva M, Sönmez Gürer E, Calina D, Hano C, Sharifi-Rad J. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front Pharmacol 2023; 14:1157306. [PMID: 37229270 PMCID: PMC10203197 DOI: 10.3389/fphar.2023.1157306] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Over the years, many biological and synthetic agents have been explored and tested in attempts to halt the spread of cancer and/or cure it. Currently, several natural compounds have and are being considered in this regard. For example, paclitaxel is a potent anticancer drug that originates from the tree Taxus brevifolia. Paclitaxel has several derivatives, namely, docetaxel and cabazitaxel. These agents work by disrupting microtubule assembling dynamics and inducing cell cycle arrest at the G2/M phase of the cell cycle, ultimately triggering apoptosis. Such features have helped to establish paclitaxel as an authoritative therapeutic compound against neoplastic disorders. After the completion of compound (hemi) synthesis, this drug received approval for the treatment of solid tumors either alone or in combination with other agents. In this review, we explore the mechanisms of action of paclitaxel and its derivatives, the different formulations available, as well as the molecular pathways of cancer resistance, potential risks, and other therapeutic applications. In addition, the role of paclitaxel in hematological malignancies is explored, and potential limitations in the therapeutic use of paclitaxel at the clinical level are examined. Furthermore, paclitaxel is known to cause increased antigen presentation. The immunomodulatory potential of taxanes, alone or in combination with other pharmacologic agents, is explored. Despite terpene-alkaloids derivatives' anti-mitotic potential, the impact of this class of drugs on other oncogenic pathways, such as epithelial-to-mesenchymal transition and the epigenetic modulation of the transcription profile of cancer cells, is also analyzed, shedding light on potential future chemotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Department of Onco‐Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Letícia M. Estevinho
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança, Portugal
- Department of Biology and Biotechnology, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança, Portugal
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | - Mahnoor Basit
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Manshuk Ibrayeva
- Department of Natural Sciences, Faculty of Science and Technology, Caspian University of Technology and Engineering named after Sh.Yessenov, Aktau, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Chartres, France
| | | |
Collapse
|
2
|
Rawal S, Khot S, Bora V, Patel B, Patel MM. Surface-modified nanoparticles of docetaxel for chemotherapy of lung cancer: An intravenous to oral switch. Int J Pharm 2023; 636:122846. [PMID: 36921744 DOI: 10.1016/j.ijpharm.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Despite being potent, the marketed formulations of Docetaxel (DX) are associated with numerous side effects and are meant for intravenous administration. Advanced pharmaceutical nanotechnology has a significant potential to facilitate the 'intravenous (i.v) to oral switch'. The present research work deals with the development of an orally administrable, folate-receptor-targeted Nanostructured lipid carriers (NLCs) of DX (FA-DX-NLCs) for facilitating oral chemotherapy of lung cancer while overcoming the bioavailability and toxicity issues. The nanoformulation prepared to employ high-pressure homogenization and lyophilization, was evaluated and statistically analyzed for various in-vitro and in-vivo formulation characteristics. The lyophilized nanoparticles were observed to be spherical with a particle size of 183.4 ± 2.13 (D90), Pdi of 0.358 ± 0.03, % EE of 82.41 ± 2.44, % DL of 4.41 ± 0.54 and a zeta potential of -3.3 ± 0.7 mv. The increased oral in-vivo bioavailability of DX was evident from the plasma-concentration area under the time curve (AUC0-t), which was ∼ 27-fold greater for FA-DX-NLCs as compared to DX suspension. The orally administered FA-DX-NLCs exhibited excellent antitumor efficacy in a pre-clinical model of lung carcinoma. Tumor staging, histopathology, and immunostaining of the tumors suggested greater anti-proliferative, apoptotic, anti-metastatic, and anti-angiogenic potential as compared to DX-suspension. The pre-clinical toxicity studies affirmed the excellent safety and bio-compatibility of FA-DX-NLCs. The research work presents immense translational potential for switching the DX-based chemotherapy for lung cancer from 'hospital to home.'
Collapse
Affiliation(s)
- Shruti Rawal
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Shubham Khot
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Bhoomika Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India.
| |
Collapse
|
3
|
Zhao B, Gu Z, Zhang Y, Li Z, Cheng L, Li C, Hong Y. Starch-based carriers of paclitaxel: A systematic review of carriers, interactions, and mechanisms. Carbohydr Polym 2022; 291:119628. [DOI: 10.1016/j.carbpol.2022.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/02/2022]
|
4
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
5
|
A. Razak SA, Mohd Gazzali A, Fisol FA, M. Abdulbaqi I, Parumasivam T, Mohtar N, A. Wahab H. Advances in Nanocarriers for Effective Delivery of Docetaxel in the Treatment of Lung Cancer: An Overview. Cancers (Basel) 2021; 13:400. [PMID: 33499040 PMCID: PMC7865793 DOI: 10.3390/cancers13030400] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Docetaxel (DCX) is a highly effective chemotherapeutic drug used in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). The drug is known to have low oral bioavailability due to its low aqueous solubility, poor membrane permeability and susceptibility to hepatic first-pass metabolism. To mitigate these problems, DCX is administered via the intravenous route. Currently, DCX is commercially available as a single vial that contains polysorbate 80 and ethanol to solubilize the poorly soluble drug. However, this formulation causes short- and long-term side effects, including hypersensitivity, febrile neutropenia, fatigue, fluid retention, and peripheral neuropathy. DCX is also a substrate to the drug efflux pump P-glycoprotein (P-gp) that would reduce its concentration within the vicinity of the cells and lead to the development of drug resistance. Hence, the incorporation of DCX into various nanocarrier systems has garnered a significant amount of attention in recent years to overcome these drawbacks. The surfaces of these drug-delivery systems indeed can be functionalized by modification with different ligands for smart targeting towards cancerous cells. This article provides an overview of the latest nanotechnological approaches and the delivery systems that were developed for passive and active delivery of DCX via different routes of administration for the treatment of lung cancer.
Collapse
Affiliation(s)
- S. Aishah A. Razak
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Faisalina Ahmad Fisol
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institute of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), Gelugor, Penang 11700, Malaysia
| | - Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| |
Collapse
|
6
|
Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling. J Control Release 2020; 328:368-394. [DOI: 10.1016/j.jconrel.2020.08.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/12/2023]
|
7
|
Li X, Chen C, Dai Y, Huang C, Han Q, Jing L, Ma Y, Xu Y, Liu Y, Zhao L, Wang J, Sun X, Yao X. Cinobufagin suppresses colorectal cancer angiogenesis by disrupting the endothelial mammalian target of rapamycin/hypoxia-inducible factor 1α axis. Cancer Sci 2019; 110:1724-1734. [PMID: 30839155 PMCID: PMC6501006 DOI: 10.1111/cas.13988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/16/2019] [Accepted: 03/03/2019] [Indexed: 12/25/2022] Open
Abstract
Inducing angiogenesis is a hallmark of cancers that sustains tumor growth and metastasis. Neovascularization is a surprisingly early event during the multistage progression of cancer. Cinobufagin, an important bufadienolide originating from Chan Su, has been clinically used to treat cancer in China since the Tang dynasty. Here, we show that cinobufagin suppresses colorectal cancer (CRC) growth in vivo by downregulating angiogenesis. The hierarchized neovasculature is significantly decreased and the vascular network formation is disrupted in HUVEC by cinobufagin in a dose‐dependent way. Endothelial apoptosis is observed by inducing reactive oxygen species (ROS) accumulation and mitochondrial dysfunction which can be neutralized by N‐acetyl‐l‐cysteine (NAC). Expression of hypoxia‐inducible factor 1α (HIF‐1α) is reduced and phosphorylation of mTOR at Ser2481 and Akt at Ser473 is downregulated in HUVEC. Endothelial apoptosis is triggered by cinobufagin by stimulation of Bax and cascade activation of caspase 9 and caspase 3. Increased endothelial apoptosis rate and alterations in the HIF‐1α/mTOR pathway are recapitulated in tumor‐bearing mice in vivo. Further, the anti‐angiogenesis function of cinobufagin is consolidated based on its pro‐apoptotic effects on an EOMA‐derived hemangioendothelioma model. In conclusion, cinobufagin suppresses tumor neovascularization by disrupting the endothelial mTOR/HIF‐1α pathway to trigger ROS‐mediated vascular endothelial cell apoptosis. Cinobufagin is a promising natural anti‐angiogenetic drug that has clinical translation potential and practical application value.
Collapse
Affiliation(s)
- Xiaowu Li
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of General Surgery, The First Affiliated Hospital & School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunhui Chen
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yu Dai
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qinrui Han
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Linlin Jing
- Traditional Chinese Medicine Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Ye Ma
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yihua Xu
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yawei Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Amerizadeh F, Khazaei M, Maftouh M, Mardani R, Bahrami A. miRNA Targeting Angiogenesis as a Potential Therapeutic Approach in the Treatment of Colorectal Cancers. Curr Pharm Des 2019; 24:4668-4674. [DOI: 10.2174/1381612825666190110161843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Angiogenesis refers to the formation of recent blood vessels, which is one of the characteristics of
cancer progression and it has been deliberated as a putative target to the treatment of many kinds of cancers. The
VEGF signaling substrate is very important for angiogenesis and is commonly high-regulated in tumors. As a
result, this molecule has attracted the attention of most of the researchers to develop antiangiogenic therapies. We
have presented that VEGF blockage in neoadjuvant setting via bevacizumab, aflibercept and sunitinib not only
has revealed some promising benefits but also has shown a large negative outcome in the adjuvant trials. However,
at an advanced stage of tumors, suppression of VEGF alone is inadequate to stop advancement, encouraging
drug resistance, and probably enhancing metastasis and invasion in the tumor microenvironment, thereby suggesting
the therapeutic potential of targeting angiogenic pathways in gastrointestinal cancers.
Collapse
Affiliation(s)
- Forouzan Amerizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Mardani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Filippi R, Lombardi P, Depetris I, Fenocchio E, Quarà V, Chilà G, Aglietta M, Leone F. Rationale for the use of metronomic chemotherapy in gastrointestinal cancer. Expert Opin Pharmacother 2018; 19:1451-1463. [PMID: 30161003 DOI: 10.1080/14656566.2018.1512585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Metronomic chemotherapy (mCT) is endowed with various properties, ranging from antiangiogenic to immunomodulation, and may revert tumor resistance to conventional drug administration. A variety of antineoplastic agents displayed activity when administered with metronomic schedules in preclinical models of gastrointestinal cancers. However, most of the field is still unexplored. AREAS COVERED Herein, the authors review the existing literature from PubMed, concerning the use of mCT in gastrointestinal oncology. EXPERT OPINION A mounting body of evidence is emerging in support of mCT as a treatment option for gastrointestinal tumors, but the frequent signs of clinical activity inconsistently translate into a benefit for survival. Research in this field should focus on providing high-quality evidence on the safety and efficacy of mCT, with more prospective, comparative trials; identifying the subgroups of patients for whom mCT would be the best approach; establishing standardized protocols based on mCT pharmacokinetics and pharmacodynamics; developing drug activity biomarkers. mCT is also potentially suitable for combinations with targeted antiangiogenic drugs and may be incorporated with conventional administration into dual regimens.
Collapse
Affiliation(s)
- Roberto Filippi
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Pasquale Lombardi
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Ilaria Depetris
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Elisabetta Fenocchio
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Virginia Quarà
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Giovanna Chilà
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Massimo Aglietta
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Francesco Leone
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| |
Collapse
|
10
|
Wang T, Zhan Q, Peng X, Qiu Z, Zhao T. CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel. Oncol Lett 2018; 16:1267-1274. [PMID: 30061946 PMCID: PMC6063033 DOI: 10.3892/ol.2018.8769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/09/2018] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is one of the most common malignant tumor types globally. Acquisition of chemoresistance in lung cancer cells is the primary cause of chemotherapy failure. Inflammatory chemokine C-C motif chemokine ligand 2 (CCL2) has been reported to be involved in the progression of cancer and drug resistance. However, its function in docetaxel (DTX) resistance of lung cancer remains unclear. In the present study, the mechanism underlying DTX-induced drug resistance was investigated. Reverse transcription-quantitative polymerase chain reaction and western blot analysis revealed that DTX treatment increased the mRNA and protein expression of CCL2 in lung cancer A549 cells. CCL2 was knocked down by small interfering RNA or was overexpressed by recombinant CCL2 lentivirus, and cell viability was determined. An MTT assay indicated that CCL2 downregulation decreased the viability of A549 cells and augmented the DTX-induced cytotoxicity, whereas CCL2 upregulation protected A549 cells from DTX-induced cytotoxicity. Additionally, it was revealed that CCL2 overexpression activated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling and inhibited apoptosis-associated protein caspase-3 activation and B-cell lymphoma 2 (Bcl-2) phosphorylation at Ser70 induced by DTX, and enhanced DTX-induced Bcl-2-associated death promoter phosphorylation at Ser112. PI3K/AKT inhibitor LY294002 restored DTX-induced caspase-3 activation and Bcl-2 phosphorylation, reversed the effect of CCL2 on the viability of A549 cells and enhanced DTX-induced cytotoxicity. These results demonstrated that chemoresistance may be mediated by cell stress responses involving CCL2 expression, suggesting that CCL2 may be a potential target for enhancing the therapeutic effect of DTX in lung cancer.
Collapse
Affiliation(s)
- Ting Wang
- Department of Oncology, The People's Hospital of Nanchang County, Nanchang, Jiangxi 330200, P.R. China
| | - Qingyuan Zhan
- Department of Internal Medicine 2, Tumor Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaodong Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Qiu
- Department of Internal Medicine 6, Tumor Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Tiantian Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Ruiz-Gatón L, Espuelas S, Larrañeta E, Reviakine I, Yate LA, Irache JM. Pegylated poly(anhydride) nanoparticles for oral delivery of docetaxel. Eur J Pharm Sci 2018; 118:165-175. [PMID: 29597043 DOI: 10.1016/j.ejps.2018.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/23/2018] [Indexed: 11/28/2022]
Abstract
The aim of this work was to investigate the potential of pegylated poly(anhydride) nanoparticles to enhance the oral bioavailability of docetaxel (DTX). Nanoparticles were prepared after the incubation between the copolymer of methyl vinyl ether and maleic anhydride (Gantrez® AN), poly(ethylene glycol) (PEG2000 or PEG6000) and docetaxel (DTX). The oral administration of a single dose of pegylated nanoparticles to mice provided sustained and prolonged therapeutic plasma levels of docetaxel for up 48-72 h. In addition, the relative oral bioavailability of docetaxel was around 32%. The organ distribution studies revealed that docetaxel underwent a similar distribution when orally administered encapsulated in nanoparticles as when intravenously as Taxotere®. This observation, with the fact that the clearance of docetaxel when loaded into the oral pegylated nanoparticles was found to be similar to that of intravenous formulation, suggests that docetaxel would be released at the epithelium surface and then absorbed to the circulation.
Collapse
Affiliation(s)
- Luisa Ruiz-Gatón
- Nanomedicines and Vaccines (NANO-VAC) Research Group, University of Navarra, Pamplona 31080, Spain
| | - Socorro Espuelas
- Nanomedicines and Vaccines (NANO-VAC) Research Group, University of Navarra, Pamplona 31080, Spain
| | - Eneko Larrañeta
- Nanomedicines and Vaccines (NANO-VAC) Research Group, University of Navarra, Pamplona 31080, Spain
| | | | | | - Juan M Irache
- Nanomedicines and Vaccines (NANO-VAC) Research Group, University of Navarra, Pamplona 31080, Spain.
| |
Collapse
|
13
|
Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett 2017; 400:282-292. [PMID: 28189534 DOI: 10.1016/j.canlet.2017.01.040] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy given at maximum tolerated doses (MTD) has been the mainstay of cancer treatment for more than half a century. In some chemosensitive diseases such as hematologic malignancies and solid tumors, MTD has led to complete remission and even cure. The combination of maintenance therapy and standard MTD also can generate good disease control; however, resistance to chemotherapy and disease metastasis still remain major obstacles to successful cancer treatment in the majority of advanced tumors. Metronomic chemotherapy, defined as frequent administration of chemotherapeutic agents at a non-toxic dose without extended rest periods, was originally designed to overcome drug resistance by shifting the therapeutic target from tumor cells to tumor endothelial cells. Metronomic chemotherapy also exerts anti-tumor effects on the immune system (immunomodulation) and tumor cells. The goal of immunotherapy is to enhance host anti-tumor immunities. Adding immunomodulators such as metronomic chemotherapy to immunotherapy can improve the clinical outcomes in a synergistic manner. Here, we review the anti-tumor mechanisms of metronomic chemotherapy and the preliminary research addressing the combination of immunotherapy and metronomic chemotherapy for cancer treatment in animal models and in clinical setting.
Collapse
|
14
|
Abu Lila AS, Ishida T. Metronomic chemotherapy and nanocarrier platforms. Cancer Lett 2016; 400:232-242. [PMID: 27838415 DOI: 10.1016/j.canlet.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
The therapeutic concept of administering chemotherapeutic agents continuously at lower doses, relative to the maximum tolerated dose (MTD) without drug-free breaks over extended periods -known as "metronomic chemotherapy"- is a promising approach for anti-angiogenic cancer therapy. In comparison with MTD chemotherapy regimens, metronomic chemotherapy has demonstrated reduced toxicity. However, as a monotherapy, metronomic chemotherapy has failed to provide convincing results in clinical trials. Therapeutic approaches including combining the anti-angiogenic "metronomic" therapy with conventional radio-/chemo-therapy and/or targeted delivery of chemotherapeutic agents to tumor tissues via their encapsulation with nanocarrier-based platforms have proven to potentiate the overall therapeutic outcomes. In this review, therefore, we focused on the mutual contribution made by nanoscale drug delivery platforms to the therapeutic efficacy of metronomic-based chemotherapy. In addition, the influence that the dosing schedule has on the overall therapeutic efficacy of metronomic chemotherapy is discussed.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Hail University, Hail 2440, Saudi Arabia
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
15
|
Maj E, Papiernik D, Wietrzyk J. Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol 2016; 49:1773-1784. [PMID: 27826619 PMCID: PMC5063425 DOI: 10.3892/ijo.2016.3709] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of tumor angiogenesis opened a new path in fighting cancer. The approval of different antiangiogenic agents, most targeting vascular endothelial growth factor (VEGF) signaling, has either increased the effectiveness of standard chemotherapy or even replaced it by offering better patient outcomes. However, an increasing number of preclinical and clinical observations have shown that the process of angiogenesis is far from clearly understood. Apart from targeting the VEGF pathway, novel strategies aim to influence other molecular factors that are involved in tumor angiogenesis. In addition, naturally occurring compounds seem to offer additional agents for influencing angiogenesis. The first concept of antiangiogenic therapy aimed to destroy tumor vessels, while it turned out that, paradoxically, antiangiogenic drugs normalized vasculature and as a result offered an improvement in chemotherapeutic delivery. In order to design an effective treatment schedule, methods for detecting the time window of normalization and biomarkers predicting patient response are needed. The initial idea that antiangiogenic therapy would be resistance-free failed to materialize and currently we still face the obstacle of resistance to antiangiogenic therapy.
Collapse
Affiliation(s)
- Ewa Maj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Diana Papiernik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
16
|
Gnoni A, Silvestris N, Licchetta A, Santini D, Scartozzi M, Ria R, Pisconti S, Petrelli F, Vacca A, Lorusso V. Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 2015; 95:46-61. [PMID: 25656744 DOI: 10.1016/j.critrevonc.2015.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Metronomic chemotherapy (MC) refers to the close administration of a chemotherapeutic drug for a long time with no extended drug-free breaks. It was developed to overcome drug resistance, partly by shifting the therapeutic target from tumor cells to the tumor vasculature, with less toxicity. Because of this peculiar way of administration, MC can be viewed as a form of long-term 'maintenance' treatment, and can be integrated with standard and conventional chemotherapy in a "chemo-switching" strategy. Additional mechanisms are involved in its antitumor activity, such as activation of immunity, induction of tumor dormancy, chemotherapy-driven dependency of cancer cells, and the '4D effect'. In this paper we report the most important studies that have analyzed these processes. In fact, a number of preclinical and clinical studies in solid tumors as well as in multiple myeloma, have been reported regarding several chemotherapy drugs which have been proposed with a metronomic schedule: vinorelbine, cyclophosphamide, capecitabine, methotrexate, bevacizumab, etoposide, gemcitabine, sorafenib, everolimus and temozolomide. The results of these studies have been sometimes conflicting, highlighting the need to develop reliable tools for patient selection and stratification. However, a more precise evaluation of MC strategies with the ongoing randomized phase II/III clinical is fundamental, because of the strict correlation of this approach with translational research and target therapy. Moreover, because of the low toxicity of MC, these studies will also help to better evaluate the clinical benefit of this treatment, with a special focus on elderly and low performance status patients.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Moscati, Taranto, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy
| | | | - Daniele Santini
- Medical Oncology Unit, University Campus Biomedico, Roma, Italy
| | - Mario Scartozzi
- Department of Medical Oncoloy, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Fausto Petrelli
- Medical Oncology Unit, Hospital of Treviglio, Treviglio, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Lorusso
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
17
|
Abdel-Rahman O. Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: preclinical and clinical aspects. Crit Rev Oncol Hematol 2015; 93:18-27. [PMID: 24970311 DOI: 10.1016/j.critrevonc.2014.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
The prognosis of advanced gastric cancer has been dreadful with the majority of patients dying of their disease within 1 year of the diagnosis. In the advanced stage several therapeutic options can be discussed, including molecular targeted agents, but biological predicting factors are lacking. A number of molecular targets have been studied over the last decade bringing to several phase II studies; however very few agents moved into phase III clinical trials. The VEGFR-2 inhibitor monoclonal antibody ramucirumab has been recently approved in advanced progressing gastric cancer. This article reviews the basic science as well as clinical data of VEGF signaling in advanced gastric cancer with special emphasis on the different VEGF targeting agents tested previously in this disease.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
18
|
Hendrikx JJMA, Lagas JS, Wagenaar E, Rosing H, Schellens JHM, Beijnen JH, Schinkel AH. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation. Br J Cancer 2014; 110:2669-76. [PMID: 24781280 PMCID: PMC4037831 DOI: 10.1038/bjc.2014.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022] Open
Abstract
Background: The intestinal uptake of the taxanes paclitaxel and docetaxel is seriously hampered by drug efflux through P-glycoprotein (P-gp) and drug metabolism via cytochrome P450 (CYP) 3A. The resulting low oral bioavailability can be boosted by co-administration of P-gp or CYP3A4 inhibitors. Methods: Paclitaxel or docetaxel (10 mg/kg) was administered to CYP3A4-humanised mice after administration of the P-gp inhibitor elacridar (25 mg kg−1) and the CYP3A inhibitor ritonavir (12.5 mg kg−1). Plasma and brain concentrations of the taxanes were measured. Results: Oral co-administration of the taxanes with elacridar increased plasma concentrations of paclitaxel (10.7-fold, P<0.001) and docetaxel (four-fold, P<0.001). Co-administration with ritonavir resulted in 2.5-fold (paclitaxel, P<0.001) and 7.3-fold (docetaxel, P<0.001) increases in plasma concentrations. Co-administration with both inhibitors simultaneously resulted in further increased plasma concentrations of paclitaxel (31.9-fold, P<0.001) and docetaxel (37.4-fold, P<0.001). Although boosting of orally applied taxanes with elacridar and ritonavir potentially increases brain accumulation of taxanes, we found that only brain concentrations, but not brain-to-plasma ratios, were increased after co-administration with both inhibitors. Conclusions: The oral availability of taxanes can be enhanced by co-administration with oral elacridar and ritonavir, without increasing the brain penetration of the taxanes.
Collapse
Affiliation(s)
- J J M A Hendrikx
- 1] Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands [2] Division of Molecular Oncology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands
| | - J S Lagas
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands
| | - E Wagenaar
- Division of Molecular Oncology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands
| | - H Rosing
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands
| | - J H M Schellens
- 1] Department of Clinical Pharmacology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands [2] Department of Pharmaceutical Sciences, Utrecht University, PO 80082, 3508 TB Utrecht, The Netherlands
| | - J H Beijnen
- 1] Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands [2] Department of Pharmaceutical Sciences, Utrecht University, PO 80082, 3508 TB Utrecht, The Netherlands
| | - A H Schinkel
- Division of Molecular Oncology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands
| |
Collapse
|
19
|
Chow A, Wong A, Francia G, Man S, Kerbel RS, Emmenegger U. Preclinical analysis of resistance and cross-resistance to low-dose metronomic chemotherapy. Invest New Drugs 2013; 32:47-59. [PMID: 23728939 DOI: 10.1007/s10637-013-9974-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
Low-dose metronomic chemotherapy is an emerging form of chemotherapy with distinct mechanisms of action from conventional chemotherapy (e.g., antiangiogenesis). Although developed to overcome resistance to conventional chemotherapy, metronomic chemotherapy is subject to resistance on its own. However, there is a paucity of information on mechanisms of resistance, on cross-resistance between metronomic regimens using different cytotoxic drugs, and on cross-resistance between metronomic versus conventional chemotherapy, or versus targeted antiangiogenic therapy. Herein we show that PC-3 human prostate cancer xenografts were sensitive to both metronomic cyclophosphamide and metronomic docetaxel, but resistant to metronomic topotecan. Conventional docetaxel was only moderately active in parental PC-3 and in metronomic cyclophosphamide resistant PC-3 tumors. However, in metronomic cyclophosphamide resistant PC-3 tumors combining conventional docetaxel or bolus cyclophosphamide therapy with continued metronomic cyclophosphamide was superior to each treatment alone. Furthermore, bevacizumab had single-agent activity against metronomic cyclophosphamide resistant PC-3 tumors. Microarray analyses identified altered regulation of protein translation as a potential mechanism of resistance to metronomic cyclophosphamide. Our results suggest that sensitivity to metronomic chemotherapy regimens using different cytotoxic drugs not only depends on shared mechanisms of action such as antiangiogenesis, but also on as yet unknown additional antitumor effects that appear to be drug-specific. As clinically observed with targeted antiangiogenic agents, the continued use of metronomic chemotherapy beyond progression may amplify the effects of added second-line therapies or vice versa. However, metronomic chemotherapy is no different from other systemic therapies in that predictive biomarkers will be essential to fully exploit this novel use of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Romiti A, Cox MC, Sarcina I, Di Rocco R, D'Antonio C, Barucca V, Marchetti P. Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol 2013; 72:13-33. [PMID: 23475105 DOI: 10.1007/s00280-013-2125-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Over the past few years, more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to impressive improvements. In this evolving scenario, a new way of delivering older cytotoxic drugs has also been developing. Many studies demonstrated that several cytotoxic drugs have antiangiogenic properties if administered frequently and at lower doses compared with standard schedules containing maximal tolerated doses (MTD). Such a new strategy, named metronomic chemotherapy, focuses on a different target: the slowly proliferating tumour endothelial cells. About 10 years ago, metronomic chemotherapy was firstly enunciated and hereafter many clinical experiences were published related to almost any cancer disease. This review analyses available studies dealing with metronomic chemotherapy and its combination with several targeted agents in solid tumours. METHODS A computerized literature search of MEDLINE was performed using the following search terms: metronomic OR "continuous low dose" AND chemotherapy AND cancer OR solid tumours. RESULTS Satisfactory results have been achieved in diverse tumour types, such as breast and prostate cancer or paediatric sarcomas. Moreover, many studies have reported that metronomic chemotherapy determined minimal toxicity compared to MTD chemotherapy. Overall, published series on metronomic schedules are very heterogeneous often reporting on retrospective data, while only very few studies were randomized trials. These limitations still prevent to draw definitive conclusions in diverse tumour types. CONCLUSIONS Large well-designed studies are eagerly awaited for confirming the promises of metronomic schedules and their combinations with targeted molecules.
Collapse
Affiliation(s)
- Adriana Romiti
- Department of Oncology, Faculty of Medicine and Psychology, Sapienza University, Sant' Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wu H, Xin Y, Xiao Y, Zhao J. Low-dose docetaxel combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts. Cancer Biother Radiopharm 2012; 27:204-9. [PMID: 22283637 DOI: 10.1089/cbr.2011.1103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-dose metronomic (LDM) chemotherapy represents a new strategy to treat solid tumors by stronger antiangiogenic activity and less side-effects, especially in combination with other antiangiogenic agents. The aim of the study is to investigate the antiangiogenic effect of docetaxel alone and combined with (-)-epigallocatechin-3-gallate (EGCG) in preclinical settings of gastric cancer. BGC-823 human gastric cancer xenograft model was used, and tumor growth, side-effects of mice were closely monitored. Expression of vascular endothelial growth factor and CD31 were observed by immunohistochemistry, and microvessel density of the tumor tissues was assessed by CD31 immunohistochemical analysis. Our results indicated that LDM docetaxel inhibited angiogenesis and growth of gastric cancer with less toxicity, and the effects were further enhanced by the concurrent administration of EGCG. Our study, for the first time, rationally demonstrated that LDM docetaxel treatment used alone or combined with EGCG is effective and safe in preclinical settings of gastric cancer. Our data suggest that LDM docetaxel used alone or combined with EGCG may be an innovative and promising therapeutic strategy in the experimental treatment of human gastric cancer.
Collapse
Affiliation(s)
- Hongju Wu
- Fourth Laboratory of Cancer Institute, Department of Tumor Pathology of General Surgery Institute, Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | |
Collapse
|
22
|
Eroglu Z, Kong KM, Jakowatz JG, Samlowski W, Fruehauf JP. Phase II clinical trial evaluating docetaxel, vinorelbine and GM-CSF in stage IV melanoma. Cancer Chemother Pharmacol 2011; 68:1081-7. [PMID: 21769667 PMCID: PMC3180631 DOI: 10.1007/s00280-011-1703-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/30/2011] [Indexed: 11/24/2022]
Abstract
Purpose Metastatic melanoma patients have a poor prognosis. No chemotherapy regimen has improved overall survival. More effective treatments are needed. Docetaxel has clinical activity in melanoma and may be more active when combined with vinorelbine. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has shown activity as an adjuvant melanoma therapy. We carried out a phase II study of these agents in patients with stage IV melanoma. Methods Patients had documented stage IV melanoma and may have had prior immuno or chemotherapy. Previously treated brain metastases were allowed. Docetaxel (40 mg/m2 IV) and vinorelbine (30 mg/m2 IV) were administered every 14 days, followed by GM-CSF (250 mg/m2 SC on days 2 to 12). The primary endpoint of the study was 1-year overall survival (OS). Secondary objectives were median overall survival, response rate (per RECIST criteria), and the toxicity profiles. Results Fifty-two patients were enrolled; 80% had stage M1c disease. Brain metastases were present in 21%. Fifty-two percent of patients had received prior chemotherapy, including 35% who received prior biochemotherapy. Toxicity was manageable. Grade III/IV toxicities included neutropenia (31%), anemia (14%), febrile neutropenia (11.5%), and thrombocytopenia (9%). DVS chemotherapy demonstrated clinical activity, with a partial response in 15%, and disease stabilization in 37%. Six-month PFS was 37%. Median OS was 11.4 months and 1-year OS rate was 48.1%. Conclusions The DVS regimen was active in patients with advanced, previously treated melanoma, with manageable toxicity. The favorable 1-year overall survival and median survival rates suggest that further evaluation of the DVS regimen is warranted.
Collapse
Affiliation(s)
- Zeynep Eroglu
- Departments of Medicine, University of California Irvine Medical Center, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|