1
|
Blancas I, Linares-Rodríguez M, Martínez de Dueñas E, Herrero-Vicent C, Molero-Mir MD, Garrido JM, Rodríguez-Serrano F. Early increase in tamoxifen dose in CYP2D6 poor metaboliser breast cancer patients and survival: A propensity score matching analysis. Breast 2023; 69:342-348. [PMID: 37011481 PMCID: PMC10090803 DOI: 10.1016/j.breast.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
PURPOSE Tamoxifen is a drug used for hormone receptor-positive breast cancers, primarily metabolised by the CYP2D6 enzyme into active metabolites such as endoxifen. CYP2D6 displays varying degrees of activity depending on its genotype. This study aims to analyse the effect of an early increase in tamoxifen dose in poor metabolisers (PM) on survival. METHODS We enrolled 220 patients diagnosed with breast cancer who were treated with tamoxifen. CYP2D6 polymorphisms were determined, and the phenotype was estimated according to the Clinical Pharmacogenetics Implementation Consortium. Disease-free survival (DFS) and overall survival (OS) were analysed considering the entire patient group, and a subgroup of 110 patients selected by Propensity Score Matching (PSM). All women were treated with 20 mg/day of tamoxifen for 5 years, except PM, who initially received 20 mg/day for 4 months, followed by 40 mg/day for 4 months and 60 mg/day for 4 months before returning to the standard dose of 20 mg/day until completing 5 years of treatment. RESULTS The analysis of the influence of CYP2D6 polymorphisms in the complete group and in the PSM subgroup revealed no significant differences for DFS or OS. Furthermore, DFS and OS were analysed in relation to various covariates such as age, histological grade, nodal status, tumour size, HER-2, Ki-67, chemotherapy, and radiotherapy. Only age, histological grade, nodal status, and chemotherapy treatment demonstrated statistical significance. CONCLUSION An early increase in tamoxifen dose in PM patients is not associated with survival differences among CYP2D6 phenotypes.
Collapse
|
2
|
Nahid NA, Johnson JA. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine. Expert Opin Drug Metab Toxicol 2022; 18:769-785. [PMID: 36597259 PMCID: PMC9891304 DOI: 10.1080/17425255.2022.2160317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION CYP2D6 contributes to the metabolism of approximately 20-25% of drugs. However, CYP2D6 is highly polymorphic and different alleles can lead to impacts ranging from null to increase in activity. Moreover, there are commonly used drugs that potently inhibit the CYP2D6, thus causing 'phenoconversion' which can convert the genotypic normal metabolizer into phenotypic poor metabolizer. Despite growing literature on the clinical implications of non-normal CYP2D6 genotype and phenoconversion on patient-related outcomes, implementation of CYP2D6 pharmacogenetics and phenoconversion to guide prescribing is rare. This review focuses on providing the clinical importance of CYP2D6 pharmacogenetics and phenoconversion in precision medicine and summarizes the challenges and approaches to implement these into clinical practice. AREAS COVERED A literature search was performed using PubMed and clinical studies documenting the effects of CYP2D6 genotypes and/or CYP2D6 inhibitors on pharmacokinetics, pharmacodynamics or treatment outcomes of CYP2D6-metabolized drugs, and studies on implementation challenges and approaches. EXPERT OPINION Considering the extent and impact of genetic polymorphisms of CYP2D6, phenoconversion by the comedications, and contribution of CYP2D6 in drug metabolism, CYP2D6 pharmacogenetics is essential to ensure drug safety and efficacy. Utilization of proper guidelines incorporating both CYP2D6 pharmacogenetics and phenoconversion in clinical care assists in optimizing drug therapy.
Collapse
Affiliation(s)
- Noor A. Nahid
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
- Division of Cardiovascular Medicine, University of Florida College of Medicine, FL, USA
| |
Collapse
|
3
|
Ismail Al-Khalil W, Al-Salhi L, Rijjal S, Aljamali M, Youssef LA. The frequencies of CYP2D6 alleles and their impact on clinical outcomes of adjuvant tamoxifen therapy in Syrian breast cancer patients. BMC Cancer 2022; 22:1067. [PMID: 36243690 PMCID: PMC9571463 DOI: 10.1186/s12885-022-10148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tamoxifen is one of the fundamental pillars of adjuvant endocrine therapy for hormone receptor-positive breast cancer; however, 30–50% of patients receiving tamoxifen experience tumor relapse. CYP2D6, encoded by an extremely polymorphic CYP2D6 gene, is the rate-limiting enzyme of tamoxifen bioactivation. This study aimed at determining the frequencies of the most clinically relevant CYP2D6 alleles and evaluating their impact on the responsiveness to tamoxifen in a cohort of Syrian breast cancer patients. Methods This case–control study encompassed positive estrogen and/or progesterone receptor, stage 1–3 breast cancer female patients receiving tamoxifen at Al-Bairouni University Hospital, the major National Oncology Center in Syria. Successfully genotyped eligible patients (n = 97) were classified according to their response into; no recurrence group (n = 39) who had completed a five-year recurrence-free adjuvant tamoxifen therapy, and recurrence group (n = 58) who had experienced recurrence. Several star alleles including CYP2D6*4, CYP2D6*10, CYP2D6*41, and CYP2D6*69 were identified via targeted sequencing of specific polymerase chain reaction (PCR) products and phenotypes were assigned according to activity score (AS). The correlation between genotypes and disease-free survival (DFS) was assessed using Kaplan–Meier method and log-rank test. Hazard ratios were estimated using Cox proportional hazards regression models. Results The allelic frequencies of CYP2D6*41, CYP2D6*10, CYP2D6*4, and CYP2D6*69 were found to be 9.28%, 7.22%, 7.22%, and 2.58%, respectively. No statistically significant differences were observed in the frequencies of CYP2D6 phenotypes between the two arms (P = 0.24), nor the incidence of tamoxifen-induced hot flashes (P = 0.109). Poor metabolizers (PMs) tended to display shorter DFS than intermediate metabolizers (IMs) and normal metabolizers (NMs) combined (adjusted HR = 2.34, 95% CI = 0.84–6.55, P = 0.104). Notably, patients homozygous for the null CYP2D6*4 allele (1847A/A) had an elevated risk of disease recurrence compared to patients with 1847G/G genotype (adjusted HR = 5.23, 95% CI = 1.22–22.49, P = 0.026). Conclusions Our findings show no association between CYP2D6 phenotype and treatment outcomes of tamoxifen in Syrian breast cancer patients. Nevertheless, a worse DFS was revealed in patients with 1847A/A genotype (*4/*4). Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10148-8.
Collapse
Affiliation(s)
- Wouroud Ismail Al-Khalil
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Lana Al-Salhi
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Sara Rijjal
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Majd Aljamali
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic.,Faculty of Pharmacy, International University for Science and Technology (IUST), Ghabagheb, Daraa, Syrian Arab Republic.,National Commission for Biotechnology (NCBT), Damascus, Syrian Arab Republic
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic. .,Faculty of Pharmacy, International University for Science and Technology (IUST), Ghabagheb, Daraa, Syrian Arab Republic. .,National Commission for Biotechnology (NCBT), Damascus, Syrian Arab Republic.
| |
Collapse
|
4
|
Association between genetic polymorphisms in cytochrome P450 enzymes and survivals in women with breast cancer receiving adjuvant endocrine therapy: a systematic review and meta-analysis. Expert Rev Mol Med 2022; 24:e1. [PMID: 34991754 PMCID: PMC9884795 DOI: 10.1017/erm.2021.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tamoxifen is commonly prescribed for preventing recurrence in patients with breast cancer. However, the responses of the patients on tamoxifen treatment are variable. Cytochrome P450 genetic variants have been reported to have a significant impact on the clinical outcomes of tamoxifen treatment but no tangible conclusion can be made up till now. The present review attempts to provide a comprehensive review on the associative relationship between genetic polymorphisms in cytochrome P450 enzymes and survival in breast cancer patients on adjuvant tamoxifen therapy. The literature search was conducted using five databases, resulting in the inclusion of 58 studies in the review. An appraisal of the reporting quality of the included studies was conducted using the assessment tool from the Effective Public Health Practice Project (EPHPP). Meta-analyses were performed on CYP2D6 studies using Review Manager 5.3 software. For other studies, descriptive analyses were performed. The results of meta-analyses demonstrated that shorter overall survival, disease-free survival and relapse-free survival were found in the patients with decreased metabolisers when compared to normal metabolisers. The findings also showed that varying and conflicting results were reported by the included studies. The possible explanations for the variable results are discussed in this review.
Collapse
|
5
|
Cura Y, Pérez Ramírez C, Sánchez Martín A, Martínez Martínez F, Calleja Hernández MÁ, Ramírez Tortosa MDC, Jiménez Morales A. Genetic polymorphisms on the effectiveness or safety of breast cancer treatment: Clinical relevance and future perspectives. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108391. [PMID: 34893156 DOI: 10.1016/j.mrrev.2021.108391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer (BC) is the most frequent neoplasm and one of the main causes of death in women. The pharmacological treatment of BC consists of hormonal therapy, chemotherapeutic agents and targeted therapy. The response to BC therapy is highly variable in clinical practice. This variability can be explained by the presence of genetic polymorphisms in genes involved in the pharmacokinetics, pharmacodynamics or immune response of patients. The abundant evidence of associations between low-activity alleles CYP2D6*3, *4, *5, *6, *10 and *41 and poor results with tamoxifen therapy, and between DPYD gene polymorphisms rs3918290, rs55886062, rs67376798 and rs75017182 and increased risk of toxicity to fluoropyrimidine therapy, justify the existence of clinical pharmacogenetic guidelines. The NQO1 rs1800566 polymorphism is related to poorer results in BC therapy with chemotherapy agents. The polymorphism rs1695 of the GSTP1 gene has been associated with the effectiveness and toxicity of fluorouracil, cyclophosphamide and epirubicin therapy. Finally, the HLA-DQA1*02:01 allele is significantly associated with the occurrence of liver toxicity events in patients receiving lapatinib. There is moderate evidence to support the aforementioned associations and, therefore, a high probability of these being considered as future predictive genetic biomarkers of response. However, further studies are required to reinforce or clarify their clinical relevance.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Cristina Pérez Ramírez
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen Macarena, Seville, Spain.
| | - Almudena Sánchez Martín
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Fernando Martínez Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | - Alberto Jiménez Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
6
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
8
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Chan CWH, Miaskowski C, McCarthy A, Waye MMY, Yeo W, So WKW, Choi KC, Tsui SKW, Chan JYW. Tamoxifen-related endocrine symptoms in Chinese patients with breast cancer: Study protocol clinical trial (SPIRIT Compliant). Medicine (Baltimore) 2020; 99:e19083. [PMID: 32080081 PMCID: PMC7034730 DOI: 10.1097/md.0000000000019083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer in females and disease recurrence remains a significant problem. To prevent recurrence, tamoxifen is prescribed for at least 5 years. However, among patients who receive tamoxifen, individual responses are highly variable. These responses are affected by the type, frequency, and severity of endocrine symptoms, as well as adherence rates. Polymorphisms in genes involved in the metabolism of tamoxifen (ie, CYP3A4, CYP2D6) may influence responses to tamoxifen. In this study, the inter-relationships among endocrine symptoms, drug adherence, and genetic polymorphisms in Chinese breast cancer patients receiving tamoxifen therapy will be examined. We hypothesize that patients with more severe endocrine symptoms will be less likely to adhere to tamoxifen treatment. In addition, we hypothesize that a relationship will exist between the severity of tamoxifen-induced symptoms and allelic variations in tamoxifen metabolism-related genes. Although many association studies have determined that select genotypes influence the efficacy of tamoxifen, very few studies have investigated for associations between tamoxifen-induced endocrine symptoms and these polymorphisms. OBJECTIVES The aim of this study was to characterize genetic polymorphisms in tamoxifen metabolism-associated genes in Chinese women with breast cancer and to explore the inter-relationships between genetic polymorphisms, endocrine symptoms, and adherence to tamoxifen. METHOD We will conduct a prospective cohort study that follows 200 Chinese women over 18 months and assess treatment-related symptoms and genetic variations. Endocrine symptoms and drug adherence will be determined through interview-administered standardized questionnaires. Polymorphisms in drug metabolism genes will be determined using real-time polymerase chain reaction based genotyping method. Data will be analyzed to determine associations between allelic variations, endocrine symptoms, and adherence. DISCUSSION The proposed study will evaluate for polymorphisms in gene(s) that are associated with tamoxifen-related endocrine symptoms and adherence with tamoxifen. We will explore the relationships between genotypes, endocrine symptoms, and drug adherence in Chinese breast cancer patients. Findings from this study may assist clinicians to identify patients at higher risk for a worse symptom experience and lower adherence rates and enable them to initiate appropriate interventions. In the long term, the findings from this study may be used to develop and test tailored symptom management interventions for these patients.
Collapse
Affiliation(s)
- Carmen Wing Han Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | | | - Alexandra McCarthy
- School of Nursing, Midwifery and Social Work, University of Queensland, Queensland, Australia
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong
| | | | - Winnie Kwok Wai So
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | - Kai Chow Choi
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | | | - Judy Yuet Wa Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Manoharan A, Shewade DG, Ravindranath PA, Rajkumar RP, Ramprasad VL, Adithan S, Damodaran SE. Resequencing CYP2D6 gene in Indian population: CYP2D6*41 identified as the major reduced function allele. Pharmacogenomics 2019; 20:719-729. [PMID: 31368850 DOI: 10.2217/pgs-2019-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The CYP2D6 gene is highly polymorphic and harbors population specific alleles that define its predominant metabolizer phenotype. This study aimed to identify polymorphisms in Indian population owing to scarcity of CYP2D6 data in this population. Materials & methods: The CYP2D6 gene was resequenced in 105 south Indians using next generation sequencing technology and haplotypes were reconstructed. Results & conclusion: Four novel missense variants have been designated as CYP2D6*110, *111, *112 and *113. The most common alleles were CYP2D6*1 (42%), *2 (32%), and *41 (12.3%) and diplotypes were CYP2D6*1/*2 (26%), *1/*1 (11%), *2/*41 (10%) and *1/*41 (7%) accounting for high incidence of extensive metabolizers in Indians.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Surendiran Adithan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Solai Elango Damodaran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| |
Collapse
|
11
|
Grassi L, Nanni MG, Rodin G, Li M, Caruso R. The use of antidepressants in oncology: a review and practical tips for oncologists. Ann Oncol 2019; 29:101-111. [PMID: 29272358 DOI: 10.1093/annonc/mdx526] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The use of psychotropic drugs, namely those with an antidepressant profile (ADs), is a mandatory part of an integrated treatment of psychiatric disorders among cancer patients. We aimed to synthetize the most relevant data emerging from published studies to provide tips about the use of ADs in oncology. Design A search was made of the major databases over the last 30 years (Embase/Medline, PsycLIT, PsycINFO, the Cochrane Library), including narrative reviews, systematic reviews and meta-analyses summarizing the results from observational studies and randomized clinical trials assessing effectiveness, safety profile, interactions, contraindications and use of ADs in oncology with regard to both psychiatric (depressive spectrum, stress-related, anxiety disorders) and cancer-related symptoms (e.g. pain, hot flashes and fatigue). Results The weight of evidence supports the efficacy of ADs for more severe major depression in individuals with cancer and as an adjuvant treatment in cancer-related symptoms, although the methodological limitations of reported randomized controlled trials do not permit definite conclusions. Data also indicate that there should be caution in the use of ADs in cancer patients in terms of their safety profile and potential clinically significant interactions with other prescribed medications. Practical recommendations that have been made for the use of ADs in cancer patients, in the context of a multimodal approach to depression treatment, have been summarized here. Conclusions ADs are a relatively safe and effective treatment for more severe major depression in cancer patients. However, more research is urgently needed regarding the efficacy of ADs in different cancer types and cancer settings, their interactions with anticancer agents and their additive benefit when integrated with psychosocial interventions.
Collapse
Affiliation(s)
- L Grassi
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, S. Anna University Hospital and Health Authorities, Ferrara, Italy
| | - M G Nanni
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, S. Anna University Hospital and Health Authorities, Ferrara, Italy
| | - G Rodin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Supportive Care, University Health Network, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - M Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Supportive Care, University Health Network, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Caruso
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, S. Anna University Hospital and Health Authorities, Ferrara, Italy
| |
Collapse
|
12
|
Thota K, Prasad K, Basaveswara Rao MV. Detection of Cytochrome P450 Polymorphisms in Breast
Cancer Patients May Impact on Tamoxifen Therapy. Asian Pac J Cancer Prev 2018; 19:343-350. [PMID: 29479969 PMCID: PMC5980918 DOI: 10.22034/apjcp.2018.19.2.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Breast cancer is the most common cancer among women worldwide. Tamoxifen (TAM), a selective estrogen receptor modulator, is widely used in its treatment. TAM is metabolized by cytochrome P450 (CYP450) enzymes, including CYP2D6, CYP3A5 and CYP2C19, whose genetic variations may have clinicopathological importance. However, reports on the association of various P450 polymorphisms with certain cancers are contradictory. Methods: We here investigated whether the prevalence of the four most common polymorphism in the CYP2D6*4 (G1934A), CYP2D6*10 (C188T), CYP3A5*3 and CYP2C19*2 alleles has any link with breast cancer using genomic DNA and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. Results: Prevalences of CYP2D6*4, CYP2D6*10 and CYP2C19*2 genotypes were differed significantly (P = 0.01 and P = 0.004) between breast cancer patients and controls. The CYP3A5*3 genotype did not demonstrate statistically significant variation. Conclusion: Polymorphisms in CYP2 appear to be associated with breast cancer risk. Our data taken together with other reports indicates that drug resistance gene polymorphisms might be indicators of response to tamoxifen therapy in breast cancer cases.
Collapse
Affiliation(s)
- Kanakaiah Thota
- Department of Pharmacology, Krishna University, Rajupeta, Machilipatnam, India.
| | | | | |
Collapse
|
13
|
Pharmacogenomics Guided-Personalization of Warfarin and Tamoxifen. J Pers Med 2017; 7:jpm7040020. [PMID: 29236081 PMCID: PMC5748632 DOI: 10.3390/jpm7040020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The use of pharmacogenomics to personalize drug therapy has been a long-sought goal for warfarin and tamoxifen. However, conflicting evidence has created reason for hesitation in recommending pharmacogenomics-guided care for both drugs. This review will provide a summary of the evidence to date on the association between cytochrome P450 enzymes and the clinical end points of warfarin and tamoxifen therapy. Further, highlighting the clinical experiences that we have gained over the past ten years of running a personalized medicine program, we will offer our perspectives on the utility and the limitations of pharmacogenomics-guided care for warfarin and tamoxifen therapy.
Collapse
|
14
|
Impact of CYP2D6 polymorphisms on endoxifen concentrations and breast cancer outcomes. THE PHARMACOGENOMICS JOURNAL 2017; 18:201-208. [DOI: 10.1038/tpj.2017.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/03/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
|
15
|
Park GC, Jung JA, Bae KS, Lim HS. A Simulation Study to Compare the Treatment Effect of Tamoxifen by CYP2D6 Genotypes and Third-Generation Aromatase Inhibitors. J Clin Pharmacol 2017; 57:1088-1096. [PMID: 28369967 DOI: 10.1002/jcph.896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Some prospective, randomized clinical trials, including ATAC and BIG 1-98, demonstrated superior treatment effect of third-generation aromatase inhibitors (AIs) versus tamoxifen in postoperative therapy for patients with breast cancer. In retrospective genotyping analyses of the 2 studies using tumor samples, no difference in the treatment effect of tamoxifen was observed by CYP2D6 genotypes. However, those analyses did not consider loss of heterozygosity that could have occurred when genotyping using tumor tissue. The present simulation study aimed to comparatively evaluate the treatment effect of tamoxifen versus AIs of anastrozole and letrozole by CYP2D6 genotypes. A meta-analysis was conducted to estimate disease-free survival (DFS) hazard ratios of CYP2D6 genotypes representing extensive metabolizers (EMs), HRW/W,TAM , versus intermediate metabolizers (IMs)/poor metabolizers (PMs), HRV/W,TAM , using previous study results in which genotypes were determined using blood samples. Based on known allele frequencies, the CYP2D6 genotype distribution of participants in ATAC and BIG 1-98 trials were simulated. Subsequently, DFS HRs of AIs versus tamoxifen by CYP2D6 genotypes (HRAI/TAM,W for EMs, HRAI/TAM,V for IMs/PMs) were estimated via regression analyses using NONMEM, based on the simulated genotype distributions, HRV/W,TAM , and HRs, of AIs versus tamoxifen (HRAI/TAM ) reported in the ATAC and BIG 1-98 trials. Median HRAI/TAM,V (95% prediction interval [PI]) was 0.43 (0.23-0.79) and 0.40 (0.22-0.73) for the ATAC and BIG 1-98 trials, respectively. However, the corresponding HRAI/TAM,W values were 0.97 (0.84-1.11) and 0.91 (0.77-1.08), respectively. These results suggest that in patients with the CYP2D6 genotype representing EMs, the treatment effect of tamoxifen is comparable to that of AIs.
Collapse
Affiliation(s)
- Gwan Cheol Park
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-A Jung
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| | - Kyun-Seop Bae
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeong-Seok Lim
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Dickschen KJR, Willmann S, Hempel G, Block M. Addressing Adherence Using Genotype-Specific PBPK Modeling-Impact of Drug Holidays on Tamoxifen and Endoxifen Plasma Levels. Front Pharmacol 2017; 8:67. [PMID: 28382001 PMCID: PMC5361661 DOI: 10.3389/fphar.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022] Open
Abstract
Introduction: Tamoxifen is one of the most common treatment opportunities for hormonal positive breast cancer. Despite its good tolerability, patients demonstrate decreasing adherence over years impacting on therapeutic success. PBPK modeling was applied to demonstrate the impact of drug holidays on plasma levels of tamoxifen and its active metabolite endoxifen for different CYP2D6 genotypes. Materials and Methods: A virtual study with 24,000 patients was conducted in order to investigate the development of tamoxifen steady-state kinetics in patient groups of different CYP2D6 genotypes. The impact of drug holidays on steady-state kinetics was investigated assuming changing drug holiday scenarios. Results: Drug holidays in CYP2D6 extensive and intermediate metabolizers (EMs, IMs) exceeding 1 month lead to a decrease of endoxifen steady-state trough levels below the 5th percentile of the control group. Assuming drug holidays of 1, 2, or 3 months and administering a fixed-dose combination of 20 mg tamoxifen and 3 mg endoxifen EMs demonstrated re-established endoxifen steady-state trough levels after 5, 8, and 9 days. IMs receiving the same fixed-dose combination demonstrated re-established endoxifen steady-state trough levels after 7, 10, and 11 days. Discussion: The PBPK model impressively demonstrates the impact of drug holidays in different CYP2D6 genotypes on PK. Population simulation results indicate that drug holidays of more than 2 weeks cause a tremendous decrease of plasma levels despite the long half-life of tamoxifen. To improve therapeutic success, PBPK modeling allows identifying genotype-specific differences in PK following drug holidays and adequate treatment with loading doses.
Collapse
Affiliation(s)
| | - Stefan Willmann
- Clinical Pharmacometrics, Bayer Pharma AG Wuppertal, Germany
| | - Georg Hempel
- Clinical Pharmacy, Department of Pharmaceutical and Medical Chemistry, University of Muenster Muenster, Germany
| | - Michael Block
- Computational Systems Biology, Bayer AG Leverkusen, Germany
| |
Collapse
|
17
|
Ahern TP, Hertz DL, Damkier P, Ejlertsen B, Hamilton-Dutoit SJ, Rae JM, Regan MM, Thompson AM, Lash TL, Cronin-Fenton DP. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients: Evaluating the Importance of Loss of Heterozygosity. Am J Epidemiol 2017; 185:75-85. [PMID: 27988492 DOI: 10.1093/aje/kww178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Tamoxifen therapy for estrogen receptor-positive breast cancer reduces the risk of recurrence by approximately one-half. Cytochrome P-450 2D6, encoded by the polymorphic cytochrome P-450 2D6 gene (CYP2D6), oxidizes tamoxifen to its most active metabolites. Steady-state concentrations of endoxifen (4-hydroxy-N-desmethyltamoxifen), the most potent antiestrogenic metabolite, are reduced in women whose CYP2D6 genotypes confer poor enzyme function. Thirty-one studies of the association of CYP2D6 genotype with breast cancer survival have yielded heterogeneous results. Some influential studies genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor-infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association. The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women.
Collapse
|
18
|
Zembutsu H, Nakamura S, Akashi-Tanaka S, Kuwayama T, Watanabe C, Takamaru T, Takei H, Ishikawa T, Miyahara K, Matsumoto H, Hasegawa Y, Kutomi G, Shima H, Satomi F, Okazaki M, Zaha H, Onomura M, Matsukata A, Sagara Y, Baba S, Yamada A, Shimada K, Shimizu D, Tsugawa K, Shimo A, Tan EY, Hartman M, Chan CW, Lee SC, Nakamura Y. Significant Effect of Polymorphisms in CYP2D6 on Response to Tamoxifen Therapy for Breast Cancer: A Prospective Multicenter Study. Clin Cancer Res 2016; 23:2019-2026. [DOI: 10.1158/1078-0432.ccr-16-1779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
|
19
|
Johansson H, Gandini S, Serrano D, Gjerde J, Lattanzi M, Macis D, Guerrieri-Gonzaga A, Aristarco V, Mellgren G, Lien E, DeCensi A, Bonanni B. A pooled analysis of CYP2D6 genotype in breast cancer prevention trials of low-dose tamoxifen. Breast Cancer Res Treat 2016; 159:97-108. [PMID: 27484880 DOI: 10.1007/s10549-016-3932-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022]
Abstract
Decreased CYP2D6 activity is associated with lower levels of active tamoxifen metabolites. We examined the impact of CYP2D6 genotype on tamoxifen pharmacokinetics, biomarker activity, and efficacy in a pooled analysis of low-dose tamoxifen. Four randomized breast cancer prevention trials of very-low-dose (1 mg/day, n = 52 or 10 mg/week, n = 152) or low-dose tamoxifen (5 mg/day, n = 171) were pooled. DNA from 367 subjects was genotyped for CYP2D6 alleles associated with absent (PM allele: *3, *4, *5, *6, *7, *8, *12, and *14), reduced (IM allele: *9, *10, *17, *29, *41), normal (EM allele), or increased (UM: *XN) enzyme activity. Associations of tamoxifen, metabolites, activity biomarkers, and event-free survival with rapid (UM/EM, UM/IM, EM/EM, EM/IM, or EM/PM alleles) versus slow metabolizers (PM/IM or PM/PM) were investigated through random effects models, with 'study' as the random factor, and Cox regression models, adjusting for confounders. Rapid metabolizers had higher endoxifen levels than slow metabolizers: 15.3 versus 12.2 ng/mL (P = 0.018) with 5 mg/day, and 3.8 versus 2.8 ng/mL (P = 0.004) with 1 mg/day or 10 mg/week tamoxifen. The IGF-I decrease correlated with endoxifen (P = 0.002) and 4-hydroxytamoxifen levels, demonstrating steeper decreases at higher metabolite levels (P = 0.001). After a median follow-up of 12 years, rapid metabolizers with prior history of breast neoplasms allocated to tamoxifen 5 mg/day had a 60 % reduction of risk of recurrences (HR = 0.40, 95 % CI: 0.16-0.99) compared to slow metabolizers. CYP2D6 genotype may have an impact on tamoxifen efficacy at low doses. Trials investigating tamoxifen dose adjustments based on the woman's hormonal context and CYP2D6 genotype are warranted.
Collapse
Affiliation(s)
- Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy.
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Jennifer Gjerde
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | | | - Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Ernst Lien
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy.,Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
20
|
RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients. Oncol Rep 2015; 34:1883-94. [DOI: 10.3892/or.2015.4183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 11/05/2022] Open
|
21
|
Romero-Lorca A, Novillo A, Gaibar M, Bandrés F, Fernández-Santander A. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients. PLoS One 2015; 10:e0132269. [PMID: 26176234 PMCID: PMC4503404 DOI: 10.1371/journal.pone.0132269] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B17 del/del individuals. Our observations suggest that patients carrying mutations UGT1A448Val, UGT2B7268Tyr or with wt genotypes for UGT2B17nodel and UGT2B15523Lys could be the best candidates for a good response to tamoxifen therapy in terms of eliciting effective plasma active tamoxifen metabolite levels. However, additional studies examining the effects of UGT genotype on overall patient response to TAM are needed to further examine the role of UGT polymorphisms in the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Alicia Romero-Lorca
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Apolonia Novillo
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María Gaibar
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Ana Fernández-Santander
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
22
|
Jager NGL, Linn SC, Schellens JHM, Beijnen JH. Tailored Tamoxifen Treatment for Breast Cancer Patients: A Perspective. Clin Breast Cancer 2015; 15:241-4. [PMID: 25997856 DOI: 10.1016/j.clbc.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022]
Abstract
Tamoxifen, an endocrine agent, is widely used in the treatment of estrogen receptor-positive breast cancer. It has greatly reduced disease recurrence and mortality rates of breast cancer patients, however, not all patients benefit from tamoxifen treatment because in approximately 25% to 30% of the patients the disease recurs. Many researchers have sought to find factors associated with endocrine treatment outcome in the past years, however, this quest has not been finished. In this article, we focus on a factor that might influence outcome of tamoxifen treatment: interpatient variability in tamoxifen pharmacokinetics. In recent years it has become clear that tamoxifen undergoes extensive metabolism and that some of the formed metabolites are much more pharmacologically active than tamoxifen itself. Despite the wide interpatient variability in tamoxifen pharmacokinetics and pharmacodynamics, all patients receive a standard dose of 20 mg tamoxifen per day. Different approaches can be pursued to individualize tamoxifen dosing: genotyping, phenotyping, and therapeutic drug monitoring. Therapeutic drug monitoring seems to be the most direct and promising approach, however, further clinical research is warranted to establish the added value of individual dosing in tamoxifen treatment optimization.
Collapse
Affiliation(s)
- Nynke G L Jager
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands.
| | - Sabine C Linn
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands; Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Binkhorst L, Mathijssen RH, Jager A, van Gelder T. Individualization of tamoxifen therapy: Much more than just CYP2D6 genotyping. Cancer Treat Rev 2015; 41:289-99. [DOI: 10.1016/j.ctrv.2015.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
|
24
|
Zembutsu H. Pharmacogenomics toward personalized tamoxifen therapy for breast cancer. Pharmacogenomics 2015; 16:287-96. [DOI: 10.2217/pgs.14.171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tamoxifen has been used not only for the treatment or prevention of recurrence in patients with estrogen receptor positive breast cancers but also for recurrent breast cancer. Because CYP2D6 is known to be an important enzyme responsible for the generation of the potent tamoxifen metabolite, ‘endoxifen’, lots of studies reported that genetic variation which reduced its enzyme activity were associated with poor clinical outcome of breast cancer patients treated with tamoxifen. However, there are some discrepant reports questioning the association between CYP2D6 genotype and clinical outcome after tamoxifen therapy. Dose-adjustment study of tamoxifen based on CYP2D6 genotypes provides the evidence that dose adjustment is useful for the patients carrying reduced or null allele of CYP2D6 to maintain the effective endoxifen level. This review describes critical issues in pharmacogenomic studies as well as summarizes the results of the association of CYP2D6 genotype with tamoxifen efficacy.
Collapse
|
25
|
Johnson JA, Hamadeh IS, Langaee TY. Loss of heterozygosity at the CYP2D6 locus in breast cancer: implications for tamoxifen pharmacogenetic studies. J Natl Cancer Inst 2015; 107:dju437. [PMID: 25638249 DOI: 10.1093/jnci/dju437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Julie A Johnson
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL (JAJ, ISH, TYL).
| | - Issam S Hamadeh
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL (JAJ, ISH, TYL)
| | - Taimour Y Langaee
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL (JAJ, ISH, TYL)
| |
Collapse
|
26
|
Moulis M, Khouri C, Mallaret M. Antidépresseurs et tamoxifène : une interaction méconnue. Therapie 2014; 69:178-9. [DOI: 10.2515/therapie/2013077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 11/20/2022]
|
27
|
Margolin S, Lindh JD, Thorén L, Xie H, Koukel L, Dahl ML, Eliasson E. CYP2D6 and adjuvant tamoxifen: possible differences of outcome in pre- and post-menopausal patients. Pharmacogenomics 2014; 14:613-22. [PMID: 23570465 DOI: 10.2217/pgs.13.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Previous studies on CYP2D6 activity and the effect of adjuvant tamoxifen in breast cancer are inconsistent. We analyzed the impact of the CYP2D6 polymorphism in pre- and post-menopausal patients that were adherent to tamoxifen treatment for at least a year. MATERIALS & METHODS A total of 382 breast cancer patients prescribed adjuvant tamoxifen for 5 years constituted the study-base. Clinical information, including compliance and outcome, was retrieved from medical records. Comprehensive CYP2D6 genotyping was performed and translated into predicted metabolic activity. RESULTS & CONCLUSION In patients adherent to tamoxifen for at least one year (n = 313) there was an association between reduced CYP2D6 activity (≤50% of normal) and recurrence (p = 0.025) and breast cancer-specific mortality (p = 0.034). In a multivariable analysis, CYP2D6 remained an independent predictor of outcome. In a subgroup analysis, the effect of CYP2D6 seemed to derive mainly from premenopausal patients, which represents a new finding that needs validation in a larger study sample. Original submitted 13 November 2012; Revision submitted 1 March 2013.
Collapse
Affiliation(s)
- Sara Margolin
- Department of Oncology & Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cronin-Fenton DP, Damkier P, Lash TL. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol 2014; 10:107-22. [PMID: 24328412 PMCID: PMC4319217 DOI: 10.2217/fon.13.168] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review tamoxifen's clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our findings indicate that the effect of both drug-induced and/or gene-induced inhibition of CYP2D6 activity is likely to be null or small, or at most moderate in subjects carrying two reduced function alleles. Future research should examine the effect of polymorphisms in genes encoding enzymes in tamoxifen's complete metabolic pathway, should comprehensively evaluate other biomarkers that affect tamoxifen effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline endocrine therapy.
Collapse
Affiliation(s)
| | - Per Damkier
- Department of Clinical Chemistry & Pharmacology, Odense University Hospital, Denmark
| | - Timothy L Lash
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
29
|
Jung JA, Lim HS. Association between CYP2D6 genotypes and the clinical outcomes of adjuvant tamoxifen for breast cancer: a meta-analysis. Pharmacogenomics 2014; 15:49-60. [DOI: 10.2217/pgs.13.221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Tamoxifen is one of the most commonly used endocrine therapeutic agents for breast cancer. Although many studies have examined whether the treatment outcomes of tamoxifen for breast cancer differ according to CYP2D6 genotype, the study results have been inconsistent, and the role of CYP2D6 in the prediction of patient outcomes from tamoxifen therapy remains controversial. This study evaluated the association between CYP2D6 genotypes and postoperative tamoxifen treatment outcome in patients with breast cancer, using the available previous study results. Materials & methods: We performed a meta-analysis of ten previous clinical reports (n = 5183) to evaluate the association between CYP2D6 genotype and hazard ratios for the recurrence risk of breast cancer after postoperative tamoxifen treatment. Pooled estimates of hazard ratios were computed using R and NONMEM® software. Results: A significantly increased risk of breast cancer recurrence in patients carrying variant CYP2D6 genotypes was found in this investigation. The mean hazard ratios and 95% CI were 1.60 (1.04–2.47) in the random effect model implemented in R and 1.63 (1.01–2.62) in the random effect model in NONMEM. The bootstrap result (2000 replicates) of NONMEM was 1.64 (1.07–2.79). Conclusion: Our present findings suggest that genetic polymorphisms of CYP2D6 may be important predictors of the clinical outcomes of adjuvant tamoxifen treatment for the patients with breast cancer. A large-scale, prospective, randomized, well-controlled trial is warranted to confirm our findings. Original submitted 23 July 2013; Revision submitted 30 September 2013
Collapse
Affiliation(s)
- Jin-A Jung
- Department of Clinical Pharmacology & Therapeutics, Ulsan University College of Medicine, Asan Medical Center, Pungnap-2-dong, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138–736, Republic of Korea
| | - Hyeong-Seok Lim
- Department of Clinical Pharmacology & Therapeutics, Ulsan University College of Medicine, Asan Medical Center, Pungnap-2-dong, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138–736, Republic of Korea
| |
Collapse
|
30
|
Ruddy KJ, Desantis SD, Gelman RS, Wu AHB, Punglia RS, Mayer EL, Tolaney SM, Winer EP, Partridge AH, Burstein HJ. Personalized medicine in breast cancer: tamoxifen, endoxifen, and CYP2D6 in clinical practice. Breast Cancer Res Treat 2013; 141:421-7. [PMID: 24062210 DOI: 10.1007/s10549-013-2700-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/10/2013] [Indexed: 11/25/2022]
Abstract
Tamoxifen is metabolized into endoxifen, a potent antagonist of the estrogen receptor, in part through cytochrome p450 (CYP) 2D6. Genotypic variation in CYP2D6 affects endoxifen levels, and some have argued that patients who do not efficiently metabolize tamoxifen might wish to consider alternative hormonal treatments. This study evaluated an algorithm in which endoxifen levels and CYP2D6 genotypes were used to make hormonal therapy recommendations for patients on adjuvant tamoxifen for breast cancer. Patients with stage I-III breast cancer who had been taking adjuvant tamoxifen for 8-56 weeks were eligible. At enrollment, baseline whole blood and serum were sent for genotyping by Amplichip and endoxifen measurement, respectively, and endoxifen levels were also measured 3 weeks later. Results were returned to oncologists along with an algorithm-generated treatment recommendation. The algorithm recommended that participants with poor metabolizer genotype and/or baseline endoxifen level <6 ng/mL consider alternative endocrine therapy. A medical record review evaluated actual treatment decisions. Of 99 patients on study, 18 (18 %) had findings that triggered algorithm-based recommendations to consider a change in endocrine therapy due to endoxifen <6 ng/mL (all 18 patients) and/or poor metabolizer CYP2D6 genotype (2 of the 18). Endoxifen levels were ≥6 ng/mL in four of them 3 weeks later. Seven (39 % of 18) switched to a different treatment (one based on toxicity, not the algorithm). Hot flash burden was not found to be significantly associated with endoxifen <6 ng/mL or genotype. Prospective testing of tamoxifen metabolism as gauged by CYP2D6 genotype and serum endoxifen levels is feasible. Future studies of tamoxifen metabolism and efficacy should consider including measurement of serial endoxifen levels. Although clinical evidence at present is insufficient to warrant routine CYP2D6 or endoxifen testing, some clinicians and patients did utilize this predefined algorithm to inform clinical decisions regarding optimal adjuvant endocrine therapy.
Collapse
Affiliation(s)
- Kathryn J Ruddy
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fernández-Santander A, Gaibar M, Novillo A, Romero-Lorca A, Rubio M, Chicharro LM, Tejerina A, Bandrés F. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS One 2013; 8:e70183. [PMID: 23922954 PMCID: PMC3726442 DOI: 10.1371/journal.pone.0070183] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/16/2013] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen.
Collapse
Affiliation(s)
- Ana Fernández-Santander
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Cátedra Florencio Tejerina-Universidad Europea de Madrid, Universidad Europea de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Silva FSG, Ribeiro MPC, Santos MS, Rocha-Pereira P, Santos-Silva A, Custódio JBA. The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen. J Bioenerg Biomembr 2013; 45:383-96. [DOI: 10.1007/s10863-013-9517-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|
33
|
Zeng Z, Liu Y, Liu Z, You J, Chen Z, Wang J, Peng Q, Xie L, Li R, Li S, Qin X. CYP2D6 polymorphisms influence tamoxifen treatment outcomes in breast cancer patients: a meta-analysis. Cancer Chemother Pharmacol 2013; 72:287-303. [PMID: 23712329 DOI: 10.1007/s00280-013-2195-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/11/2013] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate whether breast cancer (BC) patients with CYP2D6 gene variation have different clinical tamoxifen (TAM) treatment outcomes to those with normal function of CYP2D6. METHODS Systematic searches of the PubMed up to February 21, 2013, were retrieved. The study end points were disease-free survival (DFS) and overall survival (OS). Fixed or random-effects meta-analytical models were used to calculate summary hazard ratio (HR) and corresponding 95 % confidence intervals (CIs). Meta-regression, Galbraith plots, subgroup analysis, and sensitivity analysis were also performed. RESULTS A total of 11,701 BC patients from 20 trials were included. Compared with reduced CYP2D6 function, normal function was associated with a trend toward improved DFS (HR = 1.37, 95 % CI 1.12-1.69, P = 0.002) and OS (HR = 1.25, 95 % CI 1.03-1.50, P = 0.021). We found significant heterogeneity between studies. When the analysis was stratified into subgroups, significantly worse DFS was found in the groups of intermediate metabolizer versus extensive metabolizer (HR = 1.65, 95 % CI 1.04-2.64, P = 0.035), Asian population (HR = 3.29, 95 % CI 1.64-6.63, P = 0.001), 5 years TAM treatment duration (HR = 1.59; 95 % CI 1.14-2.22, P = 0.006), concomitant chemotherapy (HR = 1.35, 95 % CI 1.04-1.76, P = 0.025), and TAM alone (HR = 1.44, 95 % CI 1.44-2.06, P = 0.045). With respect to OS, no significant association was demonstrated in stratified analyses. CONCLUSIONS We concluded that CYP2D6 polymorphisms may influence tamoxifen treatment outcomes of DFS in BC patients.
Collapse
Affiliation(s)
- Zhiyu Zeng
- Department of Geriatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Karle J, Bolbrinker J, Vogl S, Kreutz R, Denkert C, Eucker J, Wischnewsky M, Possinger K, Regierer AC. Influence of CYP2D6-genotype on tamoxifen efficacy in advanced breast cancer. Breast Cancer Res Treat 2013; 139:553-60. [PMID: 23686417 DOI: 10.1007/s10549-013-2565-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 01/17/2023]
Abstract
The influence of CYP2D6 genotype on the efficacy of tamoxifen (Tam) has been extensively analyzed in early breast cancer with conflicting results. However, there is only scarce data regarding this potential influence in advanced breast cancer (ABC). We hypothesize that Tam is more effective in patients with a functional CYP2D6 allele than in patients with impaired CYP2D6 activity. ABC patients with prior or ongoing palliative Tam treatment (20 mg/d) were eligible. Genomic DNA was extracted from blood (n = 51) and formalin-fixed, paraffin-embedded tissue (n = 43). CYP2D6*2, *3, *4, *5, *6, *10, *17, *29, *41, CYP2D6 duplication and multiplication were determined in blood and CYP2D6*4 in tissue samples. Primary endpoint was progression free survival (PFS); secondary endpoints included clinical benefit (CB), and overall survival (OS). The clinical charts were retrospectively analyzed regarding survival and treatment effects. Genotyping was performed blinded and clinical data were analyzed separately. 94 patients were identified with a median age of 59 years (29-90 years). In 6 patients genotyping did not show conclusive results, therefore these patients were excluded from further analysis. Genotyping results were as follows: 1.1 % ultrarapid, 84.1 % extensive, 3.4 % intermediate, and 11.4 % poor metabolizers. Patients without any fully functional allele (IM/IM, IM/PM, PM/PM) had a significant shorter PFS and OS compared to patients with at least one functional allele (EM/EM, EM/IM, EM/PM) (PFS: p = 0.017; HR = 2.19; 95 % CI 1.15-4.18; OS: p = 0.028; HR = 2.79; 95 % CI 1.12-6.99). The CB rate was 73 % for EM-group and 38.5 % for IM + PM-group (p = 0.019). Our results show a significant influence of the CYP2D6 genotype on the efficacy of Tam in the treatment of ABC. In contrast to the adjuvant setting, the evidence in the palliative setting is congruent. CYP2D6 testing in ABC should be considered.
Collapse
Affiliation(s)
- Jennifer Karle
- Department of Oncology and Hematology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Important and critical scientific aspects in pharmacogenomics analysis: lessons from controversial results of tamoxifen and CYP2D6 studies. J Hum Genet 2013; 58:327-33. [PMID: 23657426 DOI: 10.1038/jhg.2013.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tamoxifen contributes to decreased recurrence and mortality of patients with hormone receptor-positive breast cancer. As this drug is metabolized by phase I and phase II enzymes, the interindividual variations of their enzymatic activity are thought to be associated with individual responses to tamoxifen. Among these enzymes, CYP2D6 is considered to be a rate-limiting enzyme in the generation of endoxifen, a principal active metabolite of tamoxifen, and the genetic polymorphisms of CYP2D6 have been extensively investigated in association with the plasma endoxifen concentrations and clinical outcome of tamoxifen therapy. In addition to CYP2D6, other genetic factors including polymorphisms in various drug-metabolizing enzymes and drug transporters have been implicated to their relations to clinical outcome of tamoxifen therapy, but their effects would be small. Although the results of association studies are controversial, accumulation of the evidence has revealed us the important and critical issues in the tamoxifen pharmacogenomics study, namely the quality of genotyping, the coverage of genetic variations, the criteria for sample collection and the source of DNAs, which are considered to be common problematic issues in pharmacogenomics studies. This review points out common critical issues in pharmacogenomics studies through the lessons we have learned from tamoxifen pharmacogenomics, as well as summarizes the results of pharmacogenomics studies for tamoxifen treatment.
Collapse
|
36
|
The use of the 13C-dextromethorphan breath test for phenotyping CYP2D6 in breast cancer patients using tamoxifen: association with CYP2D6 genotype and serum endoxifen levels. Cancer Chemother Pharmacol 2012; 71:593-601. [PMID: 23228987 DOI: 10.1007/s00280-012-2034-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
PURPOSE Adjuvant therapy with tamoxifen significantly reduces breast cancer recurrence and mortality in estrogen receptor positive disease. CYP2D6 is the main enzyme involved in the activation of the prodrug tamoxifen into the anti-estrogen endoxifen. Endoxifen is thought to be a main determinant for clinical efficacy in breast cancer patients using tamoxifen. As the large interindividual variation in endoxifen levels is only partly explained by CYP2D6 genotype, we explored the use of the (13)C-dextromethorphan breath test (DM-BT) for phenotyping CYP2D6 and to predict serum steady-state endoxifen levels as a marker for clinical outcome in breast cancer patients using tamoxifen. METHODS In 65 patients with early breast cancer using tamoxifen, CYP2D6 phenotype was assessed by DM-BT. CYP2D6 genotype using Amplichip and serum steady-state levels of endoxifen were determined. Genotype was translated into the gene activity score and into ultrarapid, extensive, heterozygous extensive, intermediate or poor metabolizer CYP2D6 predicted phenotype. RESULTS CYP2D6 phenotype determined by the DM-BT explained variation in serum steady-state endoxifen levels for 47.5% (R(2) = 0.475, p < 0.001). Positive and negative predictive values for a recently suggested threshold serum level of endoxifen (5.97 ng/mL) for breast cancer recurrence rate were 100 and 90%, respectively, for both CYP2D6 phenotype by DM-BT (delta-over-baseline at t = 50 min (DOB(50)) values of 0.7-0.9) and genotype (CYP2D6 gene activity score of 1.0). CONCLUSION DM-BT might be, along with CYP2D6 genotyping, of value in selection of individualized endocrine therapy in patients with early breast cancer, especially when concomitant use of CYP2D6 inhibiting medication alters the phenotype.
Collapse
|