1
|
Grover M, Behl T, Sachdeva M, Bungao S, Aleya L, Setia D. Focus on Multi-targeted Role of Curcumin: a Boon in Therapeutic Paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18893-18907. [PMID: 33595796 DOI: 10.1007/s11356-021-12809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Curcumin is a polyphenolic compound that exhibited good anticancer potential against different types of cancers through its multi-targeted effect like the termination of cell proliferation, inflammation, angiogenesis, and metastasis, thereby acting as antiproliferative and cytotoxic in nature. The present review surveys the various drug combination tried with curcumin or its synthetic analogues and also the mechanism by which curcumin potentiates the effect of almost every drug. In addition, this article also focuses on aromatherapy which is gaining much popularity in cancer patients. After thoroughly studying several articles on combination therapy of curcumin through authenticated book chapters, websites, research, and review articles available at PubMed, ScienceDirect, etc., it has been observed that multi-targeted curcumin possess enormous anticancer potential and, with whatever drug it is given in combination, has always resulted in enhanced effect with reduced dose as well as side effects. It is also capable enough in overcoming the problem of chemoresistance. Besides this, aromatherapy also proved its potency in reducing cancer-related side effects. Combining all the factors together, we can conclude that combination therapy of drugs with curcumin should be explored extensively. In addition, aromatherapy can be used as an adjuvant or supplementary therapy to reduce the cancer complications in patients.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Simona Bungao
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
2
|
Zangui M, Atkin SL, Majeed M, Sahebkar A. Current evidence and future perspectives for curcumin and its analogues as promising adjuncts to oxaliplatin: state-of-the-art. Pharmacol Res 2019; 141:343-356. [DOI: 10.1016/j.phrs.2019.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
|
3
|
Lindgaard SC, Brinch CM, Jensen BK, Nørgaard HH, Hermann KL, Theile S, Larsen FO, Jensen BV, Michelsen H, Nelausen KM, Holm VH, Ekblad L, Soerensen PG, Nielsen DL. Hepatic arterial therapy with oxaliplatin and systemic capecitabine for patients with liver metastases from breast cancer. Breast 2018; 43:113-119. [PMID: 30544058 DOI: 10.1016/j.breast.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Hepatic arterial treatment (HAT) for liver metastases in patients with metastatic breast cancer (MBC) has only been investigated in few studies. MATERIALS AND METHODS Two phase II trials were initiated simultaneously to evaluate capecitabine in combination with oxaliplatin in patients with MBC and liver metastases. These two trials are reported together. Continuous capecitabine (1300 mg/m2) was combined with oxaliplatin (85 mg/m2) alternating between systemic treatment and HAT followed by degradable starch microspheres with EmboCept® S every second week. Four patients participated in a pharmacokinetic analysis of oxaliplatin. Each patient had samples taken when receiving oxaliplatin systemically and as HAT with and without EmboCept® S. RESULTS Totally, 52 patients received HAT: 14 with liver metastases only and 38 patients with additional limited metastatic disease. The patients had previously received a median of 2 (range 0-6) chemotherapeutic regimens for MBC. The response rate was 42.3% (95% confidence interval (CI) 28.7-56.8%) with 7.7% complete and 34.6% partial responses. Median progression free survival was 10.8 months (95% CI 6.9-14.7 months) and median overall survival 27.6 months (95% CI 20.4-34.8 months). The toxicity was moderate with hand-foot syndrome (15.4%), neuropathy (9.6%), fatigue (9.6%), and abdominal pain (9.6%) being the most common grade 3 adverse events. There was no clear difference between systemic blood concentrations of oxaliplatin when given systemic or as HAT. CONCLUSION HAT oxaliplatin in combination with capecitabine is safe and efficient in patients with MBC. The results are promising with high response rates and a long median progression free and overall survival.
Collapse
Affiliation(s)
- S C Lindgaard
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | - C M Brinch
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - B K Jensen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - H H Nørgaard
- Department of Radiology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - K L Hermann
- Department of Radiology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - S Theile
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - F O Larsen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - B V Jensen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - H Michelsen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - K M Nelausen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - V H Holm
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - L Ekblad
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Box 117, SE-221 00 Lund, Sweden
| | - Peter G Soerensen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - D L Nielsen
- Department of Oncology, Herlev & Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| |
Collapse
|
4
|
Wang S, Scharadin TM, Zimmermann M, Malfatti MA, Turteltaub KW, de Vere White R, Pan CX, Henderson PT. Correlation of Platinum Cytotoxicity to Drug-DNA Adduct Levels in a Breast Cancer Cell Line Panel. Chem Res Toxicol 2018; 31:1293-1304. [PMID: 30381944 DOI: 10.1021/acs.chemrestox.8b00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum drugs, including carboplatin and oxaliplatin, are commonly used chemotherapy drugs that kill cancer cells by forming toxic drug-DNA adducts. These drugs have a proven, but modest, efficacy against several aggressive subtypes of breast cancer but also cause several side effects that can lead to the cessation of treatment. There is a clinical need to identify patients who will respond to platinum drugs in order to better inform clinical decision making. Diagnostic microdosing involves dosing patients or patient samples with subtherapeutic doses of radiolabeled platinum followed by measurement of platinum-DNA adducts in blood or tumor tissue and may be used to predict patient response. We exposed a panel of six breast cancer cell lines to 14C-labeled carboplatin or oxaliplatin at therapeutic and microdose (1% therapeutic dose) concentrations for a range of exposure lengths and isolated DNA from the cells. The DNA was converted to graphite, and measurement of radiocarbon due to platinum-DNA adduction was quantified via accelerator mass spectrometry (AMS). We observed a linear correlation in adduct levels between the microdose and therapeutic dose, and the level of platinum-DNA adducts corresponded to cell line drug sensitivity for both carboplatin and oxaliplatin. These results showed a clear separation in adduct levels between the sensitive and resistant groups of cell lines that could not be fully explained or predicted by changes in DNA repair rates or mutations in DNA repair genes. Further, we were able to quantitate oxaliplatin-DNA adducts in the blood and tumor tissue of a metastatic breast cancer patient. Together, these data support the use of diagnostic microdosing for predicting patient sensitivity to platinum. Future studies will be aimed at replicating this data in a clinical feasibility trial.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States
| | - Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| | - Michael A Malfatti
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Kenneth W Turteltaub
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Ralph de Vere White
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Department of Urology , University of California Davis Medical Center , Sacramento , California 95817 , United States.,VA Northern California Health Care System , Mather , California 95655 , United States
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| |
Collapse
|
5
|
A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 2017; 23:461-471. [PMID: 28263311 DOI: 10.1038/nm.4291] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Cisplatin and its platinum analogs, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. Although cisplatin and carboplatin are used primarily in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively to treat colorectal and other gastrointestinal cancers. Here we utilize a unique, multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents, as well as more recently developed cisplatin analogs. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells through the DNA-damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin, and it might enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front-line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs.
Collapse
|
6
|
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866. [PMID: 26137404 DOI: 10.1080/2162402x.2015.1008866] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Collapse
Key Words
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- CML, chronic myeloid leukemia
- DAMP, damage-associated molecular pattern
- EGFR, epidermal growth factor receptor
- EOX, epirubicin plus oxaliplatin plus capecitabine
- ER, endoplasmic reticulum
- FDA, Food and Drug Administration
- FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin
- FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin
- GEMOX, gemcitabine plus oxaliplatin
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- ICD, immunogenic cell death
- MM, multiple myeloma
- NHL, non-Hodgkin's lymphoma
- NSCLC, non-small cell lung carcinoma
- TACE, transcatheter arterial chemoembolization
- XELOX, capecitabine plus oxaliplatin
- antigen-presenting cell
- autophagy
- damage-associated molecular pattern
- dendritic cell
- endoplasmic reticulum stress
- mAb, monoclonal antibody
- type I interferon
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM , U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
7
|
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878. [PMID: 24800173 PMCID: PMC4008470 DOI: 10.4161/onci.27878] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence suggests that the clinical efficacy of selected anticancer drugs, including conventional chemotherapeutics as well as targeted anticancer agents, originates (at least in part) from their ability to elicit a novel or reinstate a pre-existing tumor-specific immune response. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). Cancer cells succumbing to ICD are de facto converted into an anticancer vaccine and as such elicit an adaptive immune response. Several common chemotherapeutics share the ability of triggering ICD, as demonstrated in vaccination experiments relying on immunocompetent mice and syngeneic cancer cells. A large number of ongoing clinical trials involve such ICD inducers, often (but not always) as they are part of the gold standard therapeutic approach against specific neoplasms. In this Trial Watch, we summarize the latest advances on the use of cyclophosphamide, doxorubicin, epirubicin, oxaliplatin, and mitoxantrone in cancer patients, discussing high-impact studies that have been published during the last 13 months as well as clinical trials that have been initiated in the same period to assess the antineoplastic profile of these immunogenic drugs as off-label therapeutic interventions.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
8
|
May JP, Ernsting MJ, Undzys E, Li SD. Thermosensitive liposomes for the delivery of gemcitabine and oxaliplatin to tumors. Mol Pharm 2013; 10:4499-508. [PMID: 24152292 DOI: 10.1021/mp400321e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of ultrafast temperature sensitive liposome (uTSL) formulations reported in the literature deliver the highly membrane permeable drug, doxorubicin (DOX). Here we report on the study of the uTSL formulation, HaT (Heat activated cytoToxic, composed of the phospholipid DPPC and the surfactant Brij78) loaded with the water-soluble, but poorly membrane permeable anticancer drugs, gemcitabine (GEM) and oxaliplatin (OXA). The HaT formulation displayed ultrafast release of these drugs in response to temperature, whereas attempts with LTSL (Lyso-lipid Temperature Sensitive Liposome, composed of DPPC, MSPC, and DSPE-PEG) were unsuccessful. HaT-GEM and HaT-OXA both released >80% of the encapsulated drug within 2 min at 40-42 °C, with <5% drug leakage at 37 °C after 30 min in serum. The pharmacokinetic profile of both drugs was improved by formulating with HaT relative to the free drug, with clearance reduced by 50-fold for GEM and 3-fold for OXA. HaT-GEM and HaT-OXA both displayed improved drug uptake in the heated tumor relative to the unheated tumor (by 9-fold and 3-fold, respectively). In particular, HaT-GEM showed 25-fold improved delivery to the heated tumor relative to free GEM and significantly enhanced antitumor efficacy with complete tumor regression after a single dose of HaT-GEM. These data suggest that uTSL technology can also be used to deliver nonmembrane permeable drugs via an intravascular ultrafast release mechanism to great effect.
Collapse
Affiliation(s)
- Jonathan P May
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research , 101 College Street, Suite 800, Toronto, Ontario, M5G 0A3, Canada
| | | | | | | |
Collapse
|