1
|
Feng LS, Cheng JB, Su WQ, Li HZ, Xiao T, Chen DA, Zhang ZL. Cinnamic acid hybrids as anticancer agents: A mini-review. Arch Pharm (Weinheim) 2022; 355:e2200052. [PMID: 35419808 DOI: 10.1002/ardp.202200052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Cancer, as a long-lasting and dramatic disease, affects almost one-third of human beings globally. Chemotherapeutics play an important role in cancer treatment, but multidrug resistance and severe adverse effects have already become the main causes of failure in tumor chemotherapy. Therefore, it is an urgent need to develop novel chemotherapeutics. Cinnamic acid contains a ubiquitous α,β-unsaturated acid moiety presenting potential therapeutic effects in the treatment of cancer as these derivatives could act on cancer cells by diverse mechanisms of action. Accordingly, cinnamic acid derivatives are critical scaffolds in discovering novel anticancer agents. This review provides a comprehensive overview of cinnamic acid hybrids as anticancer agents. The structure-activity relationship, as well as the mechanisms of action, are also discussed, covering articles published from 2012 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, Peoples' Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, Peoples' Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, Peoples' Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, Peoples' Republic of China
| |
Collapse
|
2
|
Wu JJ, Yuan XM, Huang C, An GY, Liao ZL, Liu GA, Chen RX. Farnesyl thiosalicylic acid prevents iNOS induction triggered by lipopolysaccharide via suppression of iNOS mRNA transcription in murine macrophages. Int Immunopharmacol 2019; 68:218-225. [PMID: 30658315 DOI: 10.1016/j.intimp.2018.12.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is a molecule critical for the development of inflammation-associated disorders. Its induction should be tightly controlled in order to maintain cellular homeostasis. Upon lipopolysaccharide (LPS) stimulation, iNOS, in most settings, is induced by the activation of inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) signaling. Farnesyl thiosalicylic acid (FTS), a synthetic small molecule that is considered to detach Ras from the inner cell membrane, has been shown to exhibit numerous anti-inflammatory functions. However, it remains unclear whether and how it affects iNOS induction in macrophages. The present study addressed this issue in cultured macrophages and endotoxemic mice. Results showed that FTS pretreatment significantly prevented LPS-induced increases in iNOS protein and mRNA expression levels in murine cultured macrophages, which were confirmed in organs in vivo from endotoxemic mice, such as the liver and lung. Mechanistic studies revealed that FTS pretreatment did not affect IκB-α degradation and NF-κB activation in LPS-treated macrophages. The nuclear transport of the active NF-κB was also not affected by FTS. But FTS pretreatment reduced the binding of NF-κB to its DNA elements, and reduced NF-κB bindings to iNOS promoter inside LPS-treated macrophages. Finally, our results showed that FST pretreatment increased mouse survival rate compared to LPS alone treatment. Taken together, these results indicate that FTS attenuates iNOS induction in macrophages likely through inhibition of iNOS mRNA transcription, providing further insight into the molecular mechanism of action of FTS in inflammatory disorder therapy.
Collapse
Affiliation(s)
- Jing-Jing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Xiao-Mei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guo-Yin An
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Zhan-Ling Liao
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Guang-An Liu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Run-Xiang Chen
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China.
| |
Collapse
|