1
|
Steen TV, Espinoza I, Duran C, Casadevall G, Serrano-Hervás E, Cuyàs E, Verdura S, Kemble G, Kaufmann SH, McWilliams R, Osuna S, Billadeau DD, Menendez JA, Lupu R. Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer. Neoplasia 2025; 62:101143. [PMID: 39999714 PMCID: PMC11908614 DOI: 10.1016/j.neo.2025.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins. Computational studies with TVB-3166 and TVB-3664, two analogues of the clinical-grade FASNi TVB-2640 (denifanstat), confirmed their uncompetitive behavior towards NADPH when bound to the FASN ketoacyl reductase domain. The extent of NADPH accumulation, a consequence of FASN inhibition, paralleled the sensitivity of PDAC cells to the apoptotic effects of TVB FASNis in conventional PDAC cell lines that naturally express varying levels of FASN. FASN inhibition dramatically increased the sensitivity of "FASN-high" expressing PDAC cells to the BCL2/BCL-XL/BCL-W inhibitor ABT-263/navitoclax and the BCL2-selective inhibitor ABT-199/venetoclax, both in vitro and in in vivo xenografted tumors. The ability of TVB FASNis to shift the balance of pro- and anti-apoptotic proteins and thereby push PDAC cells closer to the apoptotic threshold was also observed in cell lines developed from patient-derived xenografts (PDXs) representative of the classical (pancreatic) transcriptomic subtype of PDAC. Experiments in PDAC PDXs in vivo confirmed the synergistic antitumor activity of TVB-3664 with navitoclax and venetoclax, independent of the nature of the replication stress signature of patient-derived PDAC cells. The discovery that targeted inhibition of FASN is a metabolic perturbation that sensitizes PDAC cells to BH3 mimetics warrants further investigation to overcome resistance to mitochondrial apoptosis in PDAC patients.
Collapse
Affiliation(s)
- Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ingrid Espinoza
- National Institute of Health, National Heart Lung and Blood Institute (NHLBI), Bethesda, MD 20817, USA; Lung Development and Pediatric Branch (HNH36), Bethesda, MD 20817, USA
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Guillem Casadevall
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | | | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robert McWilliams
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain; ICREA, Barcelona 08010, Spain
| | - Daniel D Billadeau
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
Gupta T, Murtaza M. Advancing Targeted Therapies in Pancreatic Cancer: Leveraging Molecular Aberrations for Therapeutic Success. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025:S0079-6107(25)00016-1. [PMID: 39988056 DOI: 10.1016/j.pbiomolbio.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Pancreatic cancer is one of the most deadly with poor prognosis and overall survival rate due to the dense stroma in the tumors which often is challenging for the delivery of drug to penetrate deep inside the tumor bed and usually results in the progression of cancer. The conventional treatment such as chemotherapy, radiotherapy or surgery shows a minimal benefit in the survival due to the drug resistance, poor penetration, less radiosensitivity or recurrence of tumor. There is an urgent demand to develop molecular- level targeted therapies to achieve therapeutic efficacy in the pancreatic ductal adenocarcinoma (PDAC) patients. The precision oncology focuses on the unique attributes of the patient such as epigenome, proteome, genome, microbiome, lifestyle and diet habits which contributes to promote oncogenesis. The targeted therapy helps to target the mutated proteins responsible for controlling growth, division and metastasis of tumor in the cancer cells. It is very important to consider all the attributes of the patient to provide the suitable personalized treatment to avoid any severe side effects. In this review, we have laid emphasis on the precision medicine; the utmost priority is to improve the survival of cancer patients by targeting molecular mutations through transmembrane proteins, inhibitors, signaling pathways, immunotherapy, gene therapy or the use of nanocarriers for the delivery at the tumor site. It will become beneficial therapeutic window to be considered for the advanced stage pancreatic cancer patients to prolong their survival rate.
Collapse
Affiliation(s)
- Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180016, India.
| |
Collapse
|
3
|
Sindhi K, Kanugo A. Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer. Curr Pharm Biotechnol 2025; 26:143-168. [PMID: 38415488 DOI: 10.2174/0113892010284407240212110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people suffering from pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumor, hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of expression of the cancer-causing gene, inactivation of the tumorsuppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriersbased formulations (lipid, polymer, inorganic, carbon based and advanced nanocarriers) which overcome the hurdles of conventional therapy, chemotherapy and radiotherapy which causes toxicity to adjacent healthy tissues. The biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapybased techniques emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
- Department of Pharmaceutical Quality Assurance, SVKM Institute of Pharmacy, Dhule, 424001, India
| |
Collapse
|
4
|
Haggstrom L, Chan WY, Nagrial A, Chantrill LA, Sim HW, Yip D, Chin V. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev 2024; 12:CD011044. [PMID: 39635901 PMCID: PMC11619003 DOI: 10.1002/14651858.cd011044.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal disease with few effective treatment options. Many anti-cancer therapies have been tested in the locally advanced and metastatic setting, with mixed results. This review synthesises all the randomised data available to help better inform patient and clinician decision-making. It updates the previous version of the review, published in 2018. OBJECTIVES To assess the effects of chemotherapy, radiotherapy, or both on overall survival, severe or life-threatening adverse events, and quality of life in people undergoing first-line treatment of advanced pancreatic cancer. SEARCH METHODS We searched for published and unpublished studies in CENTRAL, MEDLINE, Embase, and CANCERLIT, and handsearched various sources for additional studies. The latest search dates were in March and July 2023. SELECTION CRITERIA We included randomised controlled trials comparing chemotherapy, radiotherapy, or both with another intervention or best supportive care. Participants were required to have locally advanced, unresectable pancreatic cancer or metastatic pancreatic cancer not amenable to curative intent treatment. Histological confirmation was required. Trials were required to report overall survival. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 75 studies in the review and 51 in the meta-analysis (11,333 participants). We divided the studies into seven categories: any anti-cancer treatment versus best supportive care; various chemotherapy types versus gemcitabine; gemcitabine-based combinations versus gemcitabine alone; various chemotherapy combinations versus gemcitabine plus nab-paclitaxel; fluoropyrimidine-based studies; miscellaneous studies; and radiotherapy studies. In general, the included studies were at low risk for random sequence generation, detection bias, attrition bias, and reporting bias, at unclear risk for allocation concealment, and high risk for performance bias. Compared to best supportive care, chemotherapy likely results in little to no difference in overall survival (OS) (hazard ratio (HR) 1.08, 95% confidence interval (CI) 0.88 to 1.33; absolute risk of death at 12 months of 971 per 1000 versus 962 per 1000; 4 studies, 298 participants; moderate-certainty evidence). The adverse effects of chemotherapy and impacts on quality of life (QoL) were uncertain. Many of the chemotherapy regimens were outdated. Eight studies compared non-gemcitabine-based chemotherapy regimens to gemcitabine. These showed that 5-fluorouracil (5FU) likely reduces OS (HR 1.69, 95% CI 1.26 to 2.27; risk of death at 12 months of 914 per 1000 versus 767 per 1000; 1 study, 126 participants; moderate certainty), and grade 3/4 adverse events (QoL not reported). Fixed dose rate gemcitabine likely improves OS (HR 0.79, 95% CI 0.66 to 0.94; risk of death at 12 months of 683 per 1000 versus 767 per 1000; 2 studies, 644 participants; moderate certainty), and likely increase grade 3/4 adverse events (QoL not reported). FOLFIRINOX improves OS (HR 0.51, 95% CI 0.43 to 0.60; risk of death at 12 months of 524 per 1000 versus 767 per 1000; P < 0.001; 2 studies, 652 participants; high certainty), and delays deterioration in QoL, but increases grade 3/4 adverse events. Twenty-eight studies compared gemcitabine-based combinations to gemcitabine. Gemcitabine plus platinum may result in little to no difference in OS (HR 0.94, 95% CI 0.81 to 1.08; risk of death at 12 months of 745 per 1000 versus 767 per 1000; 6 studies, 1140 participants; low certainty), may increase grade 3/4 adverse events, and likely worsens QoL. Gemcitabine plus fluoropyrimidine improves OS (HR 0.88, 95% CI 0.81 to 0.95; risk of death at 12 months of 722 per 1000 versus 767 per 1000; 10 studies, 2718 participants; high certainty), likely increases grade 3/4 adverse events, and likely improves QoL. Gemcitabine plus topoisomerase inhibitors result in little to no difference in OS (HR 1.01, 95% CI 0.87 to 1.16; risk of death at 12 months of 770 per 1000 versus 767 per 1000; 3 studies, 839 participants; high certainty), likely increases grade 3/4 adverse events, and likely does not alter QoL. Gemcitabine plus taxane result in a large improvement in OS (HR 0.71, 95% CI 0.62 to 0.81; risk of death at 12 months of 644 per 1000 versus 767 per 1000; 2 studies, 986 participants; high certainty), and likely increases grade 3/4 adverse events and improves QoL. Nine studies compared chemotherapy combinations to gemcitabine plus nab-paclitaxel. Fluoropyrimidine-based combination regimens improve OS (HR 0.79, 95% CI 0.70 to 0.89; risk of death at 12 months of 542 per 1000 versus 628 per 1000; 6 studies, 1285 participants; high certainty). The treatment arms had distinct toxicity profiles, and there was little to no difference in QoL. Alternative schedules of gemcitabine plus nab-paclitaxel likely result in little to no difference in OS (HR 1.10, 95% CI 0.82 to 1.47; risk of death at 12 months of 663 per 1000 versus 628 per 1000; 2 studies, 367 participants; moderate certainty) or QoL, but may increase grade 3/4 adverse events. Four studies compared fluoropyrimidine-based combinations to fluoropyrimidines alone, with poor quality evidence. Fluoropyrimidine-based combinations are likely to result in little to no impact on OS (HR 0.84, 95% CI 0.61 to 1.15; risk of death at 12 months of 765 per 1000 versus 704 per 1000; P = 0.27; 4 studies, 491 participants; moderate certainty) versus fluoropyrimidines alone. The evidence suggests that there was little to no difference in grade 3/4 adverse events or QoL between the two groups. We included only one radiotherapy (iodine-125 brachytherapy) study with 165 participants. The evidence is very uncertain about the effect of radiotherapy on outcomes. AUTHORS' CONCLUSIONS Combination chemotherapy remains standard of care for metastatic pancreatic cancer. Both FOLFIRINOX and gemcitabine plus a taxane improve OS compared to gemcitabine alone. Furthermore, the evidence suggests that fluoropyrimidine-based combination chemotherapy regimens improve OS compared to gemcitabine plus nab-paclitaxel. The effects of radiotherapy were uncertain as only one low-quality trial was included. Selection of the most appropriate chemotherapy for individuals still remains unpersonalised, with clinicopathological stratification remaining elusive. Biomarker development is essential to assist in rationalising treatment selection for patients.
Collapse
Affiliation(s)
- Lucy Haggstrom
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Wei Yen Chan
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Adnan Nagrial
- The Crown Princess Mary Cancer Centre, Westmead, Australia
- Medical School, The University of Sydney, Sydney, Australia
| | - Lorraine A Chantrill
- Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, Australia
- University of Wollongong, Wollongong, Australia
| | - Hao-Wen Sim
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital, Garran, Australia
- ANU Medical School, Australian National University, Acton, Australia
| | - Venessa Chin
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Medical Oncology, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
5
|
Kim J, Park S, Kim SJ, Yoo I, Kim H, Hwang S, Sim KM, Kim I, Jun E. High-throughput drug screening using a library of antibiotics targeting cancer cell lines that are resistant and sensitive to gemcitabine. Biochem Biophys Res Commun 2024; 730:150369. [PMID: 39013264 DOI: 10.1016/j.bbrc.2024.150369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Gemcitabine is a nucleoside analog widely used as an anticancer agent against several types of cancer. Although gemcitabine sometimes shows excellent effectiveness, cancer cells are often poorly responsive to or resistant to the drug. Recently, specific strains or dysbiosis of the human microbiome were correlated with drug reactivity and resistance acquisition. Therefore, we aimed to identify antibiotic compounds that can modulate the microbiome to enhance the responsiveness to gemcitabine. To achieve this, we confirmed the gemcitabine responsiveness based on public data and conducted drug screening on a set of 250 antibiotics compounds. Subsequently, we performed experiments to investigate whether the selected compounds could enhance the responsiveness to gemcitabine. First, we grouped a total of seven tumor cell lines into resistant and sensitive group based on the IC50 value (1 μM) of gemcitabine obtained from the public data. Second, we performed high-throughput screening with compound treatments, identifying seven compounds from the resistant group and five from the sensitive group based on dose dependency. Finally, the combination of the selected compound, puromycin dihydrochloride, with gemcitabine in gemcitabine-resistant cell lines resulted in extensive cell death and a significant increase in cytotoxic efficacy. Additionally, mRNA levels associated with cell viability and stemness were reduced. Through this study, we screened antibiotics to further improve the efficacy of existing anticancer drugs and overcome resistance. By combining existing anticancer agents and antibiotic substances, we hope to establish various drug combination therapies and ultimately improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sojung Park
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Jin Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inha Yoo
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Heeseon Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Supyong Hwang
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Kyoung Mi Sim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
6
|
Combined chemotherapy based on bioactive black phosphorus for pancreatic cancer therapy. J Control Release 2023; 354:889-901. [PMID: 36586672 DOI: 10.1016/j.jconrel.2022.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Pancreatic cancer is the most aggressive malignant tumor with difficulty in early diagnosis, very short survival time in advanced stage, and lack of effective treatment options. In this work, a novel combination chemotherapy strategy based on bioactive black phosphorus (BP) and gemcitabine (GEM) is developed for efficient treatment of pancreatic cancer. The combined cell cycle blockage in G2/M phase induced by BP and G0/G1 phase by GEM results in synergistic killing of pancreatic cancer cells with the combination index (CI) < 1. The iRGD modified zein nanoparticles co-loaded with BP quantum dots (BPQDs) and GEM are designed and prepared as a targeted nanoplatform (BP-GEM@NPs). After intravenous injection, the in vivo distribution and pharmacokinetics results demonstrate that BP-GEM@NPs shows excellent tumor targeting capability and significantly prolonged blood circulation time. The targeted co-delivery of BPQDs and GEM induces much more pancreatic tumor cell apoptosis and synergistically inhibits tumor growth in both subcutaneous xenograft and orthotopic models. Meanwhile, BP-GEM@NPs exhibit good biocompatibility without bring adverse effects. This work indicates the great potential of BP-GEM@NPs as a combination chemotherapy for pancreatic cancer and provides insights into development of biomedicine by exploring the intrinsic bioactivities of nanomaterials.
Collapse
|
7
|
Hani U, Osmani RAM, Siddiqua A, Wahab S, Batool S, Ather H, Sheraba N, Alqahtani A. A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yeh C, Bates SE. Two decades of research toward the treatment of locally advanced and metastatic pancreatic cancer: Remarkable effort and limited gain. Semin Oncol 2021; 48:34-46. [PMID: 33712267 DOI: 10.1053/j.seminoncol.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that is diagnosed at the locally advanced or metastatic stage in approximately 80% of cases. Relative to other tumor types, progress in the treatment of this disease has been painfully slow. While agents targeting DNA repair have proven successful in a subset of patients, the majority of PDACs do not exhibit validated molecular targets. Hence, conventional chemotherapy remains at the forefront of therapy for this disease. In this review, we study two decades of efforts to improve upon the gemcitabine backbone - 67 phase II and III trials enrolling 16,446 patients - that culminated in the approvals of gemcitabine/nab-paclitaxel (Gem/NabP) and FOLFIRINOX. Today, these remain gold standards for the first-line treatment of locally advanced unresectable and metastatic PDAC, while ongoing efforts focus on improving upon the Gem/NabP backbone. Because real world data often do not reflect the data of randomized controlled trials (RCTs), we also summarize the retrospective evidence comparing the efficacy of Gem/NabP and FOLFIRINOX in the first-line setting - 29 studies reporting a median overall survival of 10.7 and 9.1 months for FOLFIRINOX and Gem/NabP, respectively. These values are surprisingly comparable to those reported by the pivotal RCTs at 11.1 and 8.5 months. Finally, there is a paucity of RCT data regarding the efficacy of second-line therapy. Hence, we conclude this review by summarizing the data that ultimately demonstrate a small but significant survival benefit of second-line therapy with Gem/NabP or FOLFIRINOX. Collectively, these studies describe the long journey, the steady effort, and the myriad lessons to be learned from 20 years of PDAC trials to inform strategies for success in clinical trials moving forward.
Collapse
Affiliation(s)
- Celine Yeh
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Susan E Bates
- James J. Peters VA Medical Center, Bronx, NY; Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY.
| |
Collapse
|
9
|
Wei B, Wang C, Teng T, Guo P, Chen M, Xia F, Liu H, Xie J, Feng J, Huang H. Chemotherapeutic efficacy of cucurmosin for pancreatic cancer as an alternative of gemcitabine: a comparative metabolomic study. Gland Surg 2020; 9:1428-1442. [PMID: 33224818 DOI: 10.21037/gs-20-202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background As the preferred drug for single chemotherapeutic application in pancreatic cancer, gemcitabine often demonstrated low sensitivity and strong chemotherapy resistance in patients. Therefore, the search for other drugs with high efficiency and low side effects has become of high importance. The aim of this study was to assess the therapeutic effects of cucurmosin on pancreatic cancer as an alternative of gemcitabine and explore its underlying biochemical mechanism. Methods The subcutaneous xenograft mice with pancreatic cancer were treated by high- and low-dose cucurmosin and gemcitabine, respectively. A comparative metabolomic analysis was performed on the serum samples from the different groups by 1H nuclear magnetic resonance (NMR) techniques and then subjected to univariate and multivariate statistical analysis. Results Cucurmosin demonstrated a dose-dependent inhibition to the pancreatic tumors. High-dose cucurmosin provided similar chemotherapeutic efficacy with gemcitabine by positively regulating pyruvate metabolism, glycolysis or gluconeogenesis, and cysteine and methionine metabolism. Inactivating GFR signaling pathway and further inducing apoptosis of tumor cells are the important mechanism of anti-tumor function of cucurmosin. Conclusions Cucurmosin is a promising chemotherapeutic drug for pancreatic cancer. However, the dose selection and surface modification should be optimized according to the stage of pancreatic cancer, and an expanded study in both laboratory and clinical regimes needs to be performed.
Collapse
Affiliation(s)
- Binbin Wei
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Congfei Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Minghuang Chen
- State Structural Chemistry Key Laboratory of Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jieming Xie
- Department of Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Gong JH, Zheng YB, Zhang MR, Wang YX, Yang SQ, Wang RH, Miao QF, Liu XJ, Zhen YS. Dexamethasone enhances the antitumor efficacy of Gemcitabine by glucocorticoid receptor signaling. Cancer Biol Ther 2020; 21:332-343. [PMID: 31906826 PMCID: PMC7515523 DOI: 10.1080/15384047.2019.1702399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/30/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine (Gem) is currently used as the first-line therapy for liver and pancreatic cancer but has limited efficacy in most cases. Dexamethasone (Dex) have been applied as a chemoprotectant and chemosensitizer in cancer chemotherapy. This study further explored the potential of combination of Gem and Dex and tested the hypothesis that glucocorticoid receptor signaling is essential for the synergistic antitumor activity. In the HepG2 and AsPC-1 xenograft models, the combination treatment showed a significantly synergistic antitumor activity. Immunohistochemistry of post-treatment tumors showed a significant decrease in proliferation and angiogenesis as compared to either of the treatments alone. Dex alone and the combination with Gem inhibited the expression of glucocorticoid receptor. The combination of Dex and Gem showed synergistic cytotoxicity in cell lines in vitro. The antiproliferative synergism is prevented by used glucocorticoid receptor (GR) small interfering RNA, demonstrating that the glucocorticoid receptor is required for the antiproliferative synergism of Gem and Dex. The inhibition of glucocorticoid receptor signaling pathway and induction of apoptosis via activation of caspases 3, 8 and 9, PARP, contributed to the synergistic effect of this combination therapy. These results demonstrate that Dex could potentiate the antitumor efficacy of Gem. The synergistic antitumor activity of the combination of Dex and Gem was through glucocorticoid receptor signaling. Taken together, a combination of Dex and Gem shows a significant synergistic antitumor activity and lesser toxicity both in vitro and in vivo and could be a combination chemotherapy for the treatment of highly expression of glucocorticoid receptor patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Dexamethasone/administration & dosage
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptors, Glucocorticoid/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Jian-Hua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan-Bo Zheng
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng-Ran Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue-Xuan Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si-Qi Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Hai Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiu-Jun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Abstract
OBJECTIVES We evaluated how well phase II trials in locally advanced and metastatic pancreatic cancer (LAMPC) meet current recommendations for trial design. METHODS We conducted a systematic review of phase II first-line treatment trial for LAMPC. We assessed baseline characteristics, type of comparison, and primary end point to examine adherence to the National Cancer Institute recommendations for trial design. RESULTS We identified 148 studies (180 treatment arms, 7505 participants). Forty-seven (32%) studies adhered to none of the 5 evaluated National Cancer Institute recommendations, 62 (42%) followed 1, 31 (21%) followed 2, and 8 (5%) followed 3 recommendations. Studies varied with respect to the proportion of patients with good performance status (range, 0%-80%) and locally advanced disease (range, 14%-100%). Eighty-two (55%) studies concluded that investigational agents should progress to phase III testing; of these, 24 (16%) had documented phase III trials. Three (8%) phase III trials demonstrated clinically meaningful improvements for investigational agents. One of 38 phase II trials that investigated biological investigational agents was enriched for a biomarker. CONCLUSIONS Phase II trials do not conform well to current recommendations for trial design in LAMPC.
Collapse
|
12
|
Brunner M, Wu Z, Krautz C, Pilarsky C, Grützmann R, Weber GF. Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions. Int J Mol Sci 2019; 20:E4543. [PMID: 31540286 PMCID: PMC6770743 DOI: 10.3390/ijms20184543] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies and is associated with a poor prognosis. Surgery is considered the only potential curative treatment for pancreatic cancer, followed by adjuvant chemotherapy, but surgery is reserved for the minority of patients with non-metastatic resectable tumors. In the future, neoadjuvant treatment strategies based on molecular testing of tumor biopsies may increase the amount of patients becoming eligible for surgery. In the context of non-metastatic disease, patients with resectable or borderline resectable pancreatic carcinoma might benefit from neoadjuvant chemo- or chemoradiotherapy followed by surgeryPatients with locally advanced or (oligo-/poly-)metastatic tumors presenting significant response to (neoadjuvant) chemotherapy should undergo surgery if R0 resection seems to be achievable. New immunotherapeutic strategies to induce potent immune response to the tumors and investigation in molecular mechanisms driving tumorigenesis of pancreatic cancer may provide novel therapeutic opportunities in patients with pancreatic carcinoma and help patient selection for optimal treatment.
Collapse
Affiliation(s)
- Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Zhiyuan Wu
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich Alexander University, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Use of Machine-Learning Algorithms in Intensified Preoperative Therapy of Pancreatic Cancer to Predict Individual Risk of Relapse. Cancers (Basel) 2019; 11:cancers11050606. [PMID: 31052270 PMCID: PMC6562932 DOI: 10.3390/cancers11050606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Although surgical resection is the only potentially curative treatment for pancreatic cancer (PC), long-term outcomes of this treatment remain poor. The aim of this study is to describe the feasibility of a neoadjuvant treatment with induction polychemotherapy (IPCT) followed by chemoradiation (CRT) in resectable PC, and to develop a machine-learning algorithm to predict risk of relapse. Methods: Forty patients with resectable PC treated in our institution with IPCT (based on mFOLFOXIRI, GEMOX or GEMOXEL) followed by CRT (50 Gy and concurrent Capecitabine) were retrospectively analyzed. Additionally, clinical, pathological and analytical data were collected in order to perform a 2-year relapse-risk predictive population model using machine-learning techniques. Results: A R0 resection was achieved in 90% of the patients. After a median follow-up of 33.5 months, median progression-free survival (PFS) was 18 months and median overall survival (OS) was 39 months. The 3 and 5-year actuarial PFS were 43.8% and 32.3%, respectively. The 3 and 5-year actuarial OS were 51.5% and 34.8%, respectively. Forty-percent of grade 3-4 IPCT toxicity, and 29.7% of grade 3 CRT toxicity were reported. Considering the use of granulocyte colony-stimulating factors, the number of resected lymph nodes, the presence of perineural invasion and the surgical margin status, a logistic regression algorithm predicted the individual 2-year relapse-risk with an accuracy of 0.71 (95% confidence interval [CI] 0.56–0.84, p = 0.005). The model-predicted outcome matched 64% of the observed outcomes in an external dataset. Conclusion: An intensified multimodal neoadjuvant approach (IPCT + CRT) in resectable PC is feasible, with an encouraging long-term outcome. Machine-learning algorithms might be a useful tool to predict individual risk of relapse. A small sample size and therapy heterogeneity remain as potential limitations.
Collapse
|
14
|
Abstract
OBJECTIVE The purpose of this study is to assess downstream costs associated with pancreatic cysts incidentally detected at MRI. MATERIALS AND METHODS Two hundred patients with an incidental pancreatic cyst detected at MRI were identified. Downstream events (imaging, office visits, endoscopic ultrasound-guided fine-needle aspiration, or chemotherapy) were identified from the electronic medical record. Radiologists' recommendations and ordering physician management were classified relative to the American College of Radiology (ACR) incidental findings committee recommendations. Costs for the downstream events were estimated using national Medicare rates and a 3% annual discount rate. Mean costs were computed. RESULTS Estimated downstream costs averaged $460 per cyst ($872 per cyst with any follow-up testing). Nine patients had a clinically relevant outcome during follow-up (increase in cyst size, development of new cyst, or development of pancreatic cancer). Downstream cost per cyst with a clinically relevant outcome was $1364. Costs were greater when ordering physicians overmanaged ($842) versus when they were adherent ($631) or undermanaged ($252) relative to radiologist recommendation. Although costs were $252 when ordering physicians undermanaged relative to ACR incidental findings committee recommendations, costs were similar when ordering physicians were adherent ($811) or overmanaged ($845) relative to ACR incidental findings committee recommendations. Costs did not vary significantly according to whether radiologists recommended follow-up testing ($317-$491) or whether radiologist recommendations were adherent, undermanaged, or overmanaged relative to ACR incidental findings committee recommendations ($344-$528). CONCLUSION The findings suggest a role for targeted educational efforts, collaborative partnerships, and other initiatives to foster greater adherence to radiologist recommendations, including critical test results notification systems, automated reminders within electronic health systems, and stronger language within radiology reports when no follow-up testing is recommended.
Collapse
|
15
|
Hajatdoost L, Sedaghat K, Walker EJ, Thomas J, Kosari S. Chemotherapy in Pancreatic Cancer: A Systematic Review. ACTA ACUST UNITED AC 2018; 54:medicina54030048. [PMID: 30344279 PMCID: PMC6122094 DOI: 10.3390/medicina54030048] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Background and Aim: Pancreatic cancer is one of the most fatal cancers. Cytotoxic chemotherapy remains the mainstream treatment for unresectable pancreatic cancer. This systematic review evaluated and compared the overall survival (OS) and progression-free survival (PFS) outcomes obtained from recent phase 2 and 3 clinical trials of pancreatic cancer chemotherapy. Materials and methods: Thirty-two studies were included and compared based on chemotherapy agents or combinations used. Additionally, outcomes of first-line versus second-line chemotherapy in pancreatic cancer were compared. Results: In studies that investigated the treatments in adjuvant settings, the highest OS reported was for S-1 in patients, who received prior surgical resection (46.5 months). In neoadjuvant settings, the combination of gemcitabine, docetaxel, and capecitabine prior to the surgical resection had promising outcomes (OS of 32.5 months). In non-adjuvant settings, the highest OS reported was for the combination of temsirolimus plus bevacizumab (34.0 months). Amongst studies that investigated second-line treatment, the highest OS reported was for the combination of gemcitabine plus cisplatin (35.5 months), then temsirolimus plus bevacizumab (34.0 months). Conclusions: There is a need to develop further strategies besides chemotherapy to improve the outcomes in pancreatic cancer treatment. Future studies should consider surgical interventions, combination chemotherapy, and individualized second-line treatment based on the prior chemotherapy.
Collapse
Affiliation(s)
- Leva Hajatdoost
- Department of Pharmaceutical Sciences, Baha'i Institute for Higher Education (BIHE), Tehran 11369, Iran.
| | - Keyvan Sedaghat
- Department of Pharmaceutical Sciences, Baha'i Institute for Higher Education (BIHE), Tehran 11369, Iran.
| | - Erin J Walker
- Discipline of Pharmacy, Faculty of Health, University of Canberra, Bruce, Canberra 2617 ACT, Australia.
| | - Jackson Thomas
- Discipline of Pharmacy, Faculty of Health, University of Canberra, Bruce, Canberra 2617 ACT, Australia.
| | - Sam Kosari
- Discipline of Pharmacy, Faculty of Health, University of Canberra, Bruce, Canberra 2617 ACT, Australia.
| |
Collapse
|
16
|
Mohammad AA. Advanced pancreatic cancer: The standard of care and new opportunities. Oncol Rev 2018; 12:370. [PMID: 30344961 PMCID: PMC6176548 DOI: 10.4081/oncol.2018.370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
Presentation of pancreatic cancer is localized, locally advanced or metastatic. With the later represented the main bulk (more than 80%). Despite the significant innovation in molecular analysis and therapeutic approach in many types of cancer in the last two decades, still the outcome of advanced pancreatic cancer is disappointing and the mortality rate approximately unchanged. In this mandated review we intended to highlight the standard of care and emerging agents for advanced pancreatic cancer treatment.
Collapse
|
17
|
Legler K, Hauser C, Egberts JH, Willms A, Heneweer C, Boretius S, Röcken C, Glüer CC, Becker T, Kluge M, Hill O, Gieffers C, Fricke H, Kalthoff H, Lemke J, Trauzold A. The novel TRAIL-receptor agonist APG350 exerts superior therapeutic activity in pancreatic cancer cells. Cell Death Dis 2018; 9:445. [PMID: 29670075 PMCID: PMC5906476 DOI: 10.1038/s41419-018-0478-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has raised attention as a novel anticancer therapeutic as it induces apoptosis preferentially in tumor cells. However, first-generation TRAIL-receptor agonists (TRAs), comprising recombinant TRAIL and agonistic receptor-specific antibodies, have not demonstrated anticancer activity in clinical studies. In fact, cancer cells are often resistant to conventional TRAs. Therefore, in addition to TRAIL-sensitizing strategies, next-generation TRAs with superior apoptotic activity are warranted. APG350 is a novel, highly potent TRAIL-receptor agonist with a hexavalent binding mode allowing the clustering of six TRAIL-receptors per drug molecule. Here we report on preclinical in vitro and in vivo studies testing the activity of APG350 on pancreatic ductal adenocarcinoma (PDAC) cells. We found that APG350 potently induced apoptosis of Colo357, PancTuI and Panc89 cells in vitro. In addition, APG350 treatment activated non-canonical TRAIL signaling pathways (MAPK, p38, JNK, ERK1/ERK2 and NF-κB) and induced the secretion of IL-8. Stable overexpression of Bcl-xL inhibited APG350-induced cell death and augmented activation of non-canonical pathways. Intriguingly, pre-treatment of Bcl-xL-overexpressing cells with the BH3-mimic Navitoclax restored their sensitivity to APG350. To study the effects of APG350 on PDAC cells in vivo, we applied two different orthotopic xenotransplantation mouse models, with and without primary tumor resection, representing adjuvant and palliative treatment regimes, respectively. APG350 treatment of established tumors (palliative treatment) significantly reduced tumor burden. These effects, however, were not seen in tumors with enforced overexpression of Bcl-xL. Upon primary tumor resection and subsequent APG350 treatment (adjuvant therapy), APG350 limited recurrent tumor growth and metastases. Importantly, therapeutic efficacy of APG350 treatment was more effective compared with treatment with soluble TRAIL in both models. In conclusion, APG350 represents a promising next-generation TRA for the treatment of PDAC. Moreover, our results suggest that combining APG350 with Navitoclax might be a succesfull strategy for cancers harboring mitochondrial apoptosis resistance.
Collapse
Affiliation(s)
- Karen Legler
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Charlotte Hauser
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan-Hendrik Egberts
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anna Willms
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carola Heneweer
- Clinic for Diagnostic Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Radiology, University Hospital Cologne, Cologne, Germany
| | - Susann Boretius
- Clinic for Diagnostic Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany.,Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research and Georg-August-University Göttingen, Göttingen, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Diagnostic Radiology und Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michael Kluge
- APOGENIX AG, Im Neuenheimer Feld 584, Heidelberg, Germany.,Affimed GmbH, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Oliver Hill
- APOGENIX AG, Im Neuenheimer Feld 584, Heidelberg, Germany
| | | | - Harald Fricke
- APOGENIX AG, Im Neuenheimer Feld 584, Heidelberg, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Johannes Lemke
- Clinic of General and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany. .,Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
18
|
Chin V, Nagrial A, Sjoquist K, O'Connor CA, Chantrill L, Biankin AV, Scholten RJPM, Yip D. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev 2018; 3:CD011044. [PMID: 29557103 PMCID: PMC6494171 DOI: 10.1002/14651858.cd011044.pub2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal disease with few effective treatment options. Over the past few decades, many anti-cancer therapies have been tested in the locally advanced and metastatic setting, with mixed results. This review attempts to synthesise all the randomised data available to help better inform patient and clinician decision-making when dealing with this difficult disease. OBJECTIVES To assess the effect of chemotherapy, radiotherapy or both for first-line treatment of advanced pancreatic cancer. Our primary outcome was overall survival, while secondary outcomes include progression-free survival, grade 3/4 adverse events, therapy response and quality of life. SEARCH METHODS We searched for published and unpublished studies in CENTRAL (searched 14 June 2017), Embase (1980 to 14 June 2017), MEDLINE (1946 to 14 June 2017) and CANCERLIT (1999 to 2002) databases. We also handsearched all relevant conference abstracts published up until 14 June 2017. SELECTION CRITERIA All randomised studies assessing overall survival outcomes in patients with advanced pancreatic ductal adenocarcinoma. Chemotherapy and radiotherapy, alone or in combination, were the eligible treatments. DATA COLLECTION AND ANALYSIS Two review authors independently analysed studies, and a third settled any disputes. We extracted data on overall survival (OS), progression-free survival (PFS), response rates, adverse events (AEs) and quality of life (QoL), and we assessed risk of bias for each study. MAIN RESULTS We included 42 studies addressing chemotherapy in 9463 patients with advanced pancreatic cancer. We did not identify any eligible studies on radiotherapy.We did not find any benefit for chemotherapy over best supportive care. However, two identified studies did not have sufficient data to be included in the analysis, and many of the chemotherapy regimens studied were outdated.Compared to gemcitabine alone, participants receiving 5FU had worse OS (HR 1.69, 95% CI 1.26 to 2.27, moderate-quality evidence), PFS (HR 1.47, 95% CI 1.12 to 1.92) and QoL. On the other hand, two studies showed FOLFIRINOX was better than gemcitabine for OS (HR 0.51 95% CI 0.43 to 0.60, moderate-quality evidence), PFS (HR 0.46, 95% CI 0.38 to 0.57) and response rates (RR 3.38, 95% CI 2.01 to 5.65), but it increased the rate of side effects. The studies evaluating CO-101, ZD9331 and exatecan did not show benefit or harm when compared with gemcitabine alone.Giving gemcitabine at a fixed dose rate improved OS (HR 0.79, 95% CI 0.66 to 0.94, high-quality evidence) but increased the rate of side effects when compared with bolus dosing.When comparing gemcitabine combinations to gemcitabine alone, gemcitabine plus platinum improved PFS (HR 0.80, 95% CI 0.68 to 0.95) and response rates (RR 1.48, 95% CI 1.11 to 1.98) but not OS (HR 0.94, 95% CI 0.81 to 1.08, low-quality evidence). The rate of side effects increased. Gemcitabine plus fluoropyrimidine improved OS (HR 0.88, 95% CI 0.81 to 0.95), PFS (HR 0.79, 95% CI 0.72 to 0.87) and response rates (RR 1.78, 95% CI 1.29 to 2.47, high-quality evidence), but it also increased side effects. Gemcitabine plus topoisomerase inhibitor did not improve survival outcomes but did increase toxicity. One study demonstrated that gemcitabine plus nab-paclitaxel improved OS (HR 0.72, 95% CI 0.62 to 0.84, high-quality evidence), PFS (HR 0.69, 95% CI 0.58 to 0.82) and response rates (RR 3.29, 95% CI 2.24 to 4.84) but increased side effects. Gemcitabine-containing multi-drug combinations (GEMOXEL or cisplatin/epirubicin/5FU/gemcitabine) improved OS (HR 0.55, 95% CI 0.39 to 0.79, low-quality evidence), PFS (HR 0.43, 95% CI 0.30 to 0.62) and QOL.We did not find any survival advantages when comparing 5FU combinations to 5FU alone. AUTHORS' CONCLUSIONS Combination chemotherapy has recently overtaken the long-standing gemcitabine as the standard of care. FOLFIRINOX and gemcitabine plus nab-paclitaxel are highly efficacious, but our analysis shows that other combination regimens also offer a benefit. Selection of the most appropriate chemotherapy for individual patients still remains difficult, with clinicopathological stratification remaining elusive. Biomarker development is essential to help rationalise treatment selection for patients.
Collapse
Affiliation(s)
- Venessa Chin
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre384 Victoria Street DarlinghurstSydneyNSWAustralia2010
- St Vincent's HospitalSydneyNSWAustralia
| | - Adnan Nagrial
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre384 Victoria Street DarlinghurstSydneyNSWAustralia2010
- The Crown Princess Mary Cancer CentreDarcy RoadWestmeadNSWAustralia2145
| | - Katrin Sjoquist
- University of SydneyNHMRC Clinical Trials CentreK25 ‐ Medical Foundation BuildingSydneyNSWAustralia2006
- Cancer Care Centre, St George HospitalMedical OncologySt George Hospital, Gray StKogarahAustraliaNSW 2217
| | - Chelsie A O'Connor
- St Vincent's HospitalSydneyNSWAustralia
- Genesis Cancer CareSydneyNSWAustralia
- Macquarie University HospitalSydneyAustralia
| | - Lorraine Chantrill
- The Kinghorn Cancer Centre, Garvan Institute of Medical ResearchDepartment of Pancreatic Cancer382 Victoria Street DarlinghurstSydneyNSWAustralia2010
| | - Andrew V Biankin
- University of GlasgowInstitute of Cancer SciencesWolfson Wohl Cancer Research CentreGarscube Estate, Switchback RoadGlasgowUKG61 1QH
- University of New South WalesSouth Western Sydney Clinical School, Faculty of MedicineLiverpoolNSWAustralia2170
- West of Scotland Pancreatic Unit and Glasgow Royal InfirmaryGlasgowUK
| | - Rob JPM Scholten
- Julius Center for Health Sciences and Primary Care / University Medical Center UtrechtCochrane NetherlandsRoom Str. 6.126P.O. Box 85500UtrechtNetherlands3508 GA
| | - Desmond Yip
- The Canberra HospitalDepartment of Medical OncologyYamba DriveGarranACTAustralia2605
- Australian National UniversityANU Medical SchoolActonACTAustralia0200
| | | |
Collapse
|
19
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143:1499-1529. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
20
|
Zhan HX, Xu JW, Wu D, Wu ZY, Wang L, Hu SY, Zhang GY. Neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of prospective studies. Cancer Med 2017; 6:1201-1219. [PMID: 28544758 PMCID: PMC5463082 DOI: 10.1002/cam4.1071] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
There is a strong rationale and many theoretical advantages for neoadjuvant therapy in pancreatic cancer (PC). However, study results have varied significantly. In this study, a systematic review and meta‐analysis of prospective studies were performed in order to evaluate safety and effectiveness of neoadjuvant therapy in PC. Thirty‐nine studies were selected (n = 1458 patients), with 14 studies focusing on patients with resectable disease (group 1), and 19 studies focusing on patients with borderline resectable and locally advanced disease (group 2). Neoadjuvant chemotherapy was administered in 97.4% of the studies, in which 76.9% was given radiotherapy and 74.4% administered with chemoradiation. The complete and partial response rate was 3.8% and 20.9%. The incidence of grade 3/4 toxicity was 11.3%. The overall resection rate after neoadjuvant therapy was 57.7% (group 1: 73.0%, group 2: 40.2%). The R0 resection rate was 84.2% (group 1: 88.2%, group 2: 79.4%). The overall survival for all patients was 16.79 months (resected 24.24, unresected 9.81; group 1: 17.76, group 2: 16.20). Our results demonstrate that neoadjuvant therapy has not been proven to be beneficial and should be considered with caution in patients with resectable PC. Patients with borderline resectable or locally advanced disease may benefit from neoadjuvant therapy, but further research is needed.
Collapse
Affiliation(s)
- Han-Xiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jian-Wei Xu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Dong Wu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zhi-Yang Wu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| |
Collapse
|
21
|
Scheithauer W, Kornek G, Prager G, Stranzl N, Laengle F, Schindl M, Friedl J, Klech J, Roethlin S, Zielinski C. Phase II trial of capecitabine plus nab-paclitaxel in patients with metastatic pancreatic adenocarcinoma. J Gastrointest Oncol 2016; 7:234-8. [PMID: 27034791 DOI: 10.3978/j.issn.2078-6891.2015.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Combination chemotherapy regimens including fluoropyrimidines as well as albumin-bound paclitaxel have shown promising results in patients with metastatic pancreatic adenocarcinoma (mPC). Based on the recently described excellent therapeutic index of capecitabine plus nab-paclitaxel in metastatic breast cancer, the present phase II trial was initiated. METHODS Patients with previously untreated mPC were treated with capecitabine (825 mg/m(2) orally bid on days 1-15) and nab-paclitaxel (125 mg/m(2) intravenously on days 1 and 8) every 3 weeks. In patients without clinically relevant adverse reactions after the 1st treatment course (≤ grade 2 toxicities according to NCI-CTC vs. 4.0, exuding alopecia and fatigue of any degree) and adequate bone marrow function, the nab-paclitaxel dose was escalated to 100 mg/m(2) on days 1, 8 and 15 of each cycle; this intra-individual dose escalation was maintained during subsequent treatment courses if tolerated. The primary endpoint was objective response rate (ORR) according to RECIST criteria, assessed by an independent radiological review committee with evaluation performed every 2 months. RESULTS Between 12/2013 and 01/2015, 30 patients were entered in this monocentric academic phase II trial. All patients had an ECOG performance status of 0-1, 80% had liver metastases and 23% had biliary stents in place at time of study initiation. Median CA19-9 was 1,004 U/mL (0.9-100.000 U/mL). In all patients except 2, a dose escalation of nab-paclitaxel after the 1st treatment course could be accomplished. The most common grade 3 adverse events (AEs) included transient sensory neuropathy (23%), (afebrile) neutropenia (17%), hand-foot-syndrome (13%) and phototoxic skin reaction (10%). Among 29 RECIST-response assessable patients, the ORR was 41.4% and stable disease (SD) was noted in 34.5%, resulting in a disease control rate (DCR) of 76%. After a median follow-up duration of 10.3 months (range, 1.9-19.0 months), 13/30 patients (43.3%) are presently being alive. CONCLUSIONS The combination of capecitabine + nab-paclitaxel at these doses and scheduling was well tolerated and showed substantial antitumor efficacy.
Collapse
Affiliation(s)
- Werner Scheithauer
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Gabriela Kornek
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Gerald Prager
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Nadja Stranzl
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Friedrich Laengle
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Martin Schindl
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Josef Friedl
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Julia Klech
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Sabine Roethlin
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Christoph Zielinski
- 1 Department of Internal Medicine I, Medical University Vienna, Vienna, Austria ; 2 Department of Surgery, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria ; 3 Department of Surgery, Medical University Vienna, Vienna, Austria
| |
Collapse
|
22
|
Yuan Y, Zhou X, Ren Y, Zhou S, Wang L, Ji S, Hua M, Li L, Lu W, Zhou T. Semi-Mechanism-Based Pharmacokinetic/Pharmacodynamic Model for the Combination Use of Dexamethasone and Gemcitabine in Breast Cancer. J Pharm Sci 2015; 104:4399-4408. [PMID: 26344053 DOI: 10.1002/jps.24629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 11/08/2022]
Abstract
Our study aimed at the investigation of in vivo anticancer effect of the combination use of dexamethasone (DEX) and gemcitabine (GM) as well as the development of pharmacokinetic/pharmacodynamic (PK/PD) models in MCF-7 xenograft model. Further, simulations were conducted to optimize doses and administration schedules. The inhibitory effect of different doses and administration schedules were investigated in MCF-7 xenograft model. Semi-mechanism-based PK/PD models were established based on the preclinical data to characterize the relationship between plasma concentration and the time course of the drug response quantitatively. The PK/PD models were further applied to predict and optimize doses and administration schedules, which would lead to tumor stasis by the end of the treatment. Synergistic effect was observed in the PD study in vivo and further confirmed by the estimated combination index ψ obtained from PK/PD models. The optimum dose regimen was selected as DEX 2 mg/kg, qd and GM 10 mg/kg, q2d based on the simulation results. In summary, the PD interaction between DEX and GM was demonstrated as synergism by both experimental results and modeling approach. Dosage regimens were optimized as predicted by modeling and simulations, which would provide reference for preclinical study and translational research as well.
Collapse
Affiliation(s)
- Yin Yuan
- School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Xuan Zhou
- School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Yupeng Ren
- School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Shupei Zhou
- The Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing 100191, China
| | - Lijie Wang
- School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Shuangmin Ji
- School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Ming Hua
- The Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing 100191, China
| | - Liang Li
- School of Pharmaceutical Science, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wei Lu
- School of Pharmaceutical Science, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Tianyan Zhou
- School of Pharmaceutical Science, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|