1
|
Redegalli M, Grassini G, Magliacane G, Pecciarini L, Schiavo Lena M, Smart CE, Johnston RL, Waddell N, Maestro R, Macchini M, Orsi G, Petrone MC, Rossi G, Balzano G, Falconi M, Arcidiacono PG, Reni M, Doglioni C, Cangi MG. Routine Molecular Profiling in Both Resectable and Unresectable Pancreatic Adenocarcinoma: Relevance of Cytologic Samples. Clin Gastroenterol Hepatol 2023; 21:2825-2833. [PMID: 36280101 DOI: 10.1016/j.cgh.2022.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease, for which it is crucial to promptly detect actionable and prognostic alterations to drive specific therapeutic decisions, regardless of tumor resectability status. Endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) is of key importance for PDAC diagnosis and can contribute significantly to tumor molecular profiling. METHODS Comprehensive genomic profile by targeted next-generation sequencing (NGS) was performed on 2 independent PDAC patient cohorts. Cohort 1 consisted of 77 patients with resectable PDAC for whom the histologic sample at the time of resection was available; for 56 patients cytologic specimens at the time of diagnosis also were obtained by EUS-FNA. Cohort 2 consisted of 20 patients with unresectable PDAC, for whom only the EUS-FNA cytologic sample was available. RESULTS In cohort 1, a complete concordant mutational profile between the cytologic sample at diagnosis and the corresponding histologic specimen after surgery was observed in 88% of the cases, proving the ability to detect potential clinically relevant alterations in cytologic samples by NGS analysis. Notably, clinically actionable mutations were identified in 20% of patients. In cohort 2, comprehensive mutational profiling was obtained successfully for all samples. Consistent with the findings of cohort 1, KRAS, TP53, CDKN2A, and SMAD4 were the most altered genes. Most importantly, 15% of the patients harbored actionable mutations. CONCLUSIONS Our findings show the feasibility of an NGS approach using both surgical specimens and cytologic samples. The model proposed in this study can be included successfully in the clinical setting for comprehensive molecular profiling of all PDAC patients irrespective of their surgical eligibility.
Collapse
Affiliation(s)
- Miriam Redegalli
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Greta Grassini
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Gilda Magliacane
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Lorenza Pecciarini
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Marco Schiavo Lena
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Chanel E Smart
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca L Johnston
- Unit of Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicola Waddell
- Unit of Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Marina Macchini
- Department of Medical Oncology, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Gemma Rossi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo G Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, Pancreas Translational and Clinical Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Giulia Cangi
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Dayyani F, Macarulla T, Johnson A, Wainberg ZA. Second-line treatment options for patients with metastatic pancreatic ductal adenocarcinoma: A systematic literature review. Cancer Treat Rev 2023; 113:102502. [PMID: 36641880 DOI: 10.1016/j.ctrv.2022.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The aim of this review was to characterize the second- and later-line (≥2L) treatment landscape for patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS This systematic literature review (PROSPERO: CRD42021279753) involved searches of MEDLINE® and Embase to identify results from prospective studies of ≥2L treatment options for metastatic pancreatic cancer published from 2016 to 2021. Publications were screened according to predetermined eligibility criteria; population-level data were extracted using standardized data fields. Publication quality was assessed according to Grading of Recommendations Assessment, Development and Evaluation (GRADE). The data were analyzed descriptively, grouped by drug class. RESULTS Sixty publications were identified, including 23 relating to comparative trials. GRADE assessment found that, of these 23 trials, 83% reported high or moderate-quality evidence. Of the publications relating to comparative trials, nine (three trials) reported favorable results: the pivotal phase 3 NAPOLI-1 trial for liposomal irinotecan; a phase 3 trial of non-liposomal irinotecan within the FOLFIRINOX regimen; and a phase 2 trial of eryaspase plus chemotherapy. CONCLUSIONS The level of unmet need for ≥2L treatment options for mPDAC remains high. Irinotecan-based regimens currently offer the greatest promise. Investigations into paradigm-changing agents and combination approaches continue.
Collapse
Affiliation(s)
| | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | |
Collapse
|
3
|
Peng J, Madduri S, Clontz AD, Stewart DA. Clinical trial-identified inflammatory biomarkers in breast and pancreatic cancers. Front Endocrinol (Lausanne) 2023; 14:1106520. [PMID: 37181043 PMCID: PMC10173309 DOI: 10.3389/fendo.2023.1106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Breast cancer and pancreatic cancer are two common cancer types characterized by high prevalence and high mortality rates, respectively. However, breast cancer has been more well-studied than pancreatic cancer. This narrative review curated inflammation-associated biomarkers from clinical studies that were systematically selected for both breast and pancreatic cancers and discusses some of the common and unique elements between the two endocrine-regulated malignant diseases. Finding common ground between the two cancer types and specifically analyzing breast cancer study results, we hoped to explore potential feasible methods and biomarkers that may be useful also in diagnosing and treating pancreatic cancer. A PubMed MEDLINE search was used to identify articles that were published between 2015-2022 of different kinds of clinical trials that measured immune-modulatory biomarkers and biomarker changes of inflammation defined in diagnosis and treatment of breast cancer and pancreatic cancer patients. A total of 105 papers (pancreatic cancer 23, breast cancer 82) were input into Covidence for the title and abstract screening. The final number of articles included in this review was 73 (pancreatic cancer 19, breast cancer 54). The results showed some of the frequently cited inflammatory biomarkers for breast and pancreatic cancers included IL-6, IL-8, CCL2, CD8+ T cells and VEGF. Regarding unique markers, CA15-3 and TNF-alpha were two of several breast cancer-specific, and CA19 and IL-18 were pancreatic cancer-specific. Moreover, we discussed leptin and MMPs as emerging biomarker targets with potential use for managing pancreatic cancer based on breast cancer studies in the future, based on inflammatory mechanisms. Overall, the similarity in how both types of cancers respond to or result in further disruptive inflammatory signaling, and that point to a list of markers that have been shown useful in diagnosis and/or treatment method response or efficacy in managing breast cancer could potentially provide insights into developing the same or more useful diagnostic and treatment measurement inflammatory biomarkers for pancreatic cancer. More research is needed to investigate the relationship and associated inflammatory markers between the similar immune-associated biological mechanisms that contribute to breast and pancreatic cancer etiology, drive disease progression or that impact treatment response and reflect survival outcomes.
Collapse
Affiliation(s)
- Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep Madduri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Angela D. Clontz
- Department of Nutrition, Meredith College, Raleigh, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- *Correspondence: Delisha A. Stewart,
| |
Collapse
|
4
|
Fernandes AS, Oliveira C, Reis RL, Martins A, Silva TH. Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies. Mar Drugs 2022; 20:689. [PMID: 36355012 PMCID: PMC9698933 DOI: 10.3390/md20110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2024] Open
Abstract
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.
Collapse
Affiliation(s)
- Andreia S. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
5
|
Macchini M, Centonze F, Peretti U, Orsi G, Militello AM, Valente MM, Cascinu S, Reni M. Treatment opportunities and future perspectives for pancreatic cancer patients with germline BRCA1-2 pathogenic variants. Cancer Treat Rev 2021; 100:102262. [PMID: 34418781 DOI: 10.1016/j.ctrv.2021.102262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Personalized treatments and predictive biomarkers of pancreatic cancer (PDAC) are still lacking. Recently germline mutations in BRCA 1 and 2 genes, leading to homologous repair deficiency, have emerged as new targets for more specific and effective therapies, exploiting the increased susceptibility to platinum salts and PARP inhibitors. In addition to BRCA, pathogenic variants in PALB2 and in other genes involved in the DNA damage response pathway (DDR) represent potential targets, as well as their respective somatic alterations. This enlarged molecularly-selected population sharing the BRCAness phenotype, is expected to show a higher sensibility to a number of DNA damaging agents and DDR inhibitors. However, the possibility of new therapeutic opportunities for DDR defective PDAC patients has to face the lack of solid evidence about the proper type and timing of targeted-treatments, the potential combination strategies and most importantly, the lack of informations on the functional impact of each specific pathogenic variant on the DDR pathway. This review summarizes the current and near-future options for the clinical management of PDAC patients harboring a DDR deficiency, analyzing the state of the art of the indications of platinum salts and other cytotoxic agents in the advanced and early stage PDAC, the development of PARP inhibitors and the rational for new combinations with immunotherapy and cycle checkpoint inhibitors, as well as the strategy to overcome the development of resistance over treatments.
Collapse
Affiliation(s)
- Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Federico Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Maddalena Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021; 11:biom11060901. [PMID: 34204306 PMCID: PMC8234537 DOI: 10.3390/biom11060901] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.
Collapse
Affiliation(s)
- Ramiz S. Ahmad
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Brian A. Boone
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
7
|
Enhancing the Efficacy of CAR T Cells in the Tumor Microenvironment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12061389. [PMID: 32481570 PMCID: PMC7353070 DOI: 10.3390/cancers12061389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has the worst prognosis and lowest survival rate among all types of cancers and thus, there exists a strong need for novel therapeutic strategies. Chimeric antigen receptor (CAR)-modified T cells present a new potential option after successful FDA-approval in hematologic malignancies, however, current CAR T cell clinical trials in pancreatic cancer failed to improve survival and were unable to demonstrate any significant response. The physical and environmental barriers created by the distinct tumor microenvironment (TME) as a result of the desmoplastic reaction in pancreatic cancer present major hurdles for CAR T cells as a viable therapeutic option in this tumor entity. Cancer cells and cancer-associated fibroblasts express extracellular matrix molecules, enzymes, and growth factors, which can attenuate CAR T cell infiltration and efficacy. Recent efforts demonstrate a niche shift where targeting the TME along CAR T cell therapy is believed or hoped to provide a substantial clinical added value to improve overall survival. This review summarizes therapeutic approaches targeting the TME and their effect on CAR T cells as well as their outcome in preclinical and clinical trials in pancreatic cancer.
Collapse
|
8
|
Hajatdoost L, Sedaghat K, Walker EJ, Thomas J, Kosari S. Chemotherapy in Pancreatic Cancer: A Systematic Review. ACTA ACUST UNITED AC 2018; 54:medicina54030048. [PMID: 30344279 PMCID: PMC6122094 DOI: 10.3390/medicina54030048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Background and Aim: Pancreatic cancer is one of the most fatal cancers. Cytotoxic chemotherapy remains the mainstream treatment for unresectable pancreatic cancer. This systematic review evaluated and compared the overall survival (OS) and progression-free survival (PFS) outcomes obtained from recent phase 2 and 3 clinical trials of pancreatic cancer chemotherapy. Materials and methods: Thirty-two studies were included and compared based on chemotherapy agents or combinations used. Additionally, outcomes of first-line versus second-line chemotherapy in pancreatic cancer were compared. Results: In studies that investigated the treatments in adjuvant settings, the highest OS reported was for S-1 in patients, who received prior surgical resection (46.5 months). In neoadjuvant settings, the combination of gemcitabine, docetaxel, and capecitabine prior to the surgical resection had promising outcomes (OS of 32.5 months). In non-adjuvant settings, the highest OS reported was for the combination of temsirolimus plus bevacizumab (34.0 months). Amongst studies that investigated second-line treatment, the highest OS reported was for the combination of gemcitabine plus cisplatin (35.5 months), then temsirolimus plus bevacizumab (34.0 months). Conclusions: There is a need to develop further strategies besides chemotherapy to improve the outcomes in pancreatic cancer treatment. Future studies should consider surgical interventions, combination chemotherapy, and individualized second-line treatment based on the prior chemotherapy.
Collapse
Affiliation(s)
- Leva Hajatdoost
- Department of Pharmaceutical Sciences, Baha'i Institute for Higher Education (BIHE), Tehran 11369, Iran.
| | - Keyvan Sedaghat
- Department of Pharmaceutical Sciences, Baha'i Institute for Higher Education (BIHE), Tehran 11369, Iran.
| | - Erin J Walker
- Discipline of Pharmacy, Faculty of Health, University of Canberra, Bruce, Canberra 2617 ACT, Australia.
| | - Jackson Thomas
- Discipline of Pharmacy, Faculty of Health, University of Canberra, Bruce, Canberra 2617 ACT, Australia.
| | - Sam Kosari
- Discipline of Pharmacy, Faculty of Health, University of Canberra, Bruce, Canberra 2617 ACT, Australia.
| |
Collapse
|
9
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|
10
|
Sica A, Porta C, Amadori A, Pastò A. Tumor-associated myeloid cells as guiding forces of cancer cell stemness. Cancer Immunol Immunother 2017; 66:1025-1036. [PMID: 28401258 PMCID: PMC11029054 DOI: 10.1007/s00262-017-1997-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Alberto Amadori
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Anna Pastò
- Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| |
Collapse
|
11
|
Huang T, Sun L, Yuan X, Qiu H. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget 2017; 8:84546-84558. [PMID: 29137447 PMCID: PMC5663619 DOI: 10.18632/oncotarget.19165] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/28/2017] [Indexed: 01/21/2023] Open
Abstract
Thrombospondins are a family of extracellular matrix (ECM) proteins. Thrombospondin-1 (TSP1) was the first member to be identified and is a main player in tumor microenvironment. The diverse functions of TSP1 depend on the interactions between its structural domains and multiple cell surface molecules. TSP1 acts as an angiogenesis inhibitor by stimulating endothelial cell apoptosis, inhibiting endothelial cell migration and proliferation, and regulating vascular endothelial growth factor bioavailability and activity. In addition to angiogenesis modulation, TSP1 also affects tumor cell adhesion, invasion, migration, proliferation, apoptosis and tumor immunity. This review discusses the multifaceted and sometimes opposite effects of TSP1 on tumor progression depending on the molecular and cellular composition of the microenvironment. Clinical implications of TSP1-related compounds are also discussed.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
12
|
Critical role of HMGA proteins in cancer cell chemoresistance. JOURNAL OF MOLECULAR MEDICINE (BERLIN, GERMANY) 2017. [PMID: 28293697 DOI: 10.1007/s00109‐017‐1520‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high-mobility group A (HMGA) proteins are frequently overexpressed in human malignancies and correlate with the presence of metastases and reduced patient survival. Here, we highlight the main studies evidencing a critical role of HMGA in chemoresistance, mainly by activating Akt signaling, impairing p53 activity, and regulating the expression of microRNAs that target genes involved in the susceptibility of cancer cells to antineoplastic agents. Therefore, these studies account for the association of HMGA overexpression with patient poor outcome, indicating the impairment of HMGA as a fascinating perspective for effectively improving cancer therapy.
Collapse
|
13
|
D’Angelo D, Mussnich P, Arra C, Battista S, Fusco A. Critical role of HMGA proteins in cancer cell chemoresistance. J Mol Med (Berl) 2017; 95:353-360. [DOI: 10.1007/s00109-017-1520-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 02/03/2023]
|