1
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
2
|
Zaman GS, Kamli H, Radhakrishnan S, Ahmad I, Otifi H, Alshahrani MY, Rajagopalan P. Structure activity evaluation and computational analysis identify potent, novel 3-benzylidene chroman-4-one analogs with anti-fungal, anti-oxidant, and anti-cancer activities. Drug Dev Ind Pharm 2021; 47:1459-1468. [PMID: 34726982 DOI: 10.1080/03639045.2021.2001489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SIGNIFICANCE 3-Benzylidene chroman-4-ones share close homology with naturally occurring bioactive compounds. OBJECTIVES This study evaluated the antifungal, antioxidant, and anticancer activities of novel 3-benzylidene chromanone analogs with respect to their structure-activity relationships. METHODS Compounds 45e-64e were synthesized inhouse. Aspergillus niger (MTCC 1344) Aspergillus flavus and Botrytis cinerea were the fungal strains tested. Computational docking analysis was carried out for vanin-1, estrogen receptor (ER), and Akt proteins using Auto-dock vina. Free radical scavenging and total antioxidant capacity was analyzed using spectrophotometric methods. MCF-7 (breast cancer) cell line was used for anticancer assays. Flow cytometry was used to detect cell cycle and apoptosis. RESULTS Out of the twenty compounds screened, compounds 47e, 50e, 52e, 57e, and 61e that possessed either methoxy and ethoxy/methyl/isopropyl group exhibited very good activity against all fungi. Compounds possessing methoxy group alone showed moderate activity and compounds devoid of methoxy, and ethoxy groups did not show any activity. When computationally analyzed against target proteins for antioxidant properties, the compounds exhibited excellent binging efficacy to vanin-1 and ERs. These predictions were translated in the in vitro free-radical scavenging and antioxidant assays. The compounds exhibited anti-proliferative efficacy in breast cancer cell line, increased the sub-G0/G1 cell cycle populations and total apoptosis in MCF-7 cells. Additionally, the compounds also depicted excelling binging energy when computationally analyzed for Akt enzyme binding. CONCLUSION In summary, our study identified potential analogs of 3-benzylidene chroman-4-one molecules with excellent anti-fungal, anti-oxidant, and anticancer activities which demand further research for drug developments.
Collapse
Affiliation(s)
- Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suresh Radhakrishnan
- Post Graduate and Research Department of Chemistry, Presidency College, Chennai, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Microwave prompted solvent-free synthesis of new series of heterocyclic tagged 7-arylidene indanone hybrids and their computational, antifungal, antioxidant, and cytotoxicity study. Bioorg Chem 2021; 115:105259. [PMID: 34426144 DOI: 10.1016/j.bioorg.2021.105259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
In this study, we report the expeditious synthesis of ten new antifungal and antioxidant agents containing heterocyclic linked 7-arylidene indanone moiety. The solvent-free microwave technique, ample substrate scope, superfast synthesis, and very simple operation are noteworthy features of this protocol. Antifungal activities of the newly synthesized compounds were evaluated against four fungal strains namely Rhizophus oryzae, Mucor mucido, Aspergillus niger, and Candida albicans. Most of the compounds were shown strong inhibition of the investigated fungal agents. In vitro, antioxidant potential against DPPH and OH radicals affirmed that the synthesized compounds are good to excellent radicals scavenging agents. The cytotoxicity data of the synthesized compounds towards HL-60 cells uncovered that the synthesized compounds display very low to negligible cytotoxicity. The structural and quantum chemical parameters of the synthesized compounds were explored by employing density functional theory (DFT) at B3LYP functional using 6-311G(d,p) basis set. The compound 3a is discussed in detail for the theoretical and experimental correlation. Time-dependent density functional theory (TD-DFT) at CAM-B3LYP functional with 6-311G(d,p) basis set was used for the electronic absorption study in the gas phase and indichloromethane and benzene solvents. The UV-Visible absorption peaks and fundamental vibrational wavenumbers were computed and a good agreement between observed and theoretical results has been achieved. From the DFT and antifungal activity correlation, it has been found that the 7-heteroarylidene indanones with more stabilized LUMO energy levels display good antifungal potential.
Collapse
|
4
|
Al Fayi M. Anti-cancer effects of Nepeta Deflersiana Extract (NDE) in estrogen positive and negative forms of breast cancer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_464_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Alshyarba M, Otifi H, Al Fayi M, A Dera A, Rajagopalan P. Thymoquinone inhibits IL-7-induced tumor progression and metastatic invasion in prostate cancer cells by attenuating matrix metalloproteinase activity and Akt/NF-κB signaling. Biotechnol Appl Biochem 2020; 68:1403-1411. [PMID: 33128273 DOI: 10.1002/bab.2062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/24/2020] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-7 acts via the IL-7 receptor in metastatic tumor progression in prostate cancer (PC). The current study aimed to evaluate thymoquinone (Tq), an active constituent from Nigella sativa against IL-7-driven tumor progression and metastatic invasion in PC cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess the proliferation of PC cells. Enzyme-linked immunosorbent assay was used to detect the expression of IL-7 and matrix metalloproteinases (MMPs). Tumor-cell transendothelial, scratch wound and cell scatter assays were performed to mimic metastasis. Western immunoblotting was used to measure the level of proteins. Tq effectively controlled the proliferation of DU-145, PC-3, and LNCaP cells with GI50 of 10.18, 12.40, and 16.78 µM, respectively. IL-7 and IL-7R were natively expressed in all PC types, while maximal expression was detected in DU-145. IL-7 promoted metastatic events, such as transendothelial migration, cell scatter, and cell invasion of DU-145 cells in a dose-dependent manner that was inhibited by Tq. Furthermore, Tq also downregulated p-Akt and NF-κB in DU-145 cells induced by IL-7 antibody and reduced the levels of MMP-3 and MMP-7 in these cells in a dose-dependent manner. Collectively, Tq has excellent efficacy in controlling tumor progression, migration, and invasion of DU-145 cells that were driven by the activation of MMPs through IL-7/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Mishari Alshyarba
- Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Adole VA, Waghchaure RH, Pathade SS, Patil MR, Pawar TB, Jagdale BS. Solvent-free grindstone synthesis of four new (E)-7-(arylidene)-indanones and their structural, spectroscopic and quantum chemical study: a comprehensive theoretical and experimental exploration. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1800690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vishnu A. Adole
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune), Nashik, India
- Department of Chemistry, Arts, Science and Commerce College (Affiliated to SP Pune University, Pune), Manmad, Nashik, India
| | - Ravindra H. Waghchaure
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune), Nashik, India
- Department of Chemistry, Arts, Commerce and Science College Karanjali (Affiliated to SP Pune University, Pune), Nashik, India
| | - Sandip S. Pathade
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune), Nashik, India
- Department of Chemistry, Maharaja Sayajirao Gaikwad Arts, Science and Commerce College Malegaon (Affiliated to SP Pune University, Pune), Nashik, India
| | - Manohar R. Patil
- Department of Chemistry, G. T. Patil Arts, Commerce and Science College (Affiliated to KBC NM University, Jalgaon), Nandurbar, India
| | - Thansing B. Pawar
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune), Nashik, India
| | - Bapu S. Jagdale
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune), Nashik, India
- Department of Chemistry, Arts, Science and Commerce College (Affiliated to SP Pune University, Pune), Manmad, Nashik, India
| |
Collapse
|
7
|
Secondary Metabolites of Saussurea costus Leaf Extract Induce Apoptosis in Breast, Liver, and Colon Cancer Cells by Caspase-3-Dependent Intrinsic Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1608942. [PMID: 32766303 PMCID: PMC7374224 DOI: 10.1155/2020/1608942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 12/03/2022]
Abstract
Background Apoptosis, a major form of programmed cell death, plays a vital role in regulating tissue development and maintenance of homeostasis in eukaryotes. Apoptosis can occur via a death receptor-dependent extrinsic or a mitochondrial-dependent intrinsic pathway and can be induced by various chemotherapeutic agents. In this study, the anticancer activity of Saussurea costus and its mode of intervention in human cancer cells of breast, colon, and liver were investigated. Results In this study, the bioactives of S. costus leaves were extensively extracted in five solvents of different polarity. The cytotoxicity and anticancer effect of the extracted secondary metabolites were investigated against breast (MCF-7), liver (HepG2), and colon (HCT116) cancer cell lines using a Sulphorhodamine B (SRB) assay. Secondary metabolites extracted using hexane, methanol, ethyl acetate, and chloroform had the highest cytotoxicity and thus the greatest anticancer effect on all the cancer cell lines tested (IC50; ranging from 0.25 to 2.5 μg/ml), while butanol was comparatively less active (IC50; ranging from 23.2 to 25.5 μg/ml). Further investigation using DNA flow cytometry and fluorescent microscopy revealed that the extract arrested the cells in the G1 phase of cell cycle and induced apoptosis. Furthermore, the elevated expression level of proapoptotic proteins and decreased expression level of antiapoptotic proteins confirmed that the intrinsic (mitochondrial) pathway was involved in mediating the apoptosis of cancer cells upon treatment with S. costus extract. These results altogether suggest that S. costus could be a potential anticancer agent. Conclusion These results suggest that the S. costus extract is the potential source of the secondary metabolites that could be used as anticancer agent to treat diverse cancers of breast, colon, and liver.
Collapse
|
8
|
Al Shahrani M, Balasubramaniam M, Alshahrani MY, Saif A, Dera AA, Alasmari S, Abohassan M, Makkawi M, Radhakrishnan S, Rajagopalan P. Computational and in vitro characterization of ICY-5: A potential candidate promoting mitochondrial apoptosis via the c-MET and STAT3 pathways. J Cell Physiol 2020; 236:146-156. [PMID: 32484605 DOI: 10.1002/jcp.29830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Targeted chemotherapy remains the primary choice in controlling various forms of breast cancer (BC) due to its heterogenous gene expressions in various subtypes. In silico and in vitro evaluation of ICY-5, a novel arylidene analogue against c-MET, was performed. ICY-5 exhibited a docking score of -9.6 kcal/mol in inactive conformation and, - 8.6 kcal/mol in active conformation for c-MET. ICY-5 inhibited c-MET enzyme with an IC50 of 34.34 nM. The compound effectively inhibited MDA-MB 231 and MCF-7 cell proliferation, with GI50 values of 62.61 and 75.31 nM, respectively, and hepatocyte growth factor (HGF)/R c-MET phosphorylation with IC50 s of 71.41 and 83.77 nM, respectively. ICY-5 dose-dependently inhibited HGF-induced transmigration, cell scattering, invasion and altered cell cycle. An increase in apoptotic populations of these cells, with a dose-dependent decease in phosphorylation of STAT3 protein was observed. Furthermore, ICY-5 upregulated the caspase-3, caspase-9, Bcl-2-associated X and survivin, and downregulated Bcl-2, vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 in both BC cell lines. In summary, ICY-5 exhibited excellent efficacy in BC cells, targeting c-MET/SAT-3-mediated mitochondrial apoptosis. Further research will be required to ascertain ICY-5 suitability as a targeted chemotherapeutic against multiple forms of BC.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Saif
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sultan Alasmari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Makkawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suresh Radhakrishnan
- Postgraduation and Research Department of Chemistry, Presidency College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Adole VA, Jagdale BS, Pawar TB, Sawant AB. Experimental and theoretical exploration on single crystal, structural, and quantum chemical parameters of (
E
)‐7‐(arylidene)‐1,2,6,
7‐tetrahydro‐8
H
‐indeno[5,4‐
b
]furan‐8‐one derivatives: A comparative study. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vishnu A. Adole
- Department of Chemistry Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune) Nashik India
- Department of Chemistry Mahatma Gandhi Vidyamandir's Arts, Science and Commerce College (Affiliated to SP Pune University, Pune) Manmad India
| | - Bapu S. Jagdale
- Department of Chemistry Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune) Nashik India
- Department of Chemistry Mahatma Gandhi Vidyamandir's Arts, Science and Commerce College (Affiliated to SP Pune University, Pune) Manmad India
| | - Thansing B. Pawar
- Department of Chemistry Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati (Affiliated to SP Pune University, Pune) Nashik India
| | - Arun B. Sawant
- Department of Chemistry Maharaja Sayajirao Gaikwad Arts, Science and Commerce College (Affiliated to SP Pune University, Pune) Malegaon Camp India
| |
Collapse
|
10
|
Rajagopalan P, Chandramoorthy HC. (2E)-2-Benzylidene-4,7-dimethyl-2,3-dihydro-1H-inden-1-one (MLT-401), a novel arylidene indanone derivative, scavenges free radicals and exhibits antiproliferative activity of Jurkat cells. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2019-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
The arylidene indanone scaffold has contributed many lead molecules in chemotherapeutic anticancer agent research.
Objectives
To determine the oxidant-scavenging activities and antiproliferative activity of (2E)-2-benzylidene-4,7-dimethyl-2,3-dihydro-1H-inden-1-one (MLT-401), an arylidene indanone derivative.
Methods
Jurkat cells, primary lymphocytes, and Vero cells were treated with MLT-401. Antioxidant properties of MLT-401 were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH)-based, 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS)-based, and ferric-reducing antioxidant potential (FRAP) assays. Inhibition of cell proliferation was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based assay. Nuclear status was determined using a DNA fragmentation assay, and cell cycle stage was analyzed by flow cytometry. Mitochondrial membrane enzyme activities were measured using colorimetric methods.
Results
The antioxidant assays gave MLT-401 half maximal inhibitory concentration (IC50) values of 1611 nM (DPPH-based assay), 2115 nM (ABTS-based assay), and 1586 nM (FRAP assay). MLT-401 inhibited proliferation of Jurkat cells with a concentration for 50% of maximal inhibition of cell proliferation (GI50) of 341.5 nM, being 12- and 9-fold less than GI50 concentrations for normal lymphocytes and Vero cells, respectively. MLT-401 caused nuclear fragmentation and DNA laddering as seen by electrophoresis. Jurkat cells showed a time-dependent accumulation of sub G0/G1 cells after MLT-401 treatment. Mitochondrial membrane-bound Na+/K+ ATPase, Ca2+ ATPase, and Mg2+ ATPase activities were inhibited by MLT-401 in a dose-dependent manner.
Conclusion
MLT-401 possesses significant antiproliferative activity and scavenges free radicals released through mitochondrial membrane damage in a Jurkat cell line model of cancer cells. Further investigation of MLT-401 as a chemotherapeutic anticancer agent and development of other arylidene indanone analogues are warranted. A detailed elucidation of mechanistic pathways is required for further development.
Collapse
Affiliation(s)
- Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences , King Khalid University , Abha 61421 , Saudi Arabia
| | - Harish C. Chandramoorthy
- Center for Stem Cell Research, College of Medicine , King Khalid University , Abha 61421 , Saudi Arabia
- Department of Microbiology and Clinical Parasitology, College of Medicine , King Khalid University , Abha 61421 , Saudi Arabia
| |
Collapse
|
11
|
GC-MS analysis of ethanol extract from areal parts of Nepeta deflersiana and its anticancer and antimicrobial efficacies. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Balasubramaniam M, Lakkaniga NR, Dera AA, Fayi MA, Abohashrh M, Ahmad I, Chandramoorthy HC, Nalini G, Rajagopalan P. FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: Lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem 2020; 68:82-91. [PMID: 32067263 DOI: 10.1002/bab.1896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Akt, a serine-threonine protein kinase, is regulated by class-I PI3K signaling. Akt regulates a wide variety of cell processes including cell proliferation, survival, and angiogenesis through serine/threonine phosphorylation of downstream targets including mTOR and glycogen-synthase-kinase-3-beta (GSK3β). Targeting cancer-specific overexpression of Akt protein could be an efficient way to control cancer-cell proliferation. However, the ATP-competitive inhibitors are challenged by the highly conserved ATP binding site, and by competition with high cellular concentrations of ATP. We previously developed an allosteric inhibitor, 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1) that showed promising activity against several lung cancer models. In this work, we designed a congeneric series of molecules based on FXY-1 and optimized lead based on computational, in vitro assays. Computational screening followed by enzyme-inhibition and cell-proliferation assays identified a derivative (FCX-146) as a new lead molecule with threefold greater potency than the parent compound. FCX-146 increased apoptosis in HL-60 cells, mediated in part through decreased expression of antiapoptotic Bcl-2 protein and increased levels of Bax-2 and Caspase-3. Molecular-dynamic simulations showed stable binding of FCX-146 to an allosteric (i.e., noncatalytic) pocket in Akt. Together, we propose FCX-146 as a potent second-generation arylidene indanone compound that binds to the allosteric pocket of Akt and potently inhibits its activation.
Collapse
Affiliation(s)
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research and Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ganesan Nalini
- Department of Chemistry, Pachaiyappas College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
13
|
Ahmad I, Rajagopalan P, Wahab S, Dera A, Chandramoorthy H, Irfan S, Patel A, Abullias S, Zaman G. Anti-cancer activity of ethanolic leaf extract of Salvia officinalis against oral squamous carcinoma cells in vitro via caspase mediated mitochondrial apoptosis. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_90_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
FPX-113 attenuates inflammatory responses by deteriorating cytokines, neutrophil activity and mast cell degranulation via Akt/ NF- κB pathway. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00367-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Adole VA, Pawar TB, Jagdale BS. Aqua‐mediated rapid and benign synthesis of 1,2,6,7‐tetrahydro‐8H‐indeno[5,4‐b]furan‐8‐one‐appended novel 2‐arylidene indanones of pharmacological interest at ambient temperature. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vishnu A. Adole
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Nashik India
| | - Thansing B. Pawar
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Nashik India
| | - Bapu S. Jagdale
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Nashik India
| |
Collapse
|
16
|
Rajagopalan P, Dera A, Abdalsamad MR, C Chandramoorthy H. Rational combinations of indirubin and arylidene derivatives exhibit synergism in human non-small cell lung carcinoma cells. J Food Biochem 2019; 43:e12861. [PMID: 31353710 DOI: 10.1111/jfbc.12861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Rational combination of natural and synthetic derivatives to treat lung cancer has advantages of both efficacy and safety. Herein, the combination of indirubin-3-monoxime (I3M), a chemical derived from Chinese herbal medicine and FXY-1, a synthetic arylidene derivative, was tested for combined activity in lung cancer cells. A dose-dependent synergistic reduction in cell viability was recorded with the combinations in A549 and NCI-H460 cells. Combination treatments of I3M and FXY-1 showed antimetastatic effects in both cells. Cell cycle analysis revealed G1 growth phase reduction with subsequent accumulation of sub G0 contents. Annexin V assay revealed higher apoptotic cells with combinations compared to individual treatments. I3M + FXY-1 combination significantly decreased the antiapoptotic Bcl-2 protein and increased pro-apoptotic Bax protein levels. These results demonstrate efficacy of I3M + FXY-1 in lung cancer cells and suggest further preclinical research in animal models to develop it into a new form combination chemotherapeutic against lung cancer. PRACTICAL APPLICATIONS: Current investigation will open new options in rational combinations of natural and synthetic compounds to treat cancer. The observed efficacy and safety of the combinations will add to the advantage of higher therapeutic window in formulating treatment regimens. The antimetastatic effects by the combinations provides promising efficacy in controlling the lung cancer progression. A detailed in vivo investigation is recommended to transform the combinations to novel chemotherapeutic options against lung cancer.
Collapse
Affiliation(s)
- Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Research Center of Advanced Materials, King Khalid University, Abha, Saudi Arabia
| | - Mohamad Ragab Abdalsamad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Department of Microbiology & Clinical Parasitology and Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Rajagopalan P, Hakami A, Ragab M, Elbessoumy A. FCY-302, a Novel Small Molecule, Induces Apoptosis in Leukemia and Myeloma Cells by Attenuating Key Antioxidant and Mitochondrial Enzymes. Oncol Res 2019; 27:957-964. [PMID: 31046873 PMCID: PMC7848260 DOI: 10.3727/096504019x15555428221646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Arylidene analogs are well proven for biological activities. FCY-302, a novel small molecule belonging to this class, was screened for its biological efficacy in leukemia and myeloma cells. FCY-302 selectively inhibited proliferation of cancer cells with GI50 values of 395.2 nM, 514.6 Nm, and 642.4 nM in HL-60, Jurkat, and RPMI-8226 cells, respectively. The compound also increased sub-G0 peak in the cancer cell cycle and favored apoptosis determined by annexin V assay. The compound decreased the antiapoptotic Bcl-2 levels and increased proapoptotic Bax proteins in leukemia and myeloma cell lines. FCY-302 attenuated the mitochondrial membrane-bound Na+/K+ ATPase, Ca2+ ATPase, and Mg2+ ATPase enzyme activities and significantly decreased activities of antioxidant enzymes like SOD, CAT, GR, and GST in all the three cancer cells tested. Our findings suggest that FCY-302 inhibits the proliferation of leukemia and myeloma cancer cells by altering key mitochondrial and antioxidant enzymes, eventually driving them to apoptosis. These results drive focus on FCY-302 and its analogs to be developed as potential small molecules with bioactivities against cancer.
Collapse
Affiliation(s)
- Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Abdulrahim Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed Ragab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ashraf Elbessoumy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Dera A, Rajagopalan P. Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J Food Biochem 2019; 43:e12793. [PMID: 31353586 DOI: 10.1111/jfbc.12793] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Thymoquinone (Tq) is an active compound from Nigella sativa which is used in traditional medicine. The effect of Tq on kidney cancer and the pathway of action remain unproven. Herein, we report the anticancer properties of Tq on kidney cancer cells. Tq demonstrated anti-proliferative effects in A498 cells with a GI50 value of 40.07 µM and Caki-1 cells with a GI50 of 51.04 µM by the MTT assay. Tq exhibited nuclear fragmentation and inhibited trans-endothelial migration of A498 and Caki-1 cells in a dose-responsive manner. Time-dependent increase in Annexin V-positive cells and sub-G0 /G1 cell population was observed post-Tq treatment. The compound increased Bax protein levels and reduced Bcl-2 protein levels dose dependently in cells, thereby favoring apoptosis. Tq decreased the phosphorylation of Akt in both kidney cell types. The results suggest effective anticancer activity of Tq on kidney cancer cells which may be mediated by the Akt pathway. PRACTICAL APPLICATIONS: Results from the current investigation will through more light on the mechanistic pathway of Tq activity on the inhibition of kidney cancer cell proliferation. The output of this preclinical in vitro study may be translated into better chemotherapeutics of Tq and its analogs to treat kidney cancer. However, a detailed investigation on in vivo models is recommended.
Collapse
Affiliation(s)
- Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Research Center of Advanced Materials, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
Valiyari S, Salami M, Mahdian R, Shokrgozar MA, Oloomi M, Mohammadi Farsani A, Bouzari S. sIL-24 peptide, a human interleukin-24 isoform, induces mitochondrial-mediated apoptosis in human cancer cells. Cancer Chemother Pharmacol 2017; 80:451-459. [DOI: 10.1007/s00280-017-3370-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
|
20
|
Zhang HY, Yang W, Lu JB. Knockdown of GluA2 induces apoptosis in non-small-cell lung cancer A549 cells through the p53 signaling pathway. Oncol Lett 2017; 14:1005-1010. [PMID: 28693266 DOI: 10.3892/ol.2017.6234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are important glutamatergic receptors that mediate fast excitatory synaptic transmission in the brain. Previous studies have demonstrated that glutamate ionotropic receptor AMPA type subunit 2 (GluA2), one of the four subunits that comprise AMPA receptors, is a potential novel marker for poor prognosis in patients with human lung cancer. However, the mechanisms of GluA2-induced apoptosis, proliferation and migration in lung cancer remain unknown. The present study aimed to explore the mechanisms underlying these effects of GluA2 in human lung cancer by silencing GluA2 in A549 cells. Using the Cell Counting Kit-8 assay, western blot analysis and acridine orange/ethidium bromide staining, downregulation of GluA2 was revealed to significantly inhibit the proliferation and significantly promote the apoptosis of A549 cells. Knockdown of GluA2 was also revealed to be associated with increased caspase-3 activity, increased Bcl-2-associated X protein and Bcl-2-associated death promoter (Bad) expression, and decreased expression of B-cell lymphoma-2, p-Bad and X-linked inhibitor of apoptosis protein. In addition, GluA2 silencing upregulated cellular tumor antigen p53 (p53)/p21Cip1/Waf1/p16INK4a protein. In conclusion, these results indicate that the effects of GluA2 in lung cancer are mediated by the caspase-3 and p53/p21Cip1/Waf1/p16INK4a signaling pathways. Therefore, GluA2 may be a potential novel therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 150000, P.R. China
| | - Wei Yang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 150000, P.R. China
| | - Ji-Bin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 150000, P.R. China
| |
Collapse
|
21
|
Menezes JCJMDS. Arylidene indanone scaffold: medicinal chemistry and structure–activity relationship view. RSC Adv 2017. [DOI: 10.1039/c6ra28613e] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arylidene indanone (AI) scaffolds are considered as the rigid cousins of chalcones, incorporating the α,β-unsaturated ketone system of chalcones forming a cyclic 5 membered ring.
Collapse
|