1
|
Al-Sanea MM, Al-Ansary GH, Elsayed ZM, Maklad RM, Elkaeed EB, Abdelgawad MA, Bukhari SNA, Abdel-Aziz MM, Suliman H, Eldehna WM. Development of 3-methyl/3-(morpholinomethyl)benzofuran derivatives as novel antitumor agents towards non-small cell lung cancer cells. J Enzyme Inhib Med Chem 2021; 36:987-999. [PMID: 33985397 PMCID: PMC8128204 DOI: 10.1080/14756366.2021.1915302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most lethal malignancies, lung cancer is considered to account for approximately one-fifth of all malignant tumours-related deaths worldwide. This study reports the synthesis and in vitro biological assessment of two sets of 3-methylbenzofurans (4a-d, 6a-c, 8a-c and 11) and 3-(morpholinomethyl)benzofurans (15a-c, 16a-b, 17a-b and 18) as potential anticancer agents towards non-small cell lung carcinoma A549 and NCI-H23 cell lines, with VEGFR-2 inhibitory activity. The target benzofuran-based derivatives efficiently inhibited the growth of both A549 and NCI-H23 cell lines with IC50 spanning in ranges 1.48-47.02 and 0.49-68.9 µM, respectively. The three most active benzofurans (4b, 15a and 16a) were further investigated for their effects on the cell cycle progression and apoptosis in A549 (for 4b) and NCI-H23 (for 15a and 16a) cell lines. Furthermore, benzofurans 4b, 15a and 16a displayed good VEGFR-2 inhibitory activity with IC50 equal 77.97, 132.5 and 45.4 nM, respectively.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Raed M. Maklad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Institute of Drug Discovery and Development, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Howayda Suliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
2
|
Collins T, Gray K, Bista M, Skinner M, Hardy C, Wang H, Mettetal JT, Harmer AR. Quantifying the relationship between inhibition of VEGF receptor 2, drug-induced blood pressure elevation and hypertension. Br J Pharmacol 2018; 175:618-630. [PMID: 29161763 DOI: 10.1111/bph.14103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/20/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Several anti-angiogenic cancer drugs that inhibit VEGF receptor (VEGFR) signalling for efficacy are associated with a 15-60% incidence of hypertension. Tyrosine kinase inhibitors (TKIs) that have off-target activity at VEGFR-2 may also cause blood pressure elevation as an undesirable side effect. Therefore, the ability to translate VEGFR-2 off-target potency into blood pressure elevation would be useful in development of novel TKIs. Here, we have sought to quantify the relationship between VEGFR-2 inhibition and blood pressure elevation for a range of kinase inhibitors. EXPERIMENTAL APPROACH Porcine aortic endothelial cells overexpressing VEGFR-2 (PAE) were used to determine IC50 for VEGFR-2 phosphorylation. These IC50 values were compared with published reports of exposure attained during clinical use and the corresponding incidence of all-grade hypertension. Unbound average plasma concentration (Cav,u ) was selected to be the most appropriate pharmacokinetic parameter. The pharmacokinetic-pharmacodynamic (PKPD) relationship for blood pressure elevation was investigated for selected kinase inhibitors, using data derived either from clinical papers or from rat telemetry experiments. KEY RESULTS All-grade hypertension was predominantly observed when the Cav,u was >0.1-fold of the VEGFR-2 (PAE) IC50 . Furthermore, based on the PKPD analysis, an exposure-dependent blood pressure elevation >1 mmHg was observed only when the Cav,u was >0.1-fold of the VEGFR-2 (PAE) IC50 . CONCLUSIONS AND IMPLICATIONS Taken together, these data show that the risk of blood pressure elevation is proportional to the amount of VEGFR-2 inhibition, and a margin of >10-fold between VEGFR-2 IC50 and Cav,u appears to confer a minimal risk of hypertension.
Collapse
Affiliation(s)
- Teresa Collins
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Kelly Gray
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Michal Bista
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Matt Skinner
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Christopher Hardy
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Haiyun Wang
- AstraZeneca, Gatehouse Park, Waltham, MA, 02451, USA
| | | | - Alexander R Harmer
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| |
Collapse
|